Calculating Games with Higher-Order Functions

Paulo Oliva
(based on joint work with M. Escardó)

Queen Mary, University of London, UK

Southampton University
Wednesday, 12 November 2014
Outline

1. Game Theory
2. Quantifiers and Selection Functions
3. Generalisation
4. Monads
Outline

1. Game Theory
2. Quantifiers and Selection Functions
3. Generalisation
4. Monads
Game Theory

- Early development in the 19th century
- Formal approach with von Neumann (1930’s)

John von Neumann
Game Theory

- Early development in the 19th century
- Formal approach with von Neumann (1930’s)

- \(n \) players
- \(n \) strategy sets \(X_1, \ldots, X_n \)
- payoff function \(q: \bar{X} \rightarrow \mathbb{R}^n \)

John von Neumann
Game Theory

- Early development in the 19th century
- Formal approach with von Neumann (1930’s)

- \(n \) players
- \(n \) strategy sets \(X_1, \ldots, X_n \)
- payoff function \(q: \vec{X} \rightarrow \mathbb{R}^n \)

How should players choose their strategies in order to maximise their individual payoffs?

John von Neumann
Game Theory
Penalties

Two players

Strategy sets $X_1 = X_2 = \{L, R\}$

Payoff function

<table>
<thead>
<tr>
<th></th>
<th>L</th>
<th>R</th>
</tr>
</thead>
<tbody>
<tr>
<td>L</td>
<td>(1, 0)</td>
<td>(0, 1)</td>
</tr>
<tr>
<td>R</td>
<td>(0, 1)</td>
<td>(1, 0)</td>
</tr>
</tbody>
</table>
Game Theory

- No **winning** strategy!
- What about strategies in **equilibrium**?
Game Theory

- No **winning** strategy!
- What about strategies in **equilibrium**?

Definition (Nash)

Strategy profile \vec{x} is in equilibrium if no player has an incentive to unilaterally change his strategy.
Game Theory

- No winning strategy!
- What about strategies in equilibrium?

Definition (Nash)

Strategy profile \vec{x} is in equilibrium if no player has an incentive to unilaterally change his strategy.

The “penalty” example shows that strategy profiles in equilibrium not necessarily exist either.
Game Theory

- What if players choose “mixed” strategies
 i.e. player chooses probability distribution on strategies
Game Theory

• What if players choose “mixed” strategies
 i.e. player chooses probability distribution on strategies

Theorem (Nash)

Mixed strategies in equilibrium always exist
Game Theory

- What if players choose “mixed” strategies
 i.e. player chooses probability distribution on strategies

Theorem (Nash)

Mixed strategies in equilibrium always exist

The “penalty” example is again an illustration of this:
Players randomly choosing left or right is best they can do
Simultaneous versus Sequential Games

- That’s all in the case of **simultaneous** games

- With **sequential** games things are simpler and nicer

- Strategies: mappings from previous moves to current move

- Similar definition of Nash equilibrium
Simultaneous versus Sequential Games

- That’s all in the case of **simultaneous** games
- With **sequential** games things are simpler and nicer
- Strategies: mappings from previous moves to current move
- Similar definition of Nash equilibrium

But equilibrium always exists and can be computed by a technique called **backward induction**
Backward Induction

\[q : X \times Y \times Z \to \mathbb{R}^3 \]

- \(q(x_0, y_0, z_0) = (0,1,2) \)
- \(q(x_0, y_0, z_1) = (2,1,1) \)
- \(q(x_0, y_1, z_0) = (3,0,2) \)
- \(q(x_0, y_1, z_1) = (1,3,0) \)
- \(q(x_1, y_0, z_0) = (0,1,0) \)
- \(q(x_1, y_0, z_1) = (2,1,1) \)
- \(q(x_1, y_1, z_0) = (2,2,1) \)
- \(q(x_1, y_1, z_1) = (3,0,2) \)
Backward Induction

\[q: X \times Y \times Z \rightarrow \mathbb{R}^3 \]

- \(q(x_0, y_0, z_0) = (0,1,2) \)
- \(q(x_0, y_0, z_1) = (2,1,1) \)
- \(q(x_0, y_1, z_0) = (3,0,2) \)
- \(q(x_0, y_1, z_1) = (1,3,0) \)
- \(q(x_1, y_0, z_0) = (0,1,0) \)
- \(q(x_1, y_0, z_1) = (2,1,1) \)
- \(q(x_1, y_1, z_0) = (2,2,1) \)
- \(q(x_1, y_1, z_1) = (3,0,2) \)
Backward Induction

\[q : X \times Y \times Z \rightarrow \mathbb{R}^3 \]

\[
\begin{align*}
q(x_0, y_0, z_0) &= (0,1,2) \\
q(x_0, y_0, z_1) &= (2,1,1) \\
q(x_0, y_1, z_0) &= (3,0,2) \\
q(x_0, y_1, z_1) &= (1,3,0) \\
q(x_1, y_0, z_0) &= (0,1,0) \\
q(x_1, y_0, z_1) &= (2,1,1) \\
q(x_1, y_1, z_0) &= (2,2,1) \\
q(x_1, y_1, z_1) &= (3,0,2)
\end{align*}
\]
Backward Induction

$q: X \times Y \times Z \rightarrow \mathbb{R}^3$

- $q(x_0, y_0, z_0) = (0,1,2)$
- $q(x_0, y_0, z_1) = (2,1,1)$
- $q(x_0, y_1, z_0) = (3,0,2)$
- $q(x_0, y_1, z_1) = (1,3,0)$
- $q(x_1, y_0, z_0) = (0,1,0)$
- $q(x_1, y_0, z_1) = (2,1,1)$
- $q(x_1, y_1, z_0) = (2,2,1)$
- $q(x_1, y_1, z_1) = (3,0,2)$
Our Recent Work

1. Generalised notions of sequential game, Nash equilibrium and backward induction
Our Recent Work

1. Generalised notions of sequential game, Nash equilibrium and backward induction

2. Showed how general notions appear in topology, proof theory, and algorithms, amongst others
Outline

1. Game Theory
2. Quantifiers and Selection Functions
3. Generalisation
4. Monads
Single-player Games
Two-player Games

Two **players**: Black and White
Two-player Games

Two players: Black and White

Possible outcomes:
- Black wins
- White wins
- Draw
Two-player Games

Two **players**: Black and White

Possible **outcomes**:
- Black wins
- White wins
- Draw

Strategy: Choice of move at round k given previous moves
Another Game

Two players: John and Julia
Another Game

Two players: John and Julia

John splits a cake. Julia chooses one of the two pieces
Another Game

Two players: John and Julia

John splits a cake. Julia chooses one of the two pieces

Possible outcomes:
- John gets $N\%$ of the cake (John’s payoff)
- Julia gets $(100 - N)\%$ of the cake (Julia’s payoff)
Another Game

Two **players**: John and Julia

John splits a cake. Julia chooses one of the two pieces

Possible **outcomes**:
- John gets $N\%$ of the cake (John’s payoff)
- Julia gets $(100 - N)\%$ of the cake (Julia’s payoff)

Best strategy for John is to split cake into half

It is not a “winning strategy” but it is an **optimal strategy**

It maximises his payoff
Number of Player vs Number of Rounds

Number of players is not essential

It is important what the “goal” at each round is

Rounds with “same goal” mean played by “same player”
Number of Player vs Number of Rounds

Number of players is not essential

It is important what the “goal” at each round is

Rounds with “same goal” mean played by “same player”

How to describe the goal at a particular round?
Number of Player vs Number of Rounds

Number of players is not essential

It is important what the “goal” at each round is

Rounds with “same goal” mean played by “same player”

How to describe the goal at a particular round?

You could say: The goal is to win!

But maybe this is not possible (or might not even make sense)

Instead, the goal should be described as:

a choice of outcome from each set of possible outcomes
As in...

Q: How much would you like to pay for your flight?
As in...

Q: How much would you like to pay for your flight?
A: As little as possible!
Quantifiers

\[R = \text{set of outcomes} \]
\[X = \text{set of possible moves} \]

\[\phi \in (X \to R) \to R \]

Describes the desired outcome \(\phi p \in R \) given \(p \in X \to R \)
Quantifiers

\(R = \) set of outcomes
\(X = \) set of possible moves

\[\phi \in (X \rightarrow R) \rightarrow R \]

describes the desired outcome \(\phi p \in R \) given \(p \in X \rightarrow R \)

In the example:

\(R = \) prices (real numbers)
\(X = \) possible flights
\(X \rightarrow R = \) price of each flight
\(\phi = \) minimal value functional
Quantifiers

\[\phi : (X \to R) \to R \]
Quantifiers

$$\phi : (X \to R) \to R$$

Other Examples

<table>
<thead>
<tr>
<th>Operation</th>
<th>ϕ : $(X \to R) \to R$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Supremum</td>
<td>$\text{sup}_{[0,1]} : ([0, 1] \to \mathbb{R}) \to \mathbb{R}$</td>
</tr>
<tr>
<td>Integration</td>
<td>$\int_0^1 : ([0, 1] \to \mathbb{R}) \to \mathbb{R}$</td>
</tr>
<tr>
<td>Limit</td>
<td>$\lim : (\mathbb{N} \to \mathbb{R}) \to \mathbb{R}$</td>
</tr>
<tr>
<td>Quantifiers</td>
<td>$\forall X, \exists X : (X \to \mathbb{B}) \to \mathbb{B}$</td>
</tr>
<tr>
<td>Double negation</td>
<td>$\neg\neg X : (X \to \bot) \to \bot$</td>
</tr>
<tr>
<td>Fixed point operator</td>
<td>$\text{fix}_X : (X \to X) \to X$</td>
</tr>
</tbody>
</table>
Quantifiers

\[\phi : (X \to R) \to R \quad (\equiv K_RX) \]

Other Examples

<table>
<thead>
<tr>
<th>Operation</th>
<th>(\phi : (X \to R) \to R)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Supremum</td>
<td>(\sup_{[0,1]} : ([0, 1] \to \mathbb{R}) \to \mathbb{R})</td>
</tr>
<tr>
<td>Integration</td>
<td>(\int_0^1 : ([0, 1] \to \mathbb{R}) \to \mathbb{R})</td>
</tr>
<tr>
<td>Limit</td>
<td>(\lim : (\mathbb{N} \to \mathbb{R}) \to \mathbb{R})</td>
</tr>
<tr>
<td>Quantifiers</td>
<td>(\forall X, \exists X : (X \to \mathbb{B}) \to \mathbb{B})</td>
</tr>
<tr>
<td>Double negation</td>
<td>(\neg \neg X : (X \to \bot) \to \bot)</td>
</tr>
<tr>
<td>Fixed point operator</td>
<td>(\text{fix}_X : (X \to X) \to X)</td>
</tr>
</tbody>
</table>
Theorem (Maximum Value Theorem)

For any $p \in C[0, 1]$ there is a point $a \in [0, 1]$ such that

$$\sup p = p(a)$$
Theorem (Maximum Value Theorem)

For any $p \in C[0, 1]$ there is a point $a \in [0, 1]$ such that

$$\sup p = p(a)$$

Theorem (Mean Value Theorem)

For any $p \in C[0, 1]$ there is a point $a \in [0, 1]$ such that

$$\int_0^1 p = p(a)$$
Theorem (Witness Theorem)

For any \(p : X \rightarrow \mathbb{B} \) there is a point \(a \in X \) such that

\[
\exists x \in X \ p(x) \iff p(a)
\]

(similar to Hilbert's \(\varepsilon \)-term).
Theorem (Witness Theorem)

For any $p: X \rightarrow \mathbb{B}$ there is a point $a \in X$ such that

$$\exists x^X p(x) \iff p(a)$$

(similar to Hilbert's ε-term).

Theorem (Counter-example Theorem)

For any $p: X \rightarrow \mathbb{B}$ there is a point $a \in X$ such that

$$\forall x^X p(x) \iff p(a)$$

(a is counter-example to p if one exists).
Let $\mathcal{J}_R X \equiv (X \to R) \to X$
Let $J^X_R \equiv (X \to R) \to X$

Definition (Selection Functions)

$\varepsilon : J^X_R$ is called a **selection function** for $\phi : K^X_R$ if

$$\phi(p) = p(\varepsilon p)$$

holds for all $p : X \to R$
Let $J_R X \equiv (X \to R) \to X$

Definition (Selection Functions)

$\varepsilon : J_R X$ is called a **selection function** for $\phi : K_R X$ if

$$\phi(p) = p(\varepsilon p)$$

holds for all $p : X \to R$

Definition (Attainable Quantifiers)

A quantifier $\phi : K_R X$ is called **attainable** if it has a selection function $\varepsilon : J_R X$
For Instance

- \(\sup : K_\mathbb{R}[0, 1] \) is an attainable quantifier

\[
\sup(p) = p(\text{argsup}(p))
\]

where \(\text{argsup} : J_\mathbb{R}[0, 1] \)
For Instance

- \(\text{sup}: K_{\mathbb{R}}[0, 1] \) is an attainable quantifier
 \[
 \text{sup}(p) = p(\text{argsup}(p))
 \]
 where \(\text{argsup}: J_{\mathbb{R}}[0, 1] \)

- \(\text{fix}: K_X X \) is an attainable quantifier
 \[
 \text{fix}(p) = p(\text{fix}(p))
 \]
 where \(\text{fix}: J_X X \ (= K_X X) \)
Selection Functions and Quantifiers

Every selection function \(\varepsilon : J_X \) defines a quantifier \(\overline{\varepsilon} : K_X \)

\[
\overline{\varepsilon}(p) = p(\varepsilon(p))
\]
Selection Functions and Quantifiers

Not all quantifiers are attainable, e.g. \(R = \{0, 1\} \)

\[
\phi(p) = 0
\]
Selection Functions and Quantifiers

Different ε might define same ϕ, e.g. $X = [0, 1]$ and $R = \mathbb{R}$

$$\varepsilon_0(p) = \mu x. \sup p = p(x)$$

$$\varepsilon_1(p) = \nu x. \sup p = p(x)$$
Outline

1. Game Theory
2. Quantifiers and Selection Functions
3. Generalisation
4. Monads
Finite Sequential Games \((n \text{ rounds})\)

Definition (A tuple \((R, (X_i)_{i<n}, (\phi_i)_{i<n}, q)\) where)

- \(R\) is the set of **possible outcomes**
- \(X_i\) is the set of **available moves** at round \(i\)
- \(\phi_i: K_R X_i\) is the **goal quantifier** for round \(i\)
- \(q: \prod_{i=0}^{n-1} X_i \rightarrow R\) is the **outcome function**
Finite Sequential Games (n rounds)

Definition (A tuple $(R, (X_i)_{i<n}, (\phi_i)_{i<n}, q)$ where)
- R is the set of possible outcomes
- X_i is the set of available moves at round i
- $\phi_i : K_R X_i$ is the goal quantifier for round i
- $q : \prod_{i=0}^{n-1} X_i \rightarrow R$ is the outcome function

Definition (Strategy)
Family of mappings

\[next_k : \prod_{i=0}^{k-1} X_i \rightarrow X_k \]
Definition (Strategic Play)

Given strategy next_k and partial play $\vec{a} = a_0, \ldots, a_{k-1}$, the **strategic extension** of \vec{a} is $b^{\vec{a}} = b_k^{\vec{a}}, \ldots, b_{n-1}^{\vec{a}}$ where

$$b_i^{\vec{a}} = \text{next}_i(\vec{a}, b_k^{\vec{a}}, \ldots, b_{i-1}^{\vec{a}})$$
Definition (Strategic Play)

Given strategy next_k and partial play $\vec{a} = a_0, \ldots, a_{k-1}$, the **strategic extension** of \vec{a} is $b^{\vec{a}} = b^\vec{a}_k, \ldots, b^\vec{a}_{n-1}$ where

$$b^\vec{a}_i = \text{next}_i(\vec{a}, b^\vec{a}_k, \ldots, b^\vec{a}_{i-1})$$

Definition (Optimal Strategy)

Strategy next_k is **optimal** if for any partial play \vec{a}

$$q(\vec{a}, b^{\vec{a}}) = \phi_k(\lambda x_k. q(\vec{a}, x_k, b^{\vec{a}, x_k}))$$
Definition (Strategic Play)

Given strategy next_k and partial play $\vec{a} = a_0, \ldots, a_{k-1}$, the **strategic extension** of \vec{a} is $b^{\vec{a}} = b^{\vec{a}}_k, \ldots, b^{\vec{a}}_{n-1}$ where

$$b^{\vec{a}}_i = \text{next}_i(\vec{a}, b^{\vec{a}}_k, \ldots, b^{\vec{a}}_{i-1})$$

Definition (Optimal Strategy)

Strategy next_k is **optimal** if for any partial play \vec{a}

$$q(\vec{a}, b^{\vec{a}}) = \phi_k(\lambda x_k.q(\vec{a}, x_k, b^{\vec{a}, x_k}))$$

A product of selection functions computes optimal strategies.
Standard Game Theory

When quantifiers are \(\max \) or \(\sup \) over finite or compact set

Then \(\text{argsup} \) exists (and hence \(\sup \) is attainable)

- Generalised Game \(\mapsto \) Standard Game
- Optimal strategy \(\mapsto \) Strategy in Nash equilibrium
- Product of \(\text{argsup} \) \(\mapsto \) Backward induction!
Fixed Point Theory

Fixed point operators are their own selection function

Generalised Game \mapsto Operators on product space
Optimal strategy \mapsto Bekič’s Lemma
Product of fix’s \mapsto The proof!
Proof Theory

Proof interpretation

$$\exists i \leq n \forall x X_i \exists r R A_i(x, r) \iff \forall \varepsilon(.) \exists i \leq n \exists p A_i(\varepsilon_i p, p(\varepsilon_i p))$$
Proof Theory

Proof interpretation

$$\exists i \leq n \forall x^{X_i} \exists r^R A_i(x, r) \implies \forall \varepsilon(.) \exists i \leq n \exists p A_i(\varepsilon ip, p(\varepsilon ip))$$

\(\varepsilon\)'s define quantifiers, which partially define a game

Computational interpretation relies on completing the definition of the game so optimal strategy solves problem
Proof Theory

Proof interpretation

\[\exists i \leq n \forall x \exists r^R A_i(x, r) \implies \forall \varepsilon(.) \exists i \leq n \exists p A_i(\varepsilon p, p(\varepsilon p)) \]

\(\varepsilon\)'s define quantifiers, which partially define a game

Computational interpretation relies on completing the definition of the game so optimal strategy solves problem

Existence of optimal strategy actually implies the consistency of mathematics!
Outline

1. Game Theory
2. Quantifiers and Selection Functions
3. Generalisation
4. Monads
Monads

- K_R and J_R are strong monads
Monads

- K_R and J_R are **strong monads**
- $J_R \hookrightarrow K_R$ is a **monad morphism**
Monads

- K_R and J_R are **strong monads**
- $J_R \mapsto K_R$ is a **monad morphism**
- **Product** of quantifiers

$$K_R X \times K_R Y \rightarrow K_R (X \times Y)$$

calculates optimal outcome
Monads

- K_R and J_R are **strong monads**
- $J_R \rightarrow K_R$ is a **monad morphism**
- **Product** of quantifiers
 \[K_R X \times K_R Y \rightarrow K_R(X \times Y) \]
 calculates optimal outcome
- **Product** of selection functions
 \[J_R X \times J_R Y \rightarrow J_R(X \times Y) \]
 calculates optimal play
Monads

- K_R and J_R are **strong monads**
- $J_R \mapsto K_R$ is a **monad morphism**
- **Product** of quantifiers
 \[K_R X \times K_R Y \rightarrow K_R (X \times Y) \]
 calculates optimal outcome
- **Product** of selection functions
 \[J_R X \times J_R Y \rightarrow J_R (X \times Y) \]
 calculates optimal play
- **Infinite product** $\Pi_i J_R X_i \rightarrow J_R \Pi_i X_i$ exists
 (**in some models**)
Summary

- Generalised notion of sequential game
- Generalised notion of optimal strategy (equilibrium)
- Product of sel. fct. computes optimal strategies
- Results from fixed point theory, topology, proof theory, etc, can be viewed as optimal strategies in certain games
References

M. Escardó and P. Oliva
Selection functions, bar recursion and backward induction
MSCS, 20(2):127-168, 2010

M. Escardó and P. Oliva
What sequential games, the Tychnoff theorem and the
double-negation shift have in common
ACM SIGPLAN MSFP, ACM Press 2010

M. Escardó and P. Oliva
Sequential games and optimal strategies
Proceedings of the Royal Society A, 2011

M. Escardó and P. Oliva
Computing Nash equilibria of unbounded games
The Turing Centenary Conference, 2012