
7th EECS Programming Competition

Sponsored by

Wednesday, 12 February 2014

Note. Your programs should read from standard input. The programs should
process one input and print the result at the standard output.

When testing your programs we will run them several times on different inputs. In
order to get a point for that problem your program must terminate within 5 seconds
outputing the correct solution on each of the input tests. Programs should not use
more than 2MB of memory to solve a problem.





A. Bubble Sort

Problem. Bubble sort is one of the simplest sorting algorithms. Given a list of num-
bers, e.g.

5 2 3 1 7 6

the algorithm works by repeatedly scanning the list from left to right and swapping
any two adjacent numbers which are not in the right (increasing) order. For instance,
in the first scan on the list above one would swap 5 and 2, 5 and 3, 5 and 1, and 7 and
6, to obtain the list

2 3 1 5 6 7

In the second scan one would then swap 3 and 1, to obtain the list

2 1 3 5 6 7

and in the final scan 2 and 1 are swapped to obtain the ordered list. After a scan where
no swaps are necessary the algorithm terminates. You are asked to write a program
that counts the number of scans, and the total number of swaps required to bubble
sort a given list of numbers.

Input. The input consists of a number 1 < N < 216, indicating the length of the
given list, followed by N numbers. The N numbers are in the range 0 to 232 − 1, and
might contain repeated numbers.

Output. Your program should output (in the format shown below) the number of
scans and the total number of swaps needed to bubble sort the given list. The final
scan where no swaps are performed should not be counted.

Sample Inputs.

Sample Input 1 Output to Sample Input 1

4 4 4 1 5 Scans: 2

Total swaps: 2

Sample Input 2 Output to Sample Input 2

6 5 2 3 1 7 6 Scans: 3

Total swaps: 6



B. Dominos

Problem. Domino tiles contain two numbers from the set {0, 1, 2, 3, 4, 5, 6}. Two tiles
can be put together if they have a common number, as in the picture below.

Given a set of domino tiles, you are asked to write a program that finds the length
of the longest sequence one can form with such tiles. For this problem each title type
will be described as [x:y], where x and y are numbers in the set {0, 1, 2, 3, 4, 5, 6}. For
instance, the title containing 1 and 6 can be represented as either [1:6] or [6:1]. For
each title type you will also be told how many of these are available.

Input. The input starts with a number N ≥ 1 describing how may tile types are
available. After that it follows N lines describing the title types and how many of
each are available. The number of available tiles of each type will be at most 10,
i.e. a number in the range 1 ≤ . . . ≤ 10. Each tile type will be listed at most once.
For instance, in the Sample Input 1 below one has two [1:5] tiles and one [1:1] title,
meaning one can form a sequence of length 3.

Output. Length of longest possible sequence one can form with the given domino
tiles.

Sample Inputs.

Sample Input 1 Output to Sample Input 1

2 3

[1:5] 2

[1:1] 1

Sample Input 2 Output to Sample Input 2

2 10

[3:2] 10

[6:6] 5



C. Phonebook

Problem. Given a list of people in a phonebook, you are asked to sort this list by
their date of birth, from oldest to youngest.

Input. The input will consist of a number N (in the range 1 to 1000) followed by a
list of N people, together with their date of birth. The name of each person might
consist of several names separated by a space, but each name will contain only alpha
characters, i.e. { A, B, . . ., Z } or { a, b, . . ., z }. The name is followed immediately
by a comma and a space, followed then by the date in the format DD/MM/YYYY.
All months and days of the month will consist of precisely two digits, hence, for days
or months in the range 1 to 9, these will be written as 01, 02, ...

Output. The given list sorted by date of birth, from oldest to youngest. When two
persons where born on the same date, they should then be ordered lexicographically
by last name. If a person is only listed with one name (for instance, “John”) this is to
be considered as the last name. When two persons where born on the same date and
have the same last name, these can be listed in any order.

Sample Inputs.

Sample Input 1 Output to Sample Input 1

3 Barbara, 01/01/1978

John, 02/03/2001 Peter, 23/07/1990

Barbara, 01/01/1978 John, 02/03/2001

Peter, 23/07/1990

Sample Input 2 Output to Sample Input 2

5 Barbara Kennedy, 10/01/1978

Elizabeth, 15/07/2013 Peter Johnson, 02/03/2001

Ana Smith, 10/01/2013 John Scott, 02/03/2001

John Scott, 02/03/2001 Ana Smith, 10/01/2013

Barbara Kennedy, 10/01/1978 Elizabeth, 15/07/2013

Peter Johnson, 02/03/2001



D. Containers

Problem. Given a list of rectangular containers (dimensions given as X×Y ) find the
maximum number of containers that can be stacked up inside each other. Note that
a container with dimensions X1 × Y1 can only be stacked up inside another container
with dimensions X2 × Y2 if X1 < X2 and Y1 < Y2, or X1 < Y2 and X2 < Y1. For
instance, a container with dimensions 2.10×3.50 can be placed inside a container with
dimensions 4.00× 2.20. The height of the containers is not important.

Input. A number 1 < N ≤ 100 followed by a list of N containers. Each container
is given by its dimension X and Y (in the format shown below) where X and Y are
always given with two decimal places of precision.

Output. Length of longest sequence of containers that can be stacked up inside each
other.

Sample Inputs.

Sample Input 1 Output to Sample Input 1

2 2

2.10 3.50

4.00 2.20

Sample Input 2 Output to Sample Input 2

5 4

1.00 1.00

2.00 2.00

1.10 1.90

1.15 1.95

1.20 1.80



E. DNA

Problem. The DNA molecule is formed from four so-called nucleobases, normally
identified as G, A, T, C. It is known that “A” should bind with “T”; and that “G”
should bind with “C”. When a different binding takes place something horribly wrong
might happen.

Input. The input will consist of two sequences of the characters from the set of four
letters { G, A, T, C }, with corresponding nuclebases vertically aligned. This sequence
of base pairs will have length at most 5000.

Output. Your program should identify whether any anomalies occurs in this section
of a DNA. Hence, your program should Output either “No error detected” or “First
error at position X”, where X is the index of the first position where a mistake occurs.
The indexing of positions start at 1.

Sample Inputs.

Sample Input 1 Output to Sample Input 1

AGATGACCAG First error at position 5

TCTATTGGTC

Sample Input 1 Output to Sample Input 1

AGATGACCAGTTAG No error detected

TCTACTGGTCAATC



F. Digits

Problem. The digit sum of a number is the sum of its digits when represented in
ordinary base 10. Digit sums often appear in simple number puzzles but also have
serious uses, such as divisibility testing and checksums.

Given a nonnegative integer, your task is to compute its digit sum.

Input. An integer N in the range 0 ≤ N < 232.

Output. The digit sum of N .

Sample Inputs.

Sample Input 1 Output to Sample Input 1

42 6

Sample Input 2 Output to Sample Input 2

123456789 45


