
Bar Recursion: A Survey

Paulo Oliva

Queen Mary University of London

British Logic Colloquium

3 September 2014

1 / 21

Classical logic = Continuation/Backtracking

Logic (LEM)

A_ A

Arithmetic (induction)

@NDsB
N

@năN psn ô Apnqq

Analysis (comprehension)

DαBN
@npαpnq ô Apnqq

Classical logic = Continuation/Backtracking

Logic (LEM)

A_ A

Arithmetic (induction)

@NDsB
N

@năN psn ô Apnqq

Analysis (comprehension)

DαBN
@npαpnq ô Apnqq

Classical logic = Continuation/Backtracking

Logic (LEM)

A_ A

Arithmetic (induction)

@NDsB
N

@năN psn ô Apnqq

Analysis (comprehension)

DαBN
@npαpnq ô Apnqq

Outline

1. Bar Recursion: Early History

2. Bar Recursion and Selection Functions
Monads and Products
Interdefinability

3. Bar Recursion and Games
Selection functions and players
Iterated product and optimal strategies

4. Bar Recursion: Current and Future Work

Outline

1. Bar Recursion: Early History

2. Bar Recursion and Selection Functions
Monads and Products
Interdefinability

3. Bar Recursion and Games
Selection functions and players
Iterated product and optimal strategies

4. Bar Recursion: Current and Future Work

From 1960’s to 1985

(1958) Gödel publishes Dialectica interpretation of arithmetic

(1962) Spector extends Gödel’s interpretation to analysis

Introduces bar recursion as an extension of system T

Essentially recursion on well-founded trees

(1968) Howard bar recursive interpretation of bar induction

Also, ordinal analysis of bar recursion in early 80’s

(1971) Scarpellini model C of continuous functionals

@ϕXNÑN, αXN
DnN@βpαrns “ βrns Ñ ϕα “ ϕβq

(1985) Bezem model M of majorizable functionals

@ϕXNÑN, αXN
DnN@βpαrns “ βrns Ñ ϕβ ď nq

From 1960’s to 1985

(1958) Gödel publishes Dialectica interpretation of arithmetic

(1962) Spector extends Gödel’s interpretation to analysis

Introduces bar recursion as an extension of system T

Essentially recursion on well-founded trees

(1968) Howard bar recursive interpretation of bar induction

Also, ordinal analysis of bar recursion in early 80’s

(1971) Scarpellini model C of continuous functionals

@ϕXNÑN, αXN
DnN@βpαrns “ βrns Ñ ϕα “ ϕβq

(1985) Bezem model M of majorizable functionals

@ϕXNÑN, αXN
DnN@βpαrns “ βrns Ñ ϕβ ď nq

From 1960’s to 1985

(1958) Gödel publishes Dialectica interpretation of arithmetic

(1962) Spector extends Gödel’s interpretation to analysis

Introduces bar recursion as an extension of system T

Essentially recursion on well-founded trees

(1968) Howard bar recursive interpretation of bar induction

Also, ordinal analysis of bar recursion in early 80’s

(1971) Scarpellini model C of continuous functionals

@ϕXNÑN, αXN
DnN@βpαrns “ βrns Ñ ϕα “ ϕβq

(1985) Bezem model M of majorizable functionals

@ϕXNÑN, αXN
DnN@βpαrns “ βrns Ñ ϕβ ď nq

From 1990’s

(1990) Kolenbach’s thesis, non-majorizable version of Spector b.r.

(1999) Berardi, Bezem, Coquand

Novel bar recursion and realizability interp. of analysis

(2000) Berger simplified BBC work

Defined modified bar recursion

Use of standard (modified) realizability

(2006) Kohlenbach, bar recursion/majoriz. on abstract spaces

(2006) Escardó rediscovers (variant of) modified bar recursion

Defining searchable sets and their countable products

Computational counterpart of compactness

From 1990’s

(1990) Kolenbach’s thesis, non-majorizable version of Spector b.r.

(1999) Berardi, Bezem, Coquand

Novel bar recursion and realizability interp. of analysis

(2000) Berger simplified BBC work

Defined modified bar recursion

Use of standard (modified) realizability

(2006) Kohlenbach, bar recursion/majoriz. on abstract spaces

(2006) Escardó rediscovers (variant of) modified bar recursion

Defining searchable sets and their countable products

Computational counterpart of compactness

From 1990’s

(1990) Kolenbach’s thesis, non-majorizable version of Spector b.r.

(1999) Berardi, Bezem, Coquand

Novel bar recursion and realizability interp. of analysis

(2000) Berger simplified BBC work

Defined modified bar recursion

Use of standard (modified) realizability

(2006) Kohlenbach, bar recursion/majoriz. on abstract spaces

(2006) Escardó rediscovers (variant of) modified bar recursion

Defining searchable sets and their countable products

Computational counterpart of compactness

From 1990’s

(1990) Kolenbach’s thesis, non-majorizable version of Spector b.r.

(1999) Berardi, Bezem, Coquand

Novel bar recursion and realizability interp. of analysis

(2000) Berger simplified BBC work

Defined modified bar recursion

Use of standard (modified) realizability

(2006) Kohlenbach, bar recursion/majoriz. on abstract spaces

(2006) Escardó rediscovers (variant of) modified bar recursion

Defining searchable sets and their countable products

Computational counterpart of compactness

Outline

1. Bar Recursion: Early History

2. Bar Recursion and Selection Functions
Monads and Products
Interdefinability

3. Bar Recursion and Games
Selection functions and players
Iterated product and optimal strategies

4. Bar Recursion: Current and Future Work

Strong Monad

Let TX be a type constructor (working in system T)

T is a strong monad if for a family of closed terms

ηX : X Ñ TX

p¨q: : pX Ñ TY q Ñ pTX Ñ TY q

we have (f : X Ñ TY and g : Y Ñ TZ)

piq pηXq
: “ idTX

piiq f : ˝ ηX “ f

piiiq pg: ˝ fq: “ g: ˝ f :

E.g. TX “ X (identity monad)

TX “ pX Ñ Rq Ñ R (continuation monad, KX)

TX “ pX Ñ Rq Ñ X (selection monad, JX)

Strong Monad

Let TX be a type constructor (working in system T)

T is a strong monad if for a family of closed terms

ηX : X Ñ TX

p¨q: : pX Ñ TY q Ñ pTX Ñ TY q

we have (f : X Ñ TY and g : Y Ñ TZ)

piq pηXq
: “ idTX

piiq f : ˝ ηX “ f

piiiq pg: ˝ fq: “ g: ˝ f :

E.g. TX “ X (identity monad)

TX “ pX Ñ Rq Ñ R (continuation monad, KX)

TX “ pX Ñ Rq Ñ X (selection monad, JX)

Strong Monad

Let TX be a type constructor (working in system T)

T is a strong monad if for a family of closed terms

ηX : X Ñ TX

p¨q: : pX Ñ TY q Ñ pTX Ñ TY q

we have (f : X Ñ TY and g : Y Ñ TZ)

piq pηXq
: “ idTX

piiq f : ˝ ηX “ f

piiiq pg: ˝ fq: “ g: ˝ f :

E.g. TX “ X (identity monad)

TX “ pX Ñ Rq Ñ R (continuation monad, KX)

TX “ pX Ñ Rq Ñ X (selection monad, JX)

Binary Product

For any strong monad TX we have a product operation

b : TX ˆ pX Ñ TY q Ñ T pX ˆ Y q

For TX “ X and a : X and f : X Ñ Y

ab f “ pa, fpaqq

For TX “ KX and φ : KX and ψ : X Ñ KY

pφb ψqpqq “ φpλx.ψpxqpλy.qpx, yqqq pq : X ˆ Y Ñ Rq

For TX “ JX and ε : JX and δ : X Ñ JY we have

pεb δqpqq “ pa, fpaqq

where fpxq “ δpxqpλy.qpx, yqq and a “ εpλx.qpx, fpxqqq

Binary Product

For any strong monad TX we have a product operation

b : TX ˆ pX Ñ TY q Ñ T pX ˆ Y q

For TX “ X and a : X and f : X Ñ Y

ab f “ pa, fpaqq

For TX “ KX and φ : KX and ψ : X Ñ KY

pφb ψqpqq “ φpλx.ψpxqpλy.qpx, yqqq pq : X ˆ Y Ñ Rq

For TX “ JX and ε : JX and δ : X Ñ JY we have

pεb δqpqq “ pa, fpaqq

where fpxq “ δpxqpλy.qpx, yqq and a “ εpλx.qpx, fpxqqq

Binary Product

For any strong monad TX we have a product operation

b : TX ˆ pX Ñ TY q Ñ T pX ˆ Y q

For TX “ X and a : X and f : X Ñ Y

ab f “ pa, fpaqq

For TX “ KX and φ : KX and ψ : X Ñ KY

pφb ψqpqq “ φpλx.ψpxqpλy.qpx, yqqq pq : X ˆ Y Ñ Rq

For TX “ JX and ε : JX and δ : X Ñ JY we have

pεb δqpqq “ pa, fpaqq

where fpxq “ δpxqpλy.qpx, yqq and a “ εpλx.qpx, fpxqqq

Binary Product

For any strong monad TX we have a product operation

b : TX ˆ pX Ñ TY q Ñ T pX ˆ Y q

For TX “ X and a : X and f : X Ñ Y

ab f “ pa, fpaqq

For TX “ KX and φ : KX and ψ : X Ñ KY

pφb ψqpqq “ φpλx.ψpxqpλy.qpx, yqqq pq : X ˆ Y Ñ Rq

For TX “ JX and ε : JX and δ : X Ñ JY we have

pεb δqpqq “ pa, fpaqq

where fpxq “ δpxqpλy.qpx, yqq and a “ εpλx.qpx, fpxqqq

Finite Product

Given

f : X˚ Ñ TX

Define (for |s| ď n)
Ân

s f “ fpsq b pλx.
Ân

s˚x fq

with
Â|s|

s f “ ηp1q

Theorem (Escardó/Powell/O.’2011).

For all three monads TX “ X, TX “ KX and TX “ JX
the finite product is equivalent to Gödel primitive recursion

Finite Product

Given

f : X˚ Ñ TX

Define (for |s| ď n)
Ân

s f “ fpsq b pλx.
Ân

s˚x fq

with
Â|s|

s f “ ηp1q

Theorem (Escardó/Powell/O.’2011).

For all three monads TX “ X, TX “ KX and TX “ JX
the finite product is equivalent to Gödel primitive recursion

Unbounded Product (Implicitly Controlled)

Given

φs : pX Ñ Rq Ñ R (quantifiers)

εs : pX Ñ Rq Ñ X (selection functions)

Define
IPQs : pX˚ Ñ KXqN Ñ KpXNq

IPQs “ φs b pλx.IPQs˚xq

IPSs : pX˚ Ñ JXqN Ñ JpXNq

IPSs “ εs b pλx.IPSs˚xq

IPQ is inconsistent

For discrete R, IPS exists in C and (not uniquely) in M

Unbounded Product (Implicitly Controlled)

Given

φs : pX Ñ Rq Ñ R (quantifiers)

εs : pX Ñ Rq Ñ X (selection functions)

Define
IPQs : pX˚ Ñ KXqN Ñ KpXNq

IPQs “ φs b pλx.IPQs˚xq

IPSs : pX˚ Ñ JXqN Ñ JpXNq

IPSs “ εs b pλx.IPSs˚xq

IPQ is inconsistent

For discrete R, IPS exists in C and (not uniquely) in M

Unbounded Product (Explicitly Controlled)

Given

φs : pX Ñ Rq Ñ R (quantifiers)

εs : pX Ñ Rq Ñ X (selection functions)

ϕ : XN Ñ N (control function)

Define (ŝ = infinite extension of finite sequence s)

EPQs “

#

0 if ϕpŝq ă |s|

φs b pλx.EPQs˚xq otherwise

EPSs “

#

0 if ϕpŝq ă |s|

εs b pλx.EPSs˚xq otherwise

Both exist (uniquely) in C and M, for arbitrary R

Unbounded Product (Explicitly Controlled)

Given

φs : pX Ñ Rq Ñ R (quantifiers)

εs : pX Ñ Rq Ñ X (selection functions)

ϕ : XN Ñ N (control function)

Define (ŝ = infinite extension of finite sequence s)

EPQs “

#

0 if ϕpŝq ă |s|

φs b pλx.EPQs˚xq otherwise

EPSs “

#

0 if ϕpŝq ă |s|

εs b pλx.EPSs˚xq otherwise

Both exist (uniquely) in C and M, for arbitrary R

Interdefinability (Escardó/O.’2014)

MBR

ips mbr

IPS

EPQ

epq

eps EPS

SBR

BR

Equivalence classes

HA! definability

Assume BI

Assume SPEC

Assume BI + CONT

Outline

1. Bar Recursion: Early History

2. Bar Recursion and Selection Functions
Monads and Products
Interdefinability

3. Bar Recursion and Games
Selection functions and players
Iterated product and optimal strategies

4. Bar Recursion: Current and Future Work

Game Contexts and Players

X = set of available moves

R = set of possible outcomes

Maps p : X Ñ R can be thought of as game contexts

Encapsulates the environment by defining what the final

outcome would be for each choice of move of a given player

Selection functions describe players

pX Ñ Rq Ñ X

by determining the optimal move for each game context

Game Contexts and Players

X = set of available moves

R = set of possible outcomes

Maps p : X Ñ R can be thought of as game contexts

Encapsulates the environment by defining what the final

outcome would be for each choice of move of a given player

Selection functions describe players

pX Ñ Rq Ñ X

by determining the optimal move for each game context

Game Contexts and Players

X = set of available moves

R = set of possible outcomes

Maps p : X Ñ R can be thought of as game contexts

Encapsulates the environment by defining what the final

outcome would be for each choice of move of a given player

Selection functions describe players

pX Ñ Rq Ñ X

by determining the optimal move for each game context

Product of Selection Functions

Product of selection functions = way of combining players

The selection function εb δ will

§ select pairs of moves px, yq

§ x a good move for player ε

§ y a good move for player δ

Theorem (Escardó/O.’2010).

Given n players, finite product b calculates optimal play

When selection functions are maximisation functions

finite product implements backward induction
(sub-game perfect equilibrium)

Product of Selection Functions

Product of selection functions = way of combining players

The selection function εb δ will

§ select pairs of moves px, yq

§ x a good move for player ε

§ y a good move for player δ

Theorem (Escardó/O.’2010).

Given n players, finite product b calculates optimal play

When selection functions are maximisation functions

finite product implements backward induction
(sub-game perfect equilibrium)

Product of Selection Functions

Product of selection functions = way of combining players

The selection function εb δ will

§ select pairs of moves px, yq

§ x a good move for player ε

§ y a good move for player δ

Theorem (Escardó/O.’2010).

Given n players, finite product b calculates optimal play

When selection functions are maximisation functions

finite product implements backward induction
(sub-game perfect equilibrium)

Outline

1. Bar Recursion: Early History

2. Bar Recursion and Selection Functions
Monads and Products
Interdefinability

3. Bar Recursion and Games
Selection functions and players
Iterated product and optimal strategies

4. Bar Recursion: Current and Future Work

Bar Recursion and Games

(2012) Infinite product IPS extends backward induction

to unbounded games (Escardó/O.)

(2013) Selection function generalisation of Nash’s theorem

on the existence of mixed equilibrium (Hedges)

(2014) Application of selection functions and quantifiers to

“classical” game theory (Hedges/O./Meinheim)

Novel equilibrium (multi-valued selection functions)

(??) Selection function/bar recursion for mixed strategies

(??) Consider repeated games and approximate equilibria

Bar Recursion and Games

(2012) Infinite product IPS extends backward induction

to unbounded games (Escardó/O.)

(2013) Selection function generalisation of Nash’s theorem

on the existence of mixed equilibrium (Hedges)

(2014) Application of selection functions and quantifiers to

“classical” game theory (Hedges/O./Meinheim)

Novel equilibrium (multi-valued selection functions)

(??) Selection function/bar recursion for mixed strategies

(??) Consider repeated games and approximate equilibria

Bar Recursion and Monads

(2013) Selection + State monad for DPLL (Hedges)

(2014) Multi-valued selection functions and the

Herbrand interpretation of DNS (Escardó/O.)

Equivalence of bar recursion and “monadic” bar recursion

(??) Combination of selection functions and probability monad

Implication to games and mixed equilibrium

(??) Combination of selection functions with searchable

set monad (Hedges)

Novel variant of functional interpretation

Bar Recursion and Monads

(2013) Selection + State monad for DPLL (Hedges)

(2014) Multi-valued selection functions and the

Herbrand interpretation of DNS (Escardó/O.)

Equivalence of bar recursion and “monadic” bar recursion

(??) Combination of selection functions and probability monad

Implication to games and mixed equilibrium

(??) Combination of selection functions with searchable

set monad (Hedges)

Novel variant of functional interpretation

Applied Bar Recursion

(2013) Selection function (game-theoretic) interpretation

of Bolzano-Weierstrass and Ramsey thms (Powell/O.)

(2014) Optimised variant of Spector bar recursion (Powell/O.)

Better use of the control function

(2014) Bar recursive interpretation of “termination” theorem

Based on analysis of transitive Ramsey theorem for

pairs (Berardi/Steila/O.)

(??) Game-theoretic interpretation of Analysis

E.g. Fixed point theory, Approximation theory,

Diophantine approximation, Ergodic theory

Applied Bar Recursion

(2013) Selection function (game-theoretic) interpretation

of Bolzano-Weierstrass and Ramsey thms (Powell/O.)

(2014) Optimised variant of Spector bar recursion (Powell/O.)

Better use of the control function

(2014) Bar recursive interpretation of “termination” theorem

Based on analysis of transitive Ramsey theorem for

pairs (Berardi/Steila/O.)

(??) Game-theoretic interpretation of Analysis

E.g. Fixed point theory, Approximation theory,

Diophantine approximation, Ergodic theory

THE END

	Main Part
	1. Bar Recursion: Early History
	2. Bar Recursion and Selection Functions
	Monads and Products
	Interdefinability

	3. Bar Recursion and Games
	Selection functions and players
	Iterated product and optimal strategies

	4. Bar Recursion: Current and Future Work

