Modular Searching with Higher-Order Functions

Paulo Oliva
Queen Mary University of London

British Logic Colloquium
University of Sussex
14 September 2017

A Puzzle

A Puzzle

Using the numbers $1,2, \ldots, 10$ fill in the empty cells below so that each row and column has the same sum

A Puzzle

Using the numbers $1,2, \ldots, 10$ fill in the empty cells below so that each row and column has the same sum

1	X	X	X
2	5	7	8
9	3	4	6
10	X	X	X

Searching for a Solution...

Searching for a Solution...

Order the cells:

Searching for a Solution...

Order the cells:

0		X		X	X
1	2		3		4
5		6	7		8
9		X		X	

Searching for a Solution...

Order the cells:

0		X		X
1			X	
5			3	

Generate all arrays $\left[x_{0}, \ldots, x_{9}\right.$, with x_{i} in $\{1, \ldots, 10\}$

Searching for a Solution...

Order the cells:

0		X		X
1	2		3	
5	6		7	4
9		X		X

Generate all arrays $\left[x_{0}, \ldots, x_{9}\right.$], with x_{i} in $\{1, \ldots, 10\}$
Until we find a "good" one

C Implementation

```
int xs[10];
for (xs[0]=1; xs[0]<=10; xs[0]++)
    for (xs[1]=1; xs[1]<=10; xs[1]++)
    for (xs[2]=1; xs[2]<=10; xs[2]++)
    for (xs[3]=1; xs[3]<=10; xs[3]++)
        for (xs[4]=1; xs[4]<=10; xs[4]++)
            for (xs[5]=1; xs[5]<=10; xs[5]++)
            for (xs[6]=1; xs[6]<=10; xs[6]++)
            for (xs[7]=1; xs[7]<=10; xs[7]++)
            for (xs[8]=1; xs[8]<=10; xs[8]++)
            for (xs[9]=1; xs[9]<=10; xs[9]++)
            if (good(xs))
            { print(xs); return 0; }
```


C Implementation

```
int xs[10];
for (xs[0]=1; xs[0]<=10; xs[0]++)
    for (var11-1. var1 1<-10. var11+t+)
int good(int *xs) {
            int test1 = distinct(xs);
            int sum1 = xs[0] + xs[1] + xs[5] + xs[9];
            int sum2 = xs[1] + xs[2] + xs[3] + xs[4];
            int sum3 = xs[5] + xs[6] + xs[7] + xs[8];
            int test2 = (sum1 == sum2) && (sum2 == sum3);
                return test1 && test2;
            }
                if (good(xs))
                            { print(xs); return 0; }
```


C Implementation

int xs[10];

X xterm

*Main> play
Chomsky\{oliva\}: gcc example1.c -o example1-c
Chomsky\{oliva\}: time ./example1-c
1
2578
9346
10
real 0 m 22.740 s
user 0 m 22.676 s
sys $\quad 0 \mathrm{~m} 0.059 \mathrm{~s}$
return test1 \&\& test2; \}

```
if (good(xs))
    { print(xs); return 0; }
```


Haskell Implementation

```
good :: [Int] -> Bool
good xs = test1 && test2
    where test1 = distinct [1..10] xs
    sum1 = (xs!!1) + (xs!!2) + (xs!!3) + (xs!!4)
    sum2 = (xs!!5) + (xs!!6) + (xs!!7) + (xs!!8)
    sum3 = (xs!!0) + (xs!!1) + (xs!!5) + (xs!!9)
    test2 = (sum1 == sum2) && (sum2 == sum3)
```


Haskell Implementation

```
good :: [Int] -> Bool
good e :: (Int -> Bool) -> Int
    e p = if sol == Nothing then 0 else fromJust sol
        where sol = find p [1..10]
    es : : [J Bool Int]
    es = replicate 10 (J e)
    super :: J Bool [Int]
    super = sequence es
```

 play : : [Int]
 play = selection super good

Haskell Implementation

```
good :: [Int] -> Bool
good e :: (Int -> Bool) -> Int
    e p = if sol == Nothing then 0 else fromJust sol
    where sol = find p [1..10]
```

 es : : [J Bool Int]
 es = replicate 10 (J e)
 super : : J Bool [Int]
 super = sequence es
 play : : [Int]
 play = selection super good

Haskell Implementation

```
good :: [Int] -> Bool
good e :: (Int -> Bool) -> Int
    e p = if sol == Nothing then 0 else fromJust sol
        where sol = find p [1..10]
    es : : [J Bool Int]
    es = replicate 10 (J e)
```

 super : : J Bool [Int]
 super = sequence es
 play : : [Int]
 play = selection super good

Haskell Implementation

```
good :: [Int] -> Bool
good e :: (Int -> Bool) -> Int
    e p = if sol == Nothing then 0 else fromJust sol
        where sol = find p [1..10]
    es : : [J Bool Int]
    es = replicate 10 (J e)
    super :: J Bool [Int]
    super = sequence es
    play : : [Int]
    play = selection super good
```


Haskell Implementation

```
good :: [Int] -> Bool
good e :: (Int -> Bool) -> Int
    e p = if sol == Nothing then 0 else fromJust sol
        where sol = find p [1..10]
    es : : [J Bool Int]
    es = replicate 10 (J e)
    super :: J Bool [Int]
    super = sequence es
```

 play : : [Int]
 play = selection super good

Haskell 20x faster than C

```
| xterm
*Main> play
Chomsky{oliva}: gcc example1.c -o example1-c
Chomsky{oliva}: time ./example1-c
1
2578
9346
1 0
real 0m22.740s
user 0m22.676s
sys 0m0.059s
Chomsky{oliva}:
Chomsky{oliva}:
Chomsky{oliva}: ghc example1.hs -o example1-haskell
Chomsky{oliva}: time ./example1-haskell
1
2578
9346
10
real 0m1.222s
user 0m1.205s
sys 0m0.015s
Chomsky{oliva}:
```


Haskell 20x faster than C

```
*Main> play
Chomsky{oliva}: gcc example1.c -o example1-c
Chomsky{oliva}: time ./example1-c
1
2578
9346
1 0
real 0m22.740s
user 0m22.676s
sys 0m0.059s
Chomsky{oliva}:
Chomsky{oliva}:
Chomsky{oliva}: ghc example1.hs -o example1-haskell
Chomsky{oliva}: time ./example1-haskell
1
2578
9346
10
real 0m1.222s
user 0m1.205s
sys 0m0.015s
Chomsky{oliva}:
```


Selection and Continuation Monads

Selection Monad

- Fix R. The type mapping

$$
J_{R} X=(X \rightarrow R) \rightarrow X
$$

is a strong monad

Selection Monad

- Fix R. The type mapping

$$
J_{R} X=(X \rightarrow R) \rightarrow X
$$

is a strong monad

```
data J r x = J { selection :: (x -> r) -> x }
monJ :: J r x -> (x -> J r y) -> J r y
monJ e f = J (\p -> b p (a p))
    where
        a p = selection e (\x -> p (b p x))
        b p x = selection (f x) p
```

instance Monad ($J \quad r$) where return $\mathrm{x}=\mathrm{J}(\mathrm{p} \mathrm{p}->\mathrm{x})$
e >>= $f=$ monJ e f

Interpretation

$$
J_{R} X=(X \rightarrow R) \rightarrow X
$$

Interpretation

$$
J_{R} X=\underbrace{(X \rightarrow R)}_{\text {local problem }} \rightarrow X
$$

Interpretation

local solution

$$
J_{R} X=\underbrace{(X \rightarrow R)} \rightarrow X
$$

local problem

Continuation Monad

- Fix R. The type mapping

$$
K_{R} X=(X \rightarrow R) \rightarrow R
$$

is also a strong monad

Continuation Monad

- Fix R. The type mapping

$$
K_{R} X=(X \rightarrow R) \rightarrow R
$$

is also a strong monad

$$
J_{R} X=(X \rightarrow R) \rightarrow X
$$

Continuation Monad

- Fix R. The type mapping

$$
K_{R} X=(X \rightarrow R) \rightarrow R
$$

is also a strong monad

$$
J_{R} X=(X \rightarrow R) \rightarrow X
$$

```
data K r x = K { quant :: (x -> r) -> r }
monK :: K r x -> (x -> K r y) -> K r y
monK phi f = K (\p -> quant phi (b p))
    where
        b p x = quant (f x) p
instance Monad (K r) where
        return x = K(\p -> p x)
        phi >>= f = monK phi f
```


Combining Local Searches

$$
f \in\left\{K_{R}, J_{R}\right\}
$$

Combining Local Searches

$$
f \in\left\{K_{R}, J_{R}\right\}
$$

- Applicative functors support the operation

Combining Local Searches

$$
f \in\left\{K_{R}, J_{R}\right\}
$$

- Applicative functors support the operation

$$
\text { sequence }:: \Pi_{i}\left(f x_{i}\right) \rightarrow f\left(\Pi_{i} x_{i}\right)
$$

Combining Local Searches

$$
f \in\left\{K_{R}, J_{R}\right\}
$$

- Applicative functors support the operation

$$
\text { sequence }:: \Pi_{i}\left(f x_{i}\right) \rightarrow f\left(\Pi_{i} x_{i}\right)
$$

- Monads support

Combining Local Searches

$$
f \in\left\{K_{R}, J_{R}\right\}
$$

- Applicative functors support the operation

$$
\text { sequence }:: \Pi_{i}\left(f x_{i}\right) \rightarrow f\left(\Pi_{i} x_{i}\right)
$$

- Monads support
depSequence $:: \Pi_{i}\left(\Pi_{j<i} x_{j} \rightarrow f x_{i}\right) \rightarrow f\left(\Pi_{i} x_{i}\right)$

From Puzzle to Game...

Purple player starts, Green players continues

0		X		X
1	2		3	
5	6		7	
9		X		8

From Puzzle to Game...

Purple player starts, Green players continues

0		X		X
1	2		3	
5	6		7	

Green wins if a solution is achieved

From Puzzle to Game...

Purple player starts, Green players continues

0		X		X
1	2		3	
5	6		7	

Green wins if a solution is achieved
Purple wins otherwise

Haskell Implementation

```
e :: (Int -> Bool) -> Int
e p = if sol == Nothing then 1 else fromJust sol
    where sol = find p [1..10]
a :: (Int -> Bool) -> Int
a p = if sol == Nothing then 1 else fromJust sol
    where sol = find (not.p) [1..10]
super :: J Bool [Int]
super = sequence ((J a):(replicate 9 (J e)))
play : : [Int]
play = selection super good
```


Haskell Implementation

```
e :: (Int -> Bool) -> Int
e p = if sol == Nothing then 1 else fromJust sol
    where sol = find p [1..10]
a :: (Int -> Bool) -> Int
a p = if sol == Nothing then 1 else fromJust sol
    where sol = find (not.p) [1..10]
super :: J Bool [Int]
super = sequence ((J a):(replicate 9 (J e)))
play : : [Int]
play = selection super good
```


Haskell Implementation

```
e :: (Int -> Bool) -> Int
e p = if sol == Nothing then 1 else fromJust sol
    where sol = find p [1..10]
a :: (Int -> Bool) -> Int
a p = if sol == Nothing then 1 else fromJust sol
    where sol = find (not.p) [1..10]
super :: J Bool [Int]
super = sequence ((J a)):(replicate 9 (J e)))
play : : [Int]
play = selection super good
```

Modular search on
more complex games...

Pirates and Treasures ${ }^{1}$

A group of 7 pirates has 100 gold coins
They have to decide amongst themselves how to divide the treasure, but must abide by pirate rules:

- The most senior pirate proposes the division
- All of the pirates (including the most senior) vote on the division
- If half or more vote for the division, it stands
- If less than half vote for it, they throw the most senior pirate overboard and start again
- The pirates are perfectly logical, and entirely ruthless (only caring about maximising their own share of the gold)
What division should the most senior pirate suggest to the other six?

Basic player 1: The voter

- Input
- Pirate index i
- Continuation p :: Bool \rightarrow Share
- Choose boolean that maximises his share

Basic player 1: The voter

- Input
- Pirate index i
- Continuation p :: Bool \rightarrow Share
- Choose boolean that maximises his share

```
v :: Pirate -> (Bool -> Share) -> Bool
v i p = head $ argmax [True,False] ((!!i).p)
sv :: Pirate -> J Share Bool
sv i = J (v i)
```


Basic player 2: The sharer

- Input
- Pirate index i
- Continuation p :: Share \rightarrow Share
- Choose global share that maximises his share

Basic player 2: The sharer

- Input
- Pirate index i
- Continuation p :: Share \rightarrow Share
- Choose global share that maximises his share

```
s :: Pirate -> (Share -> Share) -> Share
s i p = head $ argmax dom ((!!i).p)
    where shares = divide nc (np - i)
        dom = map ((replicate i 0)++) shares
ss :: Int -> J Share Share
ss i = J (s i)
```

Composing players...

Composing players...

Round player $=$ Product of share and poll players

```
sp :: Pirate -> J Share Poll
sp i = sequence (map sv [(i+1)..(np-1)])
```


Composing players...

Round player $=$ Product of share and poll players

```
sp :: Pirate -> J Share Poll
sp i = sequence (map sv [(i+1)..(np-1)])
```

Poll player $=$ sequencing of voters

Composing players...

Round player = Product of share and poll players

```
sp :: Pirate -> J Share Poll
sp i = sequence (map sv [(i+1)..(np-1)])
```

Poll player $=$ sequencing of voters

```
e :: Int -> J Share (Share, Poll)
e i = prod (ss i, sp i)
```


Composing players...

Round player = Product of share and poll players

```
sp :: Pirate -> J Share Poll
sp i = sequence (map sv [(i+1)..(np-1)])
```

Poll player $=$ sequencing of voters

```
e :: Int -> J Share (Share, Poll)
e i = prod (ss i, sp i)
```

Global player $=$ Sequence of round players

```
g :: J Share [(Share, Poll)]
g = sequence (map e [0..(np-1)])
```


alpha-beta pruning

alpha-beta pruning

- Prunes search tree on zero-sum two player games
- E.g. state-of-the-art chess programs use it
- Idea:
* Continuing a sub-search will only improve my payoff
* If current payoff already discourages opponent to visit sub-tree
* Then may as well give up searching sub-tree

https://commons.wikimedia.org/wiki/File:AB_pruning.svg

alpha-beta pruning

Keep a record of alpha-beta values for each move

$$
\begin{aligned}
& Y=X \times(\mathbb{N} \times \mathbb{N}) \\
& R=\mathbb{N}
\end{aligned}
$$

Corresponds to doing a search using

$$
\begin{aligned}
& \phi:: X \times \mathbb{N} \times \mathbb{N} \rightarrow K_{R}(X \times \mathbb{N} \times \mathbb{N}) \\
& \varepsilon:: X \times \mathbb{N} \times \mathbb{N} \rightarrow J_{R}(X \times \mathbb{N} \times \mathbb{N})
\end{aligned}
$$

Summary

Summary

- Selection/continuation monads perform "local search" and modelling of players

Summary

- Selection/continuation monads perform "local search" and modelling of players
- Sequencing of selection/continuation monad gives

Summary

- Selection/continuation monads perform "local search" and modelling of players
- Sequencing of selection/continuation monad gives
- Efficient global search

Summary

- Selection/continuation monads perform "local search" and modelling of players
- Sequencing of selection/continuation monad gives
- Efficient global search
- Implementation of backward induction

Summary

- Selection/continuation monads perform "local search" and modelling of players
- Sequencing of selection/continuation monad gives
- Efficient global search
- Implementation of backward induction
- Computational interpretation of countable choice

Summary

- Selection/continuation monads perform "local search" and modelling of players
- Sequencing of selection/continuation monad gives
- Efficient global search
- Implementation of backward induction
- Computational interpretation of countable choice
- Computational version of Tychonoff's theorem

References

- Escardó and Oliva. Selection functions, bar recursion and backward induction. Mathematical Structures in Computer Science, 20(2):127-168, 2010
- Escardó and Oliva. Sequential games and optimal strategies. Proceedings of the Royal Society A, 467:1519-1545, 2011
- Hedges, Oliva, Sprits, Zahn, and Winschel. A higherorder framework for decision problems and games, ArXiv, http://arxiv.org/abs/1409.7411, 2014

