Closure of System T under the Bar Recursion Rule

Paulo Oliva
(joint work with S. Steila)

Queen Mary University of London, UK

University Birmingham
Friday, 24 February 2017
Outline

1. Spector’s bar recursion
2. Schwichtenberg’s proof
3. A new (more direct) proof
Outline

1. Spector’s bar recursion
2. Schwichtenberg’s proof
3. A new (more direct) proof
Spector’s Bar Recursion

(1958) Gödel’s Dialectica interpretation of arithmetic (system T)
(1962) Spector extends interpretation to analysis (T + BR)
(1968) Howard interpretation of bar induction (T + BR)
(1971) Scarpellini shows \(\mathcal{C} \) is a model of BR
(1979) Schwichtenberg closure theorem (low types)
(1981) Howard’s ordinal analysis of BR (low types)
(1985) Bezem shows \(\mathcal{M} \) is a model of BR
Spector’s Bar Recursion (Rule)

Given \(s : \tau^* \) let \(\hat{s} : \tau^\mathbb{N} \) be the extension of \(s \) with \(0 \)’s

For each pair of types \(\tau, \sigma \), and given \(G, H \) and \(Y \)

\[
\text{BR}^{\tau,\sigma}(s) \equiv \begin{cases}
G(s) & \text{if } Y(\hat{s}) < |s| \\
H(s)(\lambda x.\text{BR}(s * x)) & \text{otherwise}
\end{cases}
\]

where

\[
G : \tau^* \to \sigma \\
Y : \tau^\mathbb{N} \to \mathbb{N} \\
H : \tau^* \to (\tau \to \sigma) \to \sigma
\]
Schwichtenberg’s Closure Theorem

Theorem

System T is closed under the bar recursion rule when τ’s type level is either 0 or 1

That is, given G, H and Y terms in T, the functional

$$BR^{\tau,\sigma}(s) \overset{\sigma}{=} \begin{cases} G(s) & \text{if } Y(\hat{s}) < |s| \\ H(s)(\lambda x^{\tau}.BR(s \ast x)) & \text{otherwise} \end{cases}$$

is also T definable
Counter-example for $\tau > 1$

Howard (1968) showed that bar recursion of type ρ can be defined using the bar recursion rule of type $(\mathbb{N} \rightarrow \rho) \rightarrow \rho$
Counter-example for $\tau > 1$

Howard (1968) showed that bar recursion of type ρ can be defined using the bar recursion rule of type $(\mathbb{N} \to \rho) \to \rho$.

Since bar recursion, even of type $\rho = \mathbb{N}$, is not T definable.
Closure of System T under the Bar Recursion Rule

Spector’s bar recursion

Counter-example for \(\tau > 1 \)

Howard (1968) showed that bar recursion of type \(\rho \) can be defined using the bar recursion rule of type \((\mathbb{N} \to \rho) \to \rho \)

Since bar recursion, even of type \(\rho = \mathbb{N} \), is not T definable

it follows that T is not closed under the bar recursion rule for \(\tau = (\mathbb{N} \to \mathbb{N}) \to \mathbb{N} \)
Outline

1. Spector’s bar recursion
2. Schwichtenberg’s proof
3. A new (more direct) proof
Schwichtenberg’s Proof

Published in The Journal of Symbolic Logic (1971)

“On bar recursion of type 0 and 1”

5 pages long (actual proof only two pages long)
Schwichtenberg’s Proof

1. Translate terms G, H, Y into infinitary terms (get rid of recursor)
Schwichtenberg’s Proof

1. Translate terms G, H, Y into infinitary terms (get rid of recursor)

2. Define a bar $S_Y(s) = \text{“sequence } s \text{ is secure for term } Y\text{”}$
Schwichtenberg’s Proof

1. Translate terms G, H, Y into infinitary terms (get rid of recursor)

2. Define a bar $S_Y(s) = \text{“sequence } s \text{ is secure for term } Y\text{”}$

3. Complement of $S_Y(s)$ is a tree
Schwichtenberg’s Proof

1. Translate terms G, H, Y into infinitary terms (get rid of recursor)

2. Define a bar $S_Y(s) = \text{“sequence } s \text{ is secure for term } Y\text{”}$

3. Complement of $S_Y(s)$ is a tree

4. See BR as a recursion on this tree
Schwichtenberg’s Proof

1. Translate terms G, H, Y into infinitary terms (get rid of recursor)

2. Define a bar $S_Y(s) = \text{“sequence } s \text{ is secure for term } Y\text{”}$

3. Complement of $S_Y(s)$ is a tree

4. See BR as a recursion on this tree

5. Define order-preserving embedding of tree into ε_0-ordinals
Schwichtenberg’s Proof

1. Translate terms G, H, Y into infinitary terms (get rid of recursor)

2. Define a bar $S_Y(s) = “sequence \ s \ is \ secure \ for \ term \ Y”$

3. Complement of $S_Y(s)$ is a tree

4. See BR as a recursion on this tree

5. Define order-preserving embedding of tree into ε_0-ordinals

6. Hence, BR can be mimicked by ε_0-ordinal recursion
Schwichtenberg’s Proof

1. Translate terms G, H, Y into infinitary terms (get rid of recursor)
2. Define a bar $S_Y(s) =$ “sequence s is secure for term Y”
3. Complement of $S_Y(s)$ is a tree
4. See BR as a recursion on this tree
5. Define order-preserving embedding of tree into ε_0-ordinals
6. Hence, BR can be mimicked by ε_0-ordinal recursion
7. By Tait, we can find equivalent T definition of $BR(s)$
Outline

1. Spector’s bar recursion
2. Schwichtenberg’s proof
3. A new (more direct) proof
Base case: \(Y(\alpha) \) is constant

When \(Y(\alpha) \) is constant \(n \), \(\text{BR} \) becomes

\[
\text{BR}^{\tau,\sigma}(s) \overset{\sigma}{=} \begin{cases}
G(s) & \text{if } |s| > n \\
H(s)(\lambda x^\tau.\text{BR}(s \ast x)) & \text{if } |s| \leq n
\end{cases}
\]
Base case: $Y(\alpha)$ is constant

When $Y(\alpha)$ is constant n, BR becomes

$$BR^{\tau,\sigma}(s) \equiv \begin{cases}
 G(s) & \text{if } |s| > n \\
 H(s)(\lambda x^\tau. BR(s * x)) & \text{if } |s| \leq n
\end{cases}$$

It is easy to write down a T term (uniformly in G and H) computing the same function
Base case: $Y(\alpha)$ is constant

When $Y(\alpha)$ is constant n, BR becomes

$$BR^{\tau,\sigma}(s) \equiv \begin{cases}
G(s) & \text{if } |s| > n \\
H(s)(\lambda x^\tau. BR(s \ast x)) & \text{if } |s| \leq n
\end{cases}$$

It is easy to write down a T term (uniformly in G and H) computing the same function

Needs primitive recursion of type $\tau^* \rightarrow \sigma$
Closure of System T under the Bar Recursion Rule

A new (more direct) proof

Base case: $Y(\alpha)$ is constant

When $Y(\alpha)$ is constant n, BR becomes

$$BR^{\tau,\sigma}(s) \equiv \begin{cases} G(s) & \text{if } |s| > n \\ H(s)(\lambda x^\tau.BR(s \ast x)) & \text{if } |s| \leq n \end{cases}$$

It is easy to write down a T term (uniformly in G and H) computing the same function

Needs primitive recursion of type $\tau^* \rightarrow \sigma$

Let us refer to this T term as cBR
Proof Idea

Part 1: Show that BR is definable in “general BR”
Part 2: Show that T is closed under “general BR”

(first part works for any type, second part requires the type restriction)
General BR

For any \textit{bar} S consider the defining equation

\[
g_{BR}^S(s) \equiv \begin{cases}
G(s) & \text{if } S(s) \\
H(s)(\lambda x^\tau.g_{BR}^S(s \ast x)) & \text{if } \neg S(s)
\end{cases}
\]
General BR

For any bar S consider the defining equation

$$g_{\text{BR}}^S(s) = \sigma \begin{cases} G(s) & \text{if } S(s) \\ H(s)(\lambda x^\tau.g_{\text{BR}}^S(s \ast x)) & \text{if } \neg S(s) \end{cases}$$

Definition

We say that a bar S secures $Y : \tau^\mathbb{N} \rightarrow \mathbb{N}$ if for all s^{τ^*}

$$S(s) \Rightarrow \lambda \beta.Y(s \ast \beta) \text{ is constant}$$
Part 1: BR definable in general BR

Theorem

Fix $Y : \tau^\mathbb{N} \rightarrow \mathbb{N}$. The functional

$$\lambda G, H, s. \text{BR}^{\tau,\sigma}(G, H, Y)(s)$$

is T-definable in gBR^S, for any bar S securing Y
Part 1: BR definable in general BR

Theorem

Fix $Y : \tau^\mathbb{N} \rightarrow \mathbb{N}$. The functional

$$\lambda G, H, s.\text{BR}^{\tau, \sigma}(G, H, Y)(s)$$

is T-definable in gBR^S, *for any bar* S *securing* Y.

Proof.

Use the bar S to spot when Y becomes constant, then apply the T construction for the case when Y is constant.
Part 2: Closure of T under gBR rule

Theorem

Fix a T-term $Y : \tau^\mathbb{N} \rightarrow \mathbb{N}$. For some S securing Y the functional gBR^S is T definable.
Part 2: Closure of T under gBR rule

Theorem

Fix a T-term $Y : \tau^\mathbb{N} \rightarrow \mathbb{N}$. For some S securing Y the functional gBR^S is T definable.

Proof.

(Construction) By induction on Y.

(Correctness proof) Use a logical relation to show that the constructed term is indeed equivalent to gBR^S.

□
The Construction (case $\tau = \mathbb{N}$)

Let $\mathbb{N}^\circ \equiv$ the type of $g\text{BR}$. We will map \mathbb{N} to \mathbb{N}°.

Let α be a special variable of type $\mathbb{N} \rightarrow \mathbb{N}$ (generic)

\[
0^\circ = \lambda G. G
\]
The Construction (case $\tau = \mathbb{N}$)

Let $\mathbb{N}^\circ \equiv$ the type of gBR. We will map \mathbb{N} to \mathbb{N}°.

Let α be a special variable of type $\mathbb{N} \rightarrow \mathbb{N}$ (generic)

\[
\begin{align*}
0^\circ &= \lambda G. G \\
\text{Succ}^\circ &= \lambda \Phi^{\mathbb{N}^\circ}. \Phi
\end{align*}
\]
The Construction (case $\tau = \mathbb{N}$)

Let $\mathbb{N}^\circ \equiv$ the type of gBR. We will map \mathbb{N} to \mathbb{N}°.

Let α be a special variable of type $\mathbb{N} \rightarrow \mathbb{N}$ (generic)

\[
\begin{align*}
0^\circ &= \lambda G. G \\
\text{Succ}^\circ &= \lambda \Phi^{\mathbb{N}^\circ}. \Phi \\
\alpha^\circ &= \lambda \Phi^{\mathbb{N}^\circ} \lambda G. \Phi(\lambda s'. cBR(G, Y(s'))(s'))
\end{align*}
\]
The Construction (case $\tau = \mathbb{N}$)

Let $\mathbb{N}^\circ \equiv$ the type of gBR. We will map \mathbb{N} to \mathbb{N}°.

Let α be a special variable of type $\mathbb{N} \rightarrow \mathbb{N}$ (generic)

\[
\begin{align*}
0^\circ & = \lambda G. G \\
\text{Succ}^\circ & = \lambda \Phi^{\mathbb{N}^\circ}. \Phi \\
\alpha^\circ & = \lambda \Phi^{\mathbb{N}^\circ} \lambda G. \Phi(\lambda s'. \text{cBR}(G, Y(s'))(s')) \\
(\lambda x^\eta. t)^\circ & = \lambda x^\circ. t^\circ
\end{align*}
\]
The Construction (case $\tau = \mathbb{N}$)

Let $\mathbb{N}^\circ \equiv$ the type of gBR. We will map \mathbb{N} to \mathbb{N}°.

Let α be a special variable of type $\mathbb{N} \rightarrow \mathbb{N}$ (generic)

\[0^\circ = \lambda G.G \]
\[\text{Succ}^\circ = \lambda \Phi^{\mathbb{N}^\circ}.\Phi \]
\[\alpha^\circ = \lambda \Phi^{\mathbb{N}^\circ} \lambda G.\Phi(\lambda s'.\text{cBR}(G, \text{Y}(\hat{s}'))(s')) \]
\[(\lambda x^\eta.t)^\circ = \lambda x^\circ.t^\circ \]
\[(uv)^\circ = u^\circ v^\circ \]
The Construction (case $\tau = \mathbb{N}$)

Let $\mathbb{N}^\circ \equiv$ the type of gBR. We will map \mathbb{N} to \mathbb{N}°.

Let α be a special variable of type $\mathbb{N} \to \mathbb{N}$ (generic)

\[
\begin{align*}
0^\circ &= \lambda G. G \\
\text{Succ}^\circ &= \lambda \Phi^{\mathbb{N}^\circ}. \Phi \\
\alpha^\circ &= \lambda \Phi^{\mathbb{N}^\circ} \lambda G. \Phi(\lambda s'. \text{cBR}(G, Y(\hat{s}))(s')) \\
(\lambda x^\eta.t)^\circ &= \lambda x^\circ.t^\circ \\
(\text{uv})^\circ &= u^\circ v^\circ \\
(\text{Rec}^\eta)^\circ &= \ldots
\end{align*}
\]
The Construction (case $\tau = \mathbb{N}$)

Let $\mathbb{N}^\circ \equiv$ the type of gBR. We will map \mathbb{N} to \mathbb{N}°.

Let α be a special variable of type $\mathbb{N} \rightarrow \mathbb{N}$ (generic)

$$0^\circ = \lambda G. G$$

$$\text{Succ}^\circ = \lambda \Phi^{\mathbb{N}^\circ}. \Phi$$

$$\alpha^\circ = \lambda \Phi^{\mathbb{N}^\circ} \lambda G. \Phi(\lambda s'. \text{cBR}(G, Y(\hat{s}'))(s'))$$

$$(\lambda x^\eta. t)^\circ = \lambda x^\circ. t^\circ$$

$$(uv)^\circ = u^\circ v^\circ$$

$$(\text{Rec}^\eta)^\circ = \ldots$$

(H can be fixed at outset, but extra work to remember Y)
The Construction: Recursor

Suppose \(Y(\alpha) = \text{Rec}(n_\alpha, x_\alpha, f_\alpha) \)
The Construction: Recursor

Suppose $Y(\alpha) = \text{Rec}(n_{\alpha}, x_{\alpha}, f_{\alpha})$

first ensure term n_{α} is secure (i.e. constant n)
The Construction: Recursor

Suppose \(Y(\alpha) = \text{Rec}(n_{\alpha}, x_{\alpha}, f_{\alpha}) \)

first ensure term \(n_{\alpha} \) is secure (i.e. constant \(n \))

then ensure \(x_{\alpha} \) is secure
The Construction: Recursor

Suppose \(Y(\alpha) = \text{Rec}(n_{\alpha}, x_{\alpha}, f_{\alpha}) \)

first ensure term \(n_{\alpha} \) is secure (i.e. constant \(n \))

then ensure \(x_{\alpha} \) is secure

and \(f_{\alpha}(x_{\alpha}) \) is secure
The Construction: Recursor

Suppose $Y(\alpha) = \text{Rec}(n_\alpha, x_\alpha, f_\alpha)$

first ensure term n_α is secure (i.e. constant n)

then ensure x_α is secure

and $f_\alpha(x_\alpha)$ is secure

\ldots
The Construction: Recursor

Suppose $Y(\alpha) = \text{Rec}(n_\alpha, x_\alpha, f_\alpha)$

first ensure term n_α is secure (i.e. constant n)

then ensure x_α is secure

and $f_\alpha(x_\alpha)$ is secure

\[\vdots \]

until $f_n(\alpha)$ is secure
The Construction: Recursor

Suppose $Y(\alpha) = \text{Rec}(n_\alpha, x_\alpha, f_\alpha)$

first ensure term n_α is secure (i.e. constant n)

then ensure x_α is secure

and $f_\alpha(x_\alpha)$ is secure

...

until $f^n_\alpha(x_\alpha)$ is secure

Can be done by induction hypothesis + primitive recursion
The Correctness Proof

Recall $\mathbb{N}^\circ \equiv$ the type of $g\text{BR}$

Fix H. Define logical relation between T terms

Base case:

$$f^{\mathbb{N}^\circ} \sim_{\mathbb{N}} g^{\mathbb{N}^N \to \mathbb{N}} \equiv \exists S \text{ securing } g \text{ such that } f = g\text{BR}^S$$
The Correctness Proof

Recall $\mathbb{N}^\circ \equiv$ the type of gBR

Fix H. Define logical relation between T terms

Base case:

$$f^{\mathbb{N}^\circ} \sim_{\mathbb{N}} g^{\mathbb{N}^N \to \mathbb{N}} \equiv \exists S \text{ securing } g \text{ such that } f = g^{\mathrm{BR}^S}$$

and, as usual:

$$f^{\rho_0 \to \rho_1^\circ} \sim_{\rho_0 \to \rho_1} g^{\mathbb{N}^N \to (\rho_0 \to \rho_1)}$$

$$\equiv \forall x^{\rho_0^\circ} \forall y^{\mathbb{N}^N} \to \rho_0 (x \sim_{\rho_0} y \to f(x) \sim_{\rho_1} \lambda \alpha. g(\alpha)(y\alpha))$$
Main Result

Theorem

Given a closed T term $Y: \mathbb{N}^\mathbb{N} \to \mathbb{N}$, then $(Y^\alpha)^\circ \sim Y$
Main Result

Theorem

Given a closed T term \(Y : \mathbb{N}^\mathbb{N} \rightarrow \mathbb{N} \), *then* \((Y_\alpha)^\circ \sim Y\).

Proof.

By structural induction on \(Y \)
Main Result

Theorem

Given a closed T term $Y : \mathbb{N}^\mathbb{N} \to \mathbb{N}$, then $(Y^\alpha)^\circ \sim Y$

Proof.

By structural induction on Y

Corollary

Fix $Y : \mathbb{N}^\mathbb{N} \to \mathbb{N}$ in T. Then $\lambda G, H, s. \text{BR}(G, H, Y)(s)$ is T definable
Conclusion

Stronger result:
- Only Y needs to be T definable

More explicit construction:
- Given concrete Y, reasonably easy to find T definition of
 $\lambda G, H, s.\text{BR}(G, H, Y)(s)$

Easy to calibrate T fragments:
- If Y is T_i then $\lambda G, H, s.\text{BR}(G, H, Y)(s)$ is in T_j, where
 $j = 1 + \max\{1, \text{level}(\sigma)\} + i$.