Closure of System T under the Bar Recursion Rule

Paulo Oliva
(joint work with S. Steila)

Queen Mary University of London

University Leeds
Wednesday, 1 November 2017
Closure of System T under the Bar Recursion Rule

Outline

1. Spector’s bar recursion
2. Schwichtenberg’s proof
3. A new (more direct) proof
Outline

1. Spector’s bar recursion

2. Schwichtenberg’s proof

3. A new (more direct) proof
Spector’s Bar Recursion

(1958) Gödel’s Dialectica interpretation of arithmetic (system T)

(1962) Spector extends interpretation to analysis (T + BR)

(1968) Howard interpretation of bar induction (T + BR)

(1971) Scarpellini shows C is a model of BR

(1979) Schwichtenberg closure theorem (low types)

(1981) Howard’s ordinal analysis of BR (low types)

(1985) Bezem shows M is a model of BR
Spector’s Bar Recursion (Rule)

Given \(s : \tau^* \) let \(\hat{s} : \tau^\mathbb{N} \) be the extension of \(s \) with 0’s

For each pair of types \(\tau, \sigma \), and given \(G, H \) and \(Y \)

\[
\text{BR}^{\tau,\sigma}(s) \equiv \begin{cases}
G(s) & \text{if } Y(\hat{s}) < |s| \\
H(s)(\lambda x. \text{BR}(s \ast x)) & \text{otherwise}
\end{cases}
\]

where

\[
\begin{align*}
G &: \ \tau^* \rightarrow \sigma \\
Y &: \ \tau^\mathbb{N} \rightarrow \mathbb{N} \\
H &: \ \tau^* \rightarrow (\tau \rightarrow \sigma) \rightarrow \sigma
\end{align*}
\]
Schwichtenberg’s Closure Theorem

Theorem

System T is closed under the bar recursion rule when τ’s type level is either 0 or 1

That is, given G, H and Y terms in T, the functional

$$BR^{\tau,\sigma}(s) = \sigma \begin{cases} G(s) & \text{if } Y(\hat{s}) < |s| \\ H(s)(\lambda x^\tau. BR(s \ast x)) & \text{otherwise} \end{cases}$$

is also T definable
Counter-example for $\tau > 1$

Howard (1968) showed that bar recursion of type ρ can be defined using the bar recursion rule of type $(\mathbb{N} \to \rho) \to \rho$
Counter-example for $\tau > 1$

Howard (1968) showed that bar recursion of type ρ can be defined using the bar recursion rule of type $(\mathbb{N} \rightarrow \rho) \rightarrow \rho$.

Since bar recursion, even of type $\rho = \mathbb{N}$, is not T definable.
Counter-example for $\tau > 1$

Howard (1968) showed that bar recursion of type ρ can be defined using the bar recursion rule of type $(\mathbb{N} \rightarrow \rho) \rightarrow \rho$

Since bar recursion, even of type $\rho = \mathbb{N}$, is not T definable

it follows that T is not closed under the bar recursion rule for $\tau = (\mathbb{N} \rightarrow \mathbb{N}) \rightarrow \mathbb{N}$
Outline

1. Spector’s bar recursion

2. Schwichtenberg’s proof

3. A new (more direct) proof
Schwichtenberg’s Proof

Published in The Journal of Symbolic Logic (1971)

“On bar recursion of type 0 and 1”

5 pages long (actual proof only two pages long)
Schwichtenberg’s Proof

1. Translate terms G, H, Y into infinitary terms (get rid of recursor)
Schwichtenberg’s Proof

1. Translate terms G, H, Y into infinitary terms (get rid of recursor)

2. Define a bar $S_Y(s) = “sequence s is secure for term Y”$
Schwichtenberg’s Proof

1. Translate terms G, H, Y into infinitary terms (get rid of recursor)

2. Define a bar $S_Y(s) = “sequence s is secure for term Y”$

3. Complement of $S_Y(s)$ is a tree
Schwichtenberg’s Proof

1. Translate terms G, H, Y into infinitary terms (get rid of recursor)
2. Define a bar $S_Y(s) = “sequence \, s \, is \, secure \, for \, term \, Y”$
3. Complement of $S_Y(s)$ is a tree
4. See BR as a recursion on this tree
Schwichtenberg’s Proof

1. Translate terms G, H, Y into infinitary terms (get rid of recursor)

2. Define a bar $S_Y(s) = \text{“sequence } s \text{ is secure for term } Y\text{”}$

3. Complement of $S_Y(s)$ is a tree

4. See BR as a recursion on this tree

5. Define order-preserving embedding of tree into ε_0-ordinals
Schwichtenberg’s Proof

1. Translate terms G, H, Y into infinitary terms (get rid of recursor)
2. Define a bar $S_Y(s) = “sequence s is secure for term Y”$
3. Complement of $S_Y(s)$ is a tree
4. See BR as a recursion on this tree
5. Define order-preserving embedding of tree into ε_0-ordinals
6. Hence, BR can be mimicked by ε_0-ordinal recursion
Schwichtenberg’s Proof

1. Translate terms G, H, Y into infinitary terms (get rid of recursor)
2. Define a bar $S_Y(s) = \text{“sequence } s \text{ is secure for term } Y\text{”}$
3. Complement of $S_Y(s)$ is a tree
4. See BR as a recursion on this tree
5. Define order-preserving embedding of tree into ε_0-ordinals
6. Hence, BR can be mimicked by ε_0-ordinal recursion
7. By Tait, we can find equivalent T definition of BR(s)
Outline

1. Spector’s bar recursion
2. Schwichtenberg’s proof
3. A new (more direct) proof
Base case: $Y(\alpha)$ is constant

When $Y(\alpha)$ is constant n, BR becomes

$$\text{BR}^{\tau,\sigma}(s) \equiv \begin{cases} G(s) & \text{if } |s| > n \\ H(s)(\lambda x^\tau.\text{BR}(s \ast x)) & \text{if } |s| \leq n \end{cases}$$
Base case: $Y(\alpha)$ is constant

When $Y(\alpha)$ is constant n, BR becomes

$$BR^{\tau,\sigma}(s) \overset{\sigma}{=} \begin{cases} G(s) & \text{if } |s| > n \\ H(s)(\lambda x^\tau. BR(s \ast x)) & \text{if } |s| \leq n \end{cases}$$

It is easy to write down a T term (uniformly in G and H) computing the same function
Base case: $Y(\alpha)$ is constant

When $Y(\alpha)$ is constant n, BR becomes

$$BR^{\tau,\sigma}(s) \equiv \begin{cases} G(s) & \text{if } |s| > n \\ H(s)(\lambda x^\tau . BR(s \ast x)) & \text{if } |s| \leq n \end{cases}$$

It is easy to write down a T term (uniformly in G and H) computing the same function

Needs primitive recursion of type $\tau^* \rightarrow \sigma$
Base case: $Y(\alpha)$ is constant

When $Y(\alpha)$ is constant n, BR becomes

$$BR^{\tau,\sigma}(s) \equiv \begin{cases} G(s) & \text{if } |s| > n \\ H(s)(\lambda x^\tau. BR(s \ast x)) & \text{if } |s| \leq n \end{cases}$$

It is easy to write down a T term (uniformly in G and H) computing the same function

Needs primitive recursion of type $\tau^* \rightarrow \sigma$

Let us refer to this T term as cBR
Proof Idea

Part 1: Show that BR is definable in “general BR”

Part 2: Show that T is closed under “general BR”

(first part works for any type, second part requires the type restriction)
General BR

For any bar S consider the defining equation

$$g_{BR}^S(s) \equiv \begin{cases}
G(s) & \text{if } S(s) \\
H(s)(\lambda x^\tau.g_{BR}^S(s \ast x)) & \text{if } \neg S(s)
\end{cases}$$
General BR

For any bar S consider the defining equation

$$g_{\text{BR}}^S(s) \equiv \begin{cases} G(s) & \text{if } S(s) \\ H(s)(\lambda x^\tau . g_{\text{BR}}^S(s \ast x)) & \text{if } \neg S(s) \end{cases}$$

Definition

We say that a bar S secures $Y : \tau^\mathbb{N} \rightarrow \mathbb{N}$ if for all s^{τ^*}

$$S(s) \Rightarrow \lambda \beta.Y(s \ast \beta) \text{ is constant}$$
Part 1: BR definable in general BR

Theorem

Fix $Y : \tau^\mathbb{N} \to \mathbb{N}$. The functional

$$\lambda G, H, s.\text{BR}^{\tau,\sigma}(G, H, Y)(s)$$

is T-definable in $g\text{BR}^S$, for any bar S securing Y
Part 1: BR definable in general BR

Theorem

\[\text{Fix } Y : \tau^\mathbb{N} \rightarrow \mathbb{N}. \text{ The functional} \]

\[\lambda G, H, s. \text{BR}^\tau,\sigma (G, H, Y)(s) \]

is T-definable in gBR\(^S\), for any bar S securing Y

Proof.

Use the bar S to spot when Y becomes constant, then apply the T construction for the case when Y is constant.
Part 2: Closure of T under gBR rule

Theorem

Fix a T-term $Y : \tau^\mathbb{N} \to \mathbb{N}$. For some S securing Y the functional gBR^S is T definable.
Part 2: Closure of T under gBR rule

Theorem

Fix a T-term $Y : \tau^N \rightarrow N$. For some S securing Y the functional gBR^S is T definable.

Proof.

(Construction) By induction on Y.
(Correctness proof) Use a logical relation to show that the constructed term is indeed equivalent to gBR^S.

The Construction (case \(\tau = \mathbb{N} \))

Let \(\mathbb{N}^\circ \equiv \) the type of gBR. We will map \(\mathbb{N} \) to \(\mathbb{N}^\circ \).

Let \(\alpha \) be a special variable of type \(\mathbb{N} \rightarrow \mathbb{N} \) (generic)

\[
0^\circ = \lambda G. G
\]
The Construction (case $\tau = \mathbb{N}$)

Let $\mathbb{N}^\circ \equiv$ the type of gBR. We will map \mathbb{N} to \mathbb{N}°.

Let α be a special variable of type $\mathbb{N} \to \mathbb{N}$ (generic)

\[
0^\circ = \lambda G. G
\]

\[
\text{Succ}^\circ = \lambda \Phi^{\mathbb{N}^\circ}. \Phi
\]
The Construction (case $\tau = \mathbb{N}$)

Let $\mathbb{N}^\circ \equiv$ the type of $g\text{BR}$. We will map \mathbb{N} to \mathbb{N}°.

Let α be a special variable of type $\mathbb{N} \rightarrow \mathbb{N}$ (generic)

\[
\begin{align*}
0^\circ &= \lambda G. G \\
\text{Succ}^\circ &= \lambda \Phi^{\mathbb{N}^\circ}. \Phi \\
\alpha^\circ &= \lambda \Phi^{\mathbb{N}^\circ} \lambda G. \Phi(\lambda s'. c\text{BR}(G, Y(\hat{s}'))(s'))
\end{align*}
\]
The Construction (case $\tau = \mathbb{N}$)

Let $\mathbb{N}^\circ \equiv$ the type of gBR. We will map \mathbb{N} to \mathbb{N}°.

Let α be a special variable of type $\mathbb{N} \rightarrow \mathbb{N}$ (generic)

\[
\begin{align*}
0^\circ &= \lambda G. G \\
\text{Succ}^\circ &= \lambda \Phi^{\mathbb{N}^\circ}. \Phi \\
\alpha^\circ &= \lambda \Phi^{\mathbb{N}^\circ} \lambda G. \Phi(\lambda s'.cBR(G, Y(\hat{s'}))(s')) \\
(\lambda x^\eta.t)^\circ &= \lambda x^\circ.t^\circ
\end{align*}
\]
The Construction (case $\tau = \mathbb{N}$)

Let $\mathbb{N}^\circ \equiv$ the type of $g\text{BR}$. We will map \mathbb{N} to \mathbb{N}°.

Let α be a special variable of type $\mathbb{N} \to \mathbb{N}$ (generic)

\[
\begin{align*}
0^\circ &= \lambda G. G \\
\text{Succ}^\circ &= \lambda \Phi^{\mathbb{N}^\circ}. \Phi \\
\alpha^\circ &= \lambda \Phi^{\mathbb{N}^\circ} \lambda G. \Phi(\lambda s'. c\text{BR}(G, Y(\hat{s'}))(s')) \\
(\lambda x^\eta.t)^\circ &= \lambda x^\circ.t^\circ \\
(uv)^\circ &= u^\circ v^\circ
\end{align*}
\]
The Construction (case $\tau = \mathbb{N}$)

Let $\mathbb{N}^\circ \equiv$ the type of $g\text{BR}$. We will map \mathbb{N} to \mathbb{N}°.

Let α be a special variable of type $\mathbb{N} \rightarrow \mathbb{N}$ (generic)

\[
\begin{align*}
0^\circ & = \lambda G.G \\
\text{Succ}^\circ & = \lambda \Phi^{\mathbb{N}^\circ}.\Phi \\
\alpha^\circ & = \lambda \Phi^{\mathbb{N}^\circ} \lambda G.\Phi(\lambda s'.c\text{BR}(G, Y(\hat{s}'))(s')) \\
(\lambda x^\eta.t)^\circ & = \lambda x^\circ.t^\circ \\
(\lambda v)^\circ & = u^\circ v^\circ \\
(\text{Rec}^\eta)^\circ & = \ldots
\end{align*}
\]
The Construction (case $\tau = \mathbb{N}$)

Let $\mathbb{N}^\circ \equiv$ the type of gBR. We will map \mathbb{N} to \mathbb{N}°.

Let α be a special variable of type $\mathbb{N} \to \mathbb{N}$ (generic)

\begin{align*}
0^\circ &= \lambda G . G \\
\text{Succ}^\circ &= \lambda \Phi^{\mathbb{N}^\circ} . \Phi \\
\alpha^\circ &= \lambda \Phi^{\mathbb{N}^\circ} \lambda G . \Phi(\lambda s'. \text{cBR}(G, Y(\hat{s}'))(s')) \\
(\lambda x^\eta . t)^\circ &= \lambda x^\circ . t^\circ \\
(uv)^\circ &= u^\circ v^\circ \\
(\text{Rec}^\eta)^\circ &= \ldots
\end{align*}

(H can be fixed at outset, but extra work to remember Y)
The Construction: Recursor

Suppose $Y(\alpha) = \text{Rec}(n_\alpha, x_\alpha, f_\alpha)$
The Construction: Recursor

Suppose $Y(\alpha) = \text{Rec}(n_\alpha, x_\alpha, f_\alpha)$

first ensure term n_α is secure (i.e. constant n)
The Construction: Recursor

Suppose \(Y(\alpha) = \text{Rec}(n_\alpha, x_\alpha, f_\alpha) \)

first ensure term \(n_\alpha \) is secure (i.e. constant \(n \))

then ensure \(x_\alpha \) is secure
The Construction: Recursor

Suppose $Y(\alpha) = \text{Rec}(n_\alpha, x_\alpha, f_\alpha)$

first ensure term n_α is secure (i.e. constant n)

then ensure x_α is secure

and $f_\alpha(x_\alpha)$ is secure
The Construction: Recursor

Suppose $Y(\alpha) = \text{Rec}(n_\alpha, x_\alpha, f_\alpha)$

first ensure term n_α is secure (i.e. constant n)

then ensure x_α is secure

and $f_\alpha(x_\alpha)$ is secure

...
The Construction: Recursor

Suppose $Y(\alpha) = \text{Rec}(n_\alpha, x_\alpha, f_\alpha)$

first ensure term n_α is secure (i.e. constant n)

then ensure x_α is secure

and $f_\alpha(x_\alpha)$ is secure

\ldots

until $f_\alpha^n(x_\alpha)$ is secure
The Construction: Recursor

Suppose $Y(\alpha) = \text{Rec}(n_\alpha, x_\alpha, f_\alpha)$

first ensure term n_α is secure (i.e. constant n)

then ensure x_α is secure

and $f_\alpha(x_\alpha)$ is secure

...

until $f^n_\alpha(x_\alpha)$ is secure

can be done by induction hypothesis + primitive recursion
The Correctness Proof

Recall $\mathbb{N}^\circ \equiv$ the type of gBR

Fix H. Define logical relation between T terms

Base case:

\[f^{\mathbb{N}^\circ} \sim_{\mathbb{N}} g^{\mathbb{N}^\circ \rightarrow \mathbb{N}} \equiv \exists S \text{ securing } g \text{ such that } f = gBR^S \]
The Correctness Proof

Recall $\mathbb{N}^\circ \equiv$ the type of g_{BR}

Fix H. Define logical relation between T terms

Base case:

$$f^{\mathbb{N}^\circ} \sim_n g^{\mathbb{N}\to\mathbb{N}} \equiv \exists S \text{ securing } g \text{ such that } f = g_{BR}^S$$

and, as usual:

$$f^{\rho_0^\circ\to\rho_1^\circ} \sim_{\rho_0\to\rho_1} g^{\mathbb{N}\to(\rho_0\to\rho_1)}$$

$$\equiv \forall x^{\rho_0^\circ}\forall y^{\mathbb{N}\to\rho_0}(x \sim_{\rho_0} y \rightarrow f(x) \sim_{\rho_1} \lambda\alpha.g(\alpha)(y\alpha))$$
Main Result

Theorem

Given a closed T term $Y : \mathbb{N}^\mathbb{N} \to \mathbb{N}$, then $(Y\alpha)^\circ \sim Y$
Main Result

Theorem

Given a closed T term $Y : \mathbb{N}^\mathbb{N} \rightarrow \mathbb{N}$, then $(Y \alpha)^{\circ} \sim Y$

Proof.
By structural induction on Y
Main Result

Theorem

Given a closed T term $Y : \mathbb{N}^\mathbb{N} \to \mathbb{N}$, then $(Y^\alpha)^\circ \sim Y$

Proof.

By structural induction on Y

Corollary

Fix $Y : \mathbb{N}^\mathbb{N} \to \mathbb{N}$ in T. Then $\lambda G, H, s. BR(G, H, Y)(s)$ is T definable
Conclusion

Stronger result:
- Only Y needs to be T definable

More explicit construction:
- Given concrete Y, reasonably easy to find T definition of $\lambda G, H, s.\text{BR}(G, H, Y)(s)$

Easy to calibrate T fragments:
- If Y is T_i then $\lambda G, H, s.\text{BR}(G, H, Y)(s)$ is in T_j, where $j = 1 + \max\{1, \text{level}(\sigma)\} + i$.