Bar Recursion: A Survey

Paulo Oliva
Queen Mary University of London

British Logic Colloquium
3 September 2014

Classical logic = Continuation/Backtracking

Logic (LEM)

$$
A \vee \neg A
$$

Classical logic = Continuation/Backtracking

Logic (LEM)

$$
A \vee \neg A
$$

Arithmetic (induction)

$$
\forall N \exists s^{\mathbb{B}^{N}} \forall n<N\left(s_{n} \Leftrightarrow A(n)\right)
$$

Classical logic＝Continuation／Backtracking

Logic（LEM）

$$
A \vee \neg A
$$

Arithmetic（induction）

$$
\forall N \exists s^{\mathbb{B}^{N}} \forall n<N\left(s_{n} \Leftrightarrow A(n)\right)
$$

Analysis（comprehension）

$$
\exists \alpha^{\mathbb{B}^{\mathbb{N}}} \forall n(\alpha(n) \Leftrightarrow A(n))
$$

Outline

1．Bar Recursion：Early History

2．Bar Recursion and Selection Functions Monads and Products Interdefinability

3．Bar Recursion and Games
Selection functions and players Iterated product and optimal strategies

4．Bar Recursion：Current and Future Work

Outline

1. Bar Recursion: Early History
2. Bar Recursion and Selection Functions Monads and Products Interdefinability
3. Bar Recursion and Games

Selection functions and players
Iterated product and optimal strategies
4. Bar Recursion: Current and Future Work

From 1960's to 1985

(1958) Gödel publishes Dialectica interpretation of arithmetic
(1962) Spector extends Gödel's interpretation to analysis Introduces bar recursion as an extension of system T Essentially recursion on well-founded trees

From 1960's to 1985

(1958) Gödel publishes Dialectica interpretation of arithmetic
(1962) Spector extends Gödel's interpretation to analysis Introduces bar recursion as an extension of system T Essentially recursion on well-founded trees
(1968) Howard bar recursive interpretation of bar induction Also, ordinal analysis of bar recursion in early 80 's

From 1960's to 1985

(1958) Gödel publishes Dialectica interpretation of arithmetic
(1962) Spector extends Gödel's interpretation to analysis Introduces bar recursion as an extension of system T Essentially recursion on well-founded trees
(1968) Howard bar recursive interpretation of bar induction Also, ordinal analysis of bar recursion in early 80 's
(1971) Scarpellini model \mathcal{C} of continuous functionals $\forall \varphi^{X^{\mathbb{N}} \rightarrow \mathbb{N}}, \alpha^{X^{\mathbb{N}}} \exists n^{\mathbb{N}} \forall \beta(\alpha[n]=\beta[n] \rightarrow \varphi \alpha=\varphi \beta)$
(1985) Bezem model \mathcal{M} of majorizable functionals

$$
\forall \varphi^{X^{\mathbb{N}} \rightarrow \mathbb{N}}, \alpha^{X^{\mathbb{N}}} \exists n^{\mathbb{N}} \forall \beta(\alpha[n]=\beta[n] \rightarrow \varphi \beta \leqslant n)
$$

From 1990's

(1990) Kolenbach's thesis, non-majorizable version of Spector b.r.

From 1990＇s

（1990）Kolenbach＇s thesis，non－majorizable version of Spector b．r．
（1999）Berardi，Bezem，Coquand
Novel bar recursion and realizability interp．of analysis
（2000）Berger simplified BBC work
Defined modified bar recursion
Use of standard（modified）realizability

From 1990＇s

（1990）Kolenbach＇s thesis，non－majorizable version of Spector b．r．
（1999）Berardi，Bezem，Coquand
Novel bar recursion and realizability interp．of analysis
（2000）Berger simplified BBC work
Defined modified bar recursion
Use of standard（modified）realizability
（2006）Kohlenbach，bar recursion／majoriz．on abstract spaces

From 1990's

(1990) Kolenbach's thesis, non-majorizable version of Spector b.r.
(1999) Berardi, Bezem, Coquand

Novel bar recursion and realizability interp. of analysis
(2000) Berger simplified BBC work Defined modified bar recursion
Use of standard (modified) realizability
(2006) Kohlenbach, bar recursion/majoriz. on abstract spaces
(2006) Escardó rediscovers (variant of) modified bar recursion Defining searchable sets and their countable products Computational counterpart of compactness

Outline

1. Bar Recursion: Early History
2. Bar Recursion and Selection Functions Monads and Products Interdefinability
3. Bar Recursion and Games Selection functions and players Iterated product and optimal strategies
4. Bar Recursion: Current and Future Work

Strong Monad

Let $T X$ be a type constructor (working in system T)

Strong Monad

Let $T X$ be a type constructor (working in system T)
T is a strong monad if for a family of closed terms

$$
\begin{aligned}
\eta_{X} & : X \rightarrow T X \\
(\cdot)^{\dagger} & :(X \rightarrow T Y) \rightarrow(T X \rightarrow T Y)
\end{aligned}
$$

we have $(f: X \rightarrow T Y$ and $g: Y \rightarrow T Z)$
(i) $\left(\eta_{X}\right)^{\dagger}=\mathrm{id}_{T X}$
(ii) $f^{\dagger} \circ \eta_{X}=f$
(iii) $\left(g^{\dagger} \circ f\right)^{\dagger}=g^{\dagger} \circ f^{\dagger}$

Strong Monad

Let $T X$ be a type constructor (working in system T)
T is a strong monad if for a family of closed terms

$$
\begin{aligned}
\eta_{X} & : X \rightarrow T X \\
(\cdot)^{\dagger} & :(X \rightarrow T Y) \rightarrow(T X \rightarrow T Y)
\end{aligned}
$$

we have $(f: X \rightarrow T Y$ and $g: Y \rightarrow T Z)$
(i) $\left(\eta_{X}\right)^{\dagger}=\mathrm{id}_{T X}$
(ii) $f^{\dagger} \circ \eta_{X}=f$
(iii) $\left(g^{\dagger} \circ f\right)^{\dagger}=g^{\dagger} \circ f^{\dagger}$
E.g. $T X=X$
(identity monad)

$$
\begin{array}{ll}
T X=(X \rightarrow R) \rightarrow R & \text { (continuation monad, } K X) \\
T X=(X \rightarrow R) \rightarrow X & \text { (selection monad, JX) }
\end{array}
$$

Binary Product

For any strong monad $T X$ we have a product operation

$$
\otimes: T X \times(X \rightarrow T Y) \rightarrow T(X \times Y)
$$

Binary Product

For any strong monad $T X$ we have a product operation

$$
\otimes: T X \times(X \rightarrow T Y) \rightarrow T(X \times Y)
$$

For $T X=X$ and $a: X$ and $f: X \rightarrow Y$

$$
a \otimes f=(a, f(a))
$$

Binary Product

For any strong monad $T X$ we have a product operation

$$
\otimes: T X \times(X \rightarrow T Y) \rightarrow T(X \times Y)
$$

For $T X=X$ and $a: X$ and $f: X \rightarrow Y$

$$
a \otimes f=(a, f(a))
$$

For $T X=K X$ and $\phi: K X$ and $\psi: X \rightarrow K Y$

$$
(\phi \otimes \psi)(q)=\phi(\lambda x \cdot \psi(x)(\lambda y \cdot q(x, y))) \quad(q: X \times Y \rightarrow R)
$$

Binary Product

For any strong monad $T X$ we have a product operation

$$
\otimes: T X \times(X \rightarrow T Y) \rightarrow T(X \times Y)
$$

For $T X=X$ and $a: X$ and $f: X \rightarrow Y$

$$
a \otimes f=(a, f(a))
$$

For $T X=K X$ and $\phi: K X$ and $\psi: X \rightarrow K Y$

$$
(\phi \otimes \psi)(q)=\phi(\lambda x \cdot \psi(x)(\lambda y \cdot q(x, y))) \quad(q: X \times Y \rightarrow R)
$$

For $T X=J X$ and $\varepsilon: J X$ and $\delta: X \rightarrow J Y$ we have

$$
(\varepsilon \otimes \delta)(q)=(a, f(a))
$$

where $f(x)=\delta(x)(\lambda y \cdot q(x, y))$ and $a=\varepsilon(\lambda x \cdot q(x, f(x)))$

Finite Product

Given

$$
f: \quad X^{*} \rightarrow T X
$$

Define (for $|s| \leqslant n$)

$$
\bigotimes_{s}^{n} f=f(s) \otimes\left(\lambda x \cdot \bigotimes_{s * x}^{n} f\right)
$$

with $\otimes_{s}^{|s|} f=\eta(1)$

Finite Product

Given

$$
f: \quad X^{*} \rightarrow T X
$$

Define（for $|s| \leqslant n$ ）

$$
\bigotimes_{s}^{n} f=f(s) \otimes\left(\lambda x \cdot \bigotimes_{s * x}^{n} f\right)
$$

with $\otimes_{s}^{|s|} f=\eta(1)$

Theorem（Escardó／Powell／O．＇2011）．

For all three monads $T X=X, T X=K X$ and $T X=J X$ the finite product is equivalent to Gödel primitive recursion

Unbounded Product (Implicitly Controlled)

Given

$$
\begin{array}{lll}
\phi_{s}: & (X \rightarrow R) \rightarrow R & \text { (quantifiers) } \\
\varepsilon_{s}: & (X \rightarrow R) \rightarrow X & \text { (selection functions) }
\end{array}
$$

Define

$$
\left.\begin{array}{l}
\mathrm{IPQ}_{s}:\left(X^{*} \rightarrow K X\right)^{\mathbb{N}} \rightarrow K\left(X^{\mathbb{N}}\right) \\
\mathrm{IPQ}_{s}=\phi_{s} \otimes(\lambda x \cdot \mathrm{IPQ} \\
s * x
\end{array}\right)
$$

Unbounded Product (Implicitly Controlled)

Given

$$
\begin{array}{llll}
\phi_{s} & : & (X \rightarrow R) \rightarrow R & \text { (quantifiers) } \\
\varepsilon_{s}: & (X \rightarrow R) \rightarrow X & \text { (selection functions) }
\end{array}
$$

Define

$$
\begin{aligned}
& \mathrm{IPQ}_{s}:\left(X^{*} \rightarrow K X\right)^{\mathbb{N}} \rightarrow K\left(X^{\mathbb{N}}\right) \\
& \mathrm{IPQ}_{s}=\phi_{s} \otimes\left(\lambda x . \mathrm{IPQ}_{s * x}\right) \\
& \mathrm{IPS}_{s}:\left(X^{*} \rightarrow J X\right)^{\mathbb{N}} \rightarrow J\left(X^{\mathbb{N}}\right) \\
& \mathrm{IPS}_{s}=\varepsilon_{s} \otimes(\lambda x . \mathrm{IPS} \\
& s * x)
\end{aligned}
$$

IPQ is inconsistent
For discrete R, IPS exists in \mathcal{C} and (not uniquely) in \mathcal{M}

Unbounded Product (Explicitly Controlled)

Given

$$
\begin{array}{rll}
\phi_{s}: & (X \rightarrow R) \rightarrow R & \text { (quantifiers) } \\
\varepsilon_{s}: & (X \rightarrow R) \rightarrow X & \text { (selection functions) } \\
\varphi & : & X^{\mathbb{N}} \rightarrow \mathbb{N}
\end{array}
$$

Define ($\hat{s}=$ infinite extension of finite sequence s)

$$
\begin{aligned}
& \mathrm{EPQ}_{s}= \begin{cases}0 & \text { if } \varphi(\hat{s})<|s| \\
\phi_{s} \otimes\left(\lambda x \cdot \mathrm{EPQ}_{s * x}\right) & \text { otherwise }\end{cases} \\
& \mathrm{EPS}_{s}= \begin{cases}0 & \text { if } \varphi(\hat{s})<|s| \\
\varepsilon_{s} \otimes\left(\lambda x \cdot \mathrm{EPS}_{s * x}\right) & \text { otherwise }\end{cases}
\end{aligned}
$$

Unbounded Product (Explicitly Controlled)

Given

$$
\begin{array}{rll}
\phi_{s}: & (X \rightarrow R) \rightarrow R & \text { (quantifiers) } \\
\varepsilon_{s}: & (X \rightarrow R) \rightarrow X & \text { (selection functions) } \\
\varphi & : & X^{\mathbb{N}} \rightarrow \mathbb{N}
\end{array}
$$

Define ($\hat{s}=$ infinite extension of finite sequence s)

$$
\begin{aligned}
& \mathrm{EPQ}_{s}= \begin{cases}0 & \text { if } \varphi(\hat{s})<|s| \\
\phi_{s} \otimes\left(\lambda x \cdot \mathrm{EPQ}_{s * x}\right) & \text { otherwise }\end{cases} \\
& \mathrm{EPS}_{s}= \begin{cases}0 & \text { if } \varphi(\hat{s})<|s| \\
\varepsilon_{s} \otimes\left(\lambda x \cdot \mathrm{EPS}_{s * x}\right) & \text { otherwise }\end{cases}
\end{aligned}
$$

Both exist (uniquely) in \mathcal{C} and \mathcal{M}, for arbitrary R

Interdefinability (Escardó/O.'2014)

	Equivalence classes
\rightarrow	HA ${ }^{\omega}$ definability
\cdots	Assume SPEC
\rightarrow	Assume BI
$\rightarrow \rightarrow$	Assume BI + CONT

Outline

1. Bar Recursion: Early History
2. Bar Recursion and Selection Functions Monads and Products Interdefinability
3. Bar Recursion and Games

Selection functions and players Iterated product and optimal strategies
4. Bar Recursion: Current and Future Work

Game Contexts and Players

$X=$ set of available moves
$R=$ set of possible outcomes

Game Contexts and Players

$X=$ set of available moves
$R=$ set of possible outcomes

Maps $p: X \rightarrow R$ can be thought of as game contexts
Encapsulates the environment by defining what the final outcome would be for each choice of move of a given player

Game Contexts and Players

$X=$ set of available moves
$R=$ set of possible outcomes

Maps $p: X \rightarrow R$ can be thought of as game contexts
Encapsulates the environment by defining what the final
outcome would be for each choice of move of a given player
Selection functions describe players

$$
(X \rightarrow R) \rightarrow X
$$

by determining the optimal move for each game context

Product of Selection Functions

Product of selection functions $=$ way of combining players

Product of Selection Functions

Product of selection functions = way of combining players
The selection function $\varepsilon \otimes \delta$ will

- select pairs of moves (x, y)
- x a good move for player ε
- y a good move for player δ

Product of Selection Functions

Product of selection functions = way of combining players
The selection function $\varepsilon \otimes \delta$ will

- select pairs of moves (x, y)
- x a good move for player ε
- y a good move for player δ

Theorem (Escardó/O.'2010).

Given n players, finite product \otimes calculates optimal play
When selection functions are maximisation functions finite product implements backward induction
(sub-game perfect equilibrium)

Outline

1．Bar Recursion：Early History

2．Bar Recursion and Selection Functions Monads and Products Interdefinability

3．Bar Recursion and Games
Selection functions and players Iterated product and optimal strategies

4．Bar Recursion：Current and Future Work

Bar Recursion and Games

(2012) Infinite product IPS extends backward induction to unbounded games (Escardó/O.)
(2013) Selection function generalisation of Nash's theorem on the existence of mixed equilibrium (Hedges)
(2014) Application of selection functions and quantifiers to "classical" game theory (Hedges/O./Meinheim) Novel equilibrium (multi-valued selection functions)

Bar Recursion and Games

(2012) Infinite product IPS extends backward induction to unbounded games (Escardó/O.)
(2013) Selection function generalisation of Nash's theorem on the existence of mixed equilibrium (Hedges)
(2014) Application of selection functions and quantifiers to "classical" game theory (Hedges/O./Meinheim) Novel equilibrium (multi-valued selection functions)
(??) Selection function/bar recursion for mixed strategies
(??) Consider repeated games and approximate equilibria

Bar Recursion and Monads

(2013) Selection + State monad for DPLL (Hedges)
(2014) Multi-valued selection functions and the Herbrand interpretation of DNS (Escardó/O.)
Equivalence of bar recursion and "monadic" bar recursion

Bar Recursion and Monads

(2013) Selection + State monad for DPLL (Hedges)
(2014) Multi-valued selection functions and the Herbrand interpretation of DNS (Escardó/O.)
Equivalence of bar recursion and "monadic" bar recursion
(??) Combination of selection functions and probability monad Implication to games and mixed equilibrium
(??) Combination of selection functions with searchable set monad (Hedges)
Novel variant of functional interpretation

Applied Bar Recursion

(2013) Selection function (game-theoretic) interpretation of Bolzano-Weierstrass and Ramsey thms (Powell/O.)
(2014) Optimised variant of Spector bar recursion (Powell/O.) Better use of the control function
(2014) Bar recursive interpretation of "termination" theorem Based on analysis of transitive Ramsey theorem for pairs (Berardi/Steila/O.)

Applied Bar Recursion

(2013) Selection function (game-theoretic) interpretation of Bolzano-Weierstrass and Ramsey thms (Powell/O.)
(2014) Optimised variant of Spector bar recursion (Powell/O.)

Better use of the control function
(2014) Bar recursive interpretation of "termination" theorem Based on analysis of transitive Ramsey theorem for pairs (Berardi/Steila/O.)
(??) Game-theoretic interpretation of Analysis
E.g. Fixed point theory, Approximation theory,

Diophantine approximation, Ergodic theory

THE END

