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Introduces bar recursion as an extension of system T
Essentially recursion on well-founded trees

(1968) Howard bar recursive interpretation of bar induction
Also, ordinal analysis of bar recursion in early 80's

(1971) Scarpellini model C of continuous functionals
ve* 7, o 3B afn] = B[n] — pa = ¢B)

(1985) Bezem model M of majorizable functionals
X N, o 3N B(aln] = B[n] — B < n)
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From 1990's

(1990) Kolenbach's thesis, non-majorizable version of Spector b.r.

(1999) Berardi, Bezem, Coquand

Novel bar recursion and realizability interp. of analysis

(2000) Berger simplified BBC work
Defined modified bar recursion
Use of standard (modified) realizability

(2006) Kohlenbach, bar recursion/majoriz. on abstract spaces

(2006) Escardé rediscovers (variant of) modified bar recursion
Defining searchable sets and their countable products
Computational counterpart of compactness
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Strong Monad

Let X be a type constructor (working in system T)

T is a strong monad if for a family of closed terms

nx X —->TX
(-)T (X —>TY)—> (TX - TY)

we have (f: X — 7Y and g: YV — TZ)
(i) (nx)" = idrx
(i) fTonx = f
(iii) (g7 o f)T =gl o fT
Eg TX =X (identity monad)
TX=(X—->R)—R (continuation monad, K X)
TX =(X > R)—> X  (selection monad, JX)
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Binary Product
For any strong monad 7T'X we have a product operation
®: TX x(X->TY)->T(X xY)
ForTX =X anda: X and f: X - Y
a® [ = (a, f(a))
For TX = KX and ¢: KX and ¢¥: X — KY
(@®@v¥)(q) = ¢(Arp(z)(Ay-q(z,y))) (g2 X ¥V — R)
For TX =JX ande: JX and §: X — JY we have
(E®9)(q) = (a, f(a))
where f(z) = 0(z)(Ay.q(z,y)) and a = e(Az.q(z, f(2)))
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Finite Product

Given
foooX* L TX
Define (for |s| < n)
@ f=f(5) @ (M. Qi f)
with @] f =n(1)

Theorem (Escardé/Powell/0.’2011).
For all three monads TX = X, TX = KX and TX =JX
the finite product is equivalent to Godel primitive recursion
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IPQ, : (X* > KX)N - K(XV)
IPQ, $s @ (A2 IPQgyy)

IPS, : (X*— JX)N > J(XY)
IPS, = &, ® (Az.IPS,,.)

IPQ is inconsistent
For discrete R, IPS exists in C and (not uniquely) in M
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Unbounded Product (Explicitly Controlled)

Given

¢s + (X—>R)—R (quantifiers)

gs ¢ (X—>R)—-X (selection functions)
o : XN N (control function)

Define  (§ = infinite extension of finite sequence s)

0 i o(8) < Is
EPQ, - |

¢s ® (A\1.EPQ,4,) otherwise

0 if o(8) < |s]
EPS, = £s ® (Ar.EPS,,,) otherwise

Both exist (uniquely) in C and M, for arbitrary R



Interdefinability (Escardé/0.'2014)
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Game Contexts and Players

X = set of available moves

R = set of possible outcomes

Maps p: X — R can be thought of as game contexts

Encapsulates the environment by defining what the final

outcome would be for each choice of move of a given player

Selection functions describe players
(X—>R) - X

by determining the optimal move for each game context
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Product of Selection Functions

Product of selection functions = way of combining players

The selection function e ® § will
» select pairs of moves (z,y)
» x a good move for player ¢
» 3 a good move for player &

Theorem (Escard6/0.’2010).
Given n players, finite product ® calculates optimal play
When selection functions are maximisation functions

finite product implements backward induction
(sub-game perfect equilibrium)
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Bar Recursion and Games

(2012) Infinite product IPS extends backward induction
to unbounded games (Escard6/0.)

(2013) Selection function generalisation of Nash's theorem
on the existence of mixed equilibrium (Hedges)

(2014) Application of selection functions and quantifiers to
“classical” game theory (Hedges/O./Meinheim)
Novel equilibrium (multi-valued selection functions)

(?7) Selection function/bar recursion for mixed strategies

(?7) Consider repeated games and approximate equilibria
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Bar Recursion and Monads

(2013) Selection + State monad for DPLL (Hedges)

(2014) Multi-valued selection functions and the
Herbrand interpretation of DNS (Escard$/0.)
Equivalence of bar recursion and “monadic” bar recursion

(??7) Combination of selection functions and probability monad

Implication to games and mixed equilibrium

(?7) Combination of selection functions with searchable
set monad (Hedges)
Novel variant of functional interpretation
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Applied Bar Recursion

(2013) Selection function (game-theoretic) interpretation
of Bolzano-Weierstrass and Ramsey thms (Powell/O.)

(2014) Optimised variant of Spector bar recursion (Powell/O.)
Better use of the control function

(2014) Bar recursive interpretation of “termination” theorem
Based on analysis of transitive Ramsey theorem for
pairs (Berardi/Steila/O.)

(??7) Game-theoretic interpretation of Analysis
E.g. Fixed point theory, Approximation theory,
Diophantine approximation, Ergodic theory



THE END
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