The Logic of the Unit Interval [0,1]

Paulo Oliva

Queen Mary University of London

Florida Atlantic University 16 April 2014 There are no whole truths; all truths are half-truths. It is trying to treat them as whole truths that plays the devil.

- Alfred North Whitehead

Outline

Łukasiewicz Logic

Background

Ulam Game

McNaughton Functions

Intuitionistic Łukasiewicz Logic

Hoops

Prover9 and Mace4

De Morgan Properties

Double Negation a Homomorphism

Double Negation Translations

Affine and Łukasiewicz Logic

Outline

Łukasiewicz Logic

Background

Ulam Game

McNaughton Functions

Intuitionistic Łukasiewicz Logic

Hoops

Prover9 and Mace4

De Morgan Properties

Double Negation a Homomorphism

Double Negation Translations

Affine and Łukasiewicz Logic

 \ldots we interpret truth values in the $\left[0,1\right]$ interval

 \dots we interpret truth values in the $\left[0,1\right]$ interval

Let 0 denote truth, and 1 falsehood

Let conjunction $A \wedge B$ mean $A \dotplus B$

Let negation $\neg A$ mean 1-A

Or, in general, $A\Rightarrow B$ mean $B \dot{-} A$

 \dots we interpret truth values in the $\left[0,1\right]$ interval

Let 0 denote truth, and 1 falsehood

Let conjunction $A \wedge B$ mean $A \dotplus B$

Let negation $\neg A$ mean 1 - A

Or, in general, $A\Rightarrow B$ mean $B \dot{-} A$

True formulas (equal 0) \simeq provable

 \dots we interpret truth values in the $\left[0,1\right]$ interval

Let 0 denote truth, and 1 falsehood

Let conjunction $A \wedge B$ mean $A \dotplus B$

Let negation $\neg A$ mean 1 - A

Or, in general, $A \Rightarrow B \text{ mean } B \dot{-} A$

True formulas (equal 0) \simeq provable

Q. Are the usual rules of logic consistent with this view?

 \dots we interpret truth values in the $\left[0,1\right]$ interval

Let 0 denote truth, and 1 falsehood

Let conjunction $A \wedge B$ mean $A \dotplus B$

Let negation $\neg A$ mean 1 - A

Or, in general, $A \Rightarrow B \text{ mean } B \dot{-} A$

True formulas (equal 0) \simeq provable

Q. Are the usual rules of logic consistent with this view?

A. Yes! (almost)

Contraction axiom not valid

The contraction axiom says

$$A \Rightarrow A \wedge A$$

But clearly $1-1/2 \neq 0$, for instance

Contraction axiom not valid

The **contraction** axiom says

$$A \Rightarrow A \wedge A$$

But clearly $1 - 1/2 \neq 0$, for instance

However, throwing away the contraction axiom is too much

Contraction axiom not valid

The **contraction** axiom says

$$A \Rightarrow A \wedge A$$

But clearly $1 - 1/2 \neq 0$, for instance

However, throwing away the contraction axiom is too much

For instance, the formulas

$$(A \Rightarrow B) \Rightarrow (A \Rightarrow (B \land (B \Rightarrow A)))$$

are

- valid under our interpretation, but
- not derivable in linear logic

Łukasiewicz Axiomatisation

The following axioms are **sound** and **complete** for [0,1]

(A1)
$$A \Rightarrow (B \Rightarrow A)$$

(A2)
$$(A \Rightarrow B) \Rightarrow (B \Rightarrow C) \Rightarrow (A \Rightarrow C)$$

(A3)
$$((A \Rightarrow B) \Rightarrow B) \Rightarrow ((B \Rightarrow A) \Rightarrow A)$$

(A4)
$$(\neg B \Rightarrow \neg A) \Rightarrow (A \Rightarrow B)$$

with the **cut rule**, i.e. from A and $A \Rightarrow B$ derive B

Conjectured by Łukasiewicz (1920's)

Proven by Wajsberg (1935) and Chang (1959)

Łukasiewicz Axiomatisation

The following axioms are sound and complete for $\left[0,1\right]$

(A1)
$$A \Rightarrow (B \Rightarrow A)$$

(A2)
$$(A \Rightarrow B) \Rightarrow (B \Rightarrow C) \Rightarrow (A \Rightarrow C)$$

(A3)
$$((A \Rightarrow B) \Rightarrow B) \Rightarrow ((B \Rightarrow A) \Rightarrow A)$$

(A4)
$$(\neg B \Rightarrow \neg A) \Rightarrow (A \Rightarrow B)$$

with the **cut rule**, i.e. from A and $A \Rightarrow B$ derive B

Conjectured by Łukasiewicz (1920's)

Proven by Wajsberg (1935) and Chang (1959)

Contrast this with the (type of the) S and K combinators

$$(\mathsf{K})\ A \Rightarrow (B \Rightarrow A)$$

(S)
$$(A \Rightarrow B) \Rightarrow (A \Rightarrow B \Rightarrow C) \Rightarrow (A \Rightarrow C)$$

The Ulam Game

The Ulam Game is a twist on the classical 20-question game:

- Player B thinks of a number between 1 and 10^6
- Player A is allowed to ask up to 20 questions
- Player B is supposed to answer only yes or no
- Suppose Player B were allowed to lie once (or n times)

How many questions would A need to get the right answer?

The Ulam Game

Classical reasoning no longer works

- Conjunction of two equal answers to the same question no longer equivalent to a single answer
- Conjunction of two opposite answers to the same question need not lead to a contradiction

The Ulam Game

Classical reasoning no longer works

- Conjunction of two equal answers to the same question no longer equivalent to a single answer
- Conjunction of two opposite answers to the same question need not lead to a contradiction

Player A can record current knowledge by taking the Łukasiewicz conjunction of information contained in answers

McNaughton Functions

A function $f:[0,1]^n \to [0,1]$ is **McNaughton** if it is

- continuous
- piecewise linear
- each piece has integer coefficients

McNaughton Functions

A function $f:[0,1]^n \to [0,1]$ is **McNaughton** if it is

- continuous
- piecewise linear
- each piece has integer coefficients

McNaughton theorem (1951)

A function $f:[0,1]^n \to [0,1]$ is a "truth table" of a Łukasiewicz formula iff it is a McNaughton function

Outline

Łukasiewicz Logic

Background
Ulam Game
McNaughton Functions

Intuitionistic Łukasiewicz Logic

Hoops
Prover9 and Mace4
De Morgan Properties
Double Negation a Homomorphism

Double Negation Translations
Affine and Łukasiewicz Logic

The Logic

In a sub-sctructural setting (no contraction) we use:

- $A \otimes B$ for "A and B"
- $A \multimap B$ for "A implies B"
- ▶ Falsehood is denoted by 1
- Negation is defined as $A^{\perp} = A \multimap 1$

The Logic

In a sub-sctructural setting (no contraction) we use:

- $A \otimes B$ for "A and B"
- $A \multimap B$ for "A implies B"
- ▶ Falsehood is denoted by 1
- Negation is defined as $A^{\perp} = A \multimap 1$

Ex falso quodlibet (EFQ)

$$1 \multimap A$$

The Logic

In a sub-sctructural setting (no contraction) we use:

- $A \otimes B$ for "A and B"
- $A \multimap B$ for "A implies B"
- Falsehood is denoted by 1
- Negation is defined as $A^{\perp} = A \multimap 1$

Ex falso quodlibet (EFQ)

$$1 \multimap A$$

Double negation elimination (DNE)

$$A^{\perp\perp} \multimap A$$

Affine, Łukasiewicz and Boolean Logic

minimal: only weakening rule

intuitionistic: minimal plus EFQ

classical: intuitionistic plus DNE

Affine, Łukasiewicz and Boolean Logic

minimal: only weakening rule

intuitionistic: minimal plus EFQ

classical: intuitionistic plus DNE

Some Theorems of IL

The following are provable in IL

$$\neg\neg(\neg\neg A \Rightarrow A)$$

$$\neg(A \Rightarrow B) \simeq \neg\neg A \land \neg B$$

$$\neg(A \land B) \simeq A \Rightarrow \neg B$$

$$\neg\neg(A \Rightarrow B) \simeq \neg\neg A \Rightarrow \neg\neg B$$

$$\neg\neg(A \land B) \simeq \neg\neg A \land \neg\neg B$$

Some Theorems of IL

The following are provable in IL

$$\neg\neg(\neg\neg A \Rightarrow A)$$

$$\neg(A \Rightarrow B) \simeq \neg\neg A \wedge \neg B$$

$$\neg(A \wedge B) \simeq A \Rightarrow \neg B$$

$$\neg\neg(A \Rightarrow B) \simeq \neg\neg A \Rightarrow \neg\neg B$$

$$\neg\neg(A \wedge B) \simeq \neg\neg A \wedge \neg\neg B$$

How many of these are valid in **ŁL**;?

For instance: $\neg\neg(\neg\neg A \Rightarrow A)$

Short derivation in intuitionistic logic

$$\frac{[A]_{\alpha}}{\neg \neg A \Rightarrow A} \qquad [\neg(\neg \neg A \Rightarrow A)]_{\delta} \\
\frac{\frac{\bot}{\neg A} \alpha}{\frac{A}{\neg \neg A \Rightarrow A} \beta} \qquad [\neg(\neg \neg A \Rightarrow A)]_{\delta} \\
\frac{\frac{\bot}{A}}{\neg \neg A \Rightarrow A} \beta \qquad [\neg(\neg \neg A \Rightarrow A)]_{\delta} \\
\frac{\bot}{\neg \neg(\neg \neg A \Rightarrow A)} \delta$$

For instance:
$$\neg\neg(\neg\neg A \Rightarrow A)$$

$$\frac{[A]_{\alpha}}{\neg \neg A \Rightarrow A} \qquad [\neg(\neg \neg A \Rightarrow A)]_{\delta}$$

$$\frac{\frac{\bot}{\neg A} \alpha}{\frac{\bot}{A}} \qquad [\neg \neg A]_{\beta}$$

$$\frac{\frac{\bot}{A}}{\neg \neg A \Rightarrow A} \beta \qquad [\neg(\neg \neg A \Rightarrow A)]_{\delta}$$

$$\frac{\bot}{\neg \neg (\neg \neg A \Rightarrow A)} \delta$$

Not valid in intuitionistic affine logic

For instance:
$$\neg\neg(\neg\neg A \Rightarrow A)$$

$$\frac{[A]_{\alpha}}{\neg \neg A \Rightarrow A} \qquad [\neg(\neg \neg A \Rightarrow A)]_{\delta}$$

$$\frac{\frac{\bot}{\neg A} \alpha}{\frac{A}{\neg \neg A \Rightarrow A}} \qquad [\neg \neg A \Rightarrow A]_{\delta}$$

$$\frac{\frac{\bot}{A}}{\neg \neg A \Rightarrow A} \beta \qquad [\neg(\neg \neg A \Rightarrow A)]_{\delta}$$

$$\frac{\bot}{\neg \neg(\neg \neg A \Rightarrow A)} \delta$$

Not valid in intuitionistic affine logic

How about intuitionistic Łukasiewicz logic?

For instance:
$$\neg(A \Rightarrow B) \Rightarrow (\neg \neg A \land \neg B)$$

$$\frac{A \Rightarrow B}{A \Rightarrow B} \frac{[\neg (A \Rightarrow B)]_{\delta}}{[\neg (A \Rightarrow B)]_{\delta}} \frac{A \Rightarrow B}{A \Rightarrow B} \frac{[\neg (A \Rightarrow B)]_{\delta}}{[\neg (A \Rightarrow B)]_{\delta}}$$

$$\frac{\bot}{\neg \neg A} \alpha \frac{\bot}{\neg B} \beta$$

$$\frac{\neg \neg A \land \neg B}{\neg (A \Rightarrow B) \Rightarrow (\neg \neg A \land \neg B)}$$

For instance:
$$\neg(A \Rightarrow B) \Rightarrow (\neg \neg A \land \neg B)$$

$$\frac{A \Rightarrow B}{A \Rightarrow B} \frac{[\neg (A \Rightarrow B)]_{\delta}}{[\neg (A \Rightarrow B)]_{\delta}} \frac{A \Rightarrow B}{A \Rightarrow B} \frac{[\neg (A \Rightarrow B)]_{\delta}}{[\neg (A \Rightarrow B)]_{\delta}}$$

$$\frac{\bot}{\neg \neg A} \alpha \frac{\bot}{\neg B} \beta$$

$$\frac{\neg \neg A \land \neg B}{\neg (A \Rightarrow B) \Rightarrow (\neg \neg A \land \neg B)}$$

Not valid in intuitionistic affine logic

For instance:
$$\neg(A \Rightarrow B) \Rightarrow (\neg \neg A \land \neg B)$$

$$\frac{[\neg A]_{\alpha}}{A \Rightarrow B} \qquad [\neg (A \Rightarrow B)]_{\delta} \qquad \frac{[B]_{\beta}}{A \Rightarrow B} \qquad [\neg (A \Rightarrow B)]_{\delta}$$

$$\frac{\bot}{\neg \neg A} \qquad \qquad \frac{\bot}{\neg B} \qquad \beta$$

$$\frac{\neg \neg A \land \neg B}{\neg (A \Rightarrow B) \Rightarrow (\neg \neg A \land \neg B)}$$

Not valid in **intuitionistic affine logic**How about **intuitionistic Łukasiewicz logic**?

The Algebras of **ŁL**_m and **ŁL**_i: Hoops

A **pocrim** $(+,0,\rightarrow)$ is a commutative monoid (+,0) which is

- partially ordered (with $x \ge y$ defined as $x \to y = 0$)
- residuated $(x + y \ge z \text{ iff } x \ge y \rightarrow z)$
- integral $(x \ge 0)$

The Algebras of **ŁL**_m and **ŁL**_i: Hoops

A **pocrim** $(+,0,\rightarrow)$ is a commutative monoid (+,0) which is

- partially ordered (with $x \ge y$ defined as $x \to y = 0$)
- residuated $(x + y \ge z \text{ iff } x \ge y \rightarrow z)$
- integral $(x \ge 0)$

A **hoop** is a pocrim that satisfies the *divisibility axiom*:

$$x + (x \to y) = y + (y \to x)$$

The Algebras of **ŁL**_m and **ŁL**_i: Hoops

A **pocrim** $(+,0,\rightarrow)$ is a commutative monoid (+,0) which is

- partially ordered (with $x \ge y$ defined as $x \to y = 0$)
- residuated $(x + y \ge z \text{ iff } x \ge y \to z)$
- integral $(x \ge 0)$

A **hoop** is a pocrim that satisfies the *divisibility axiom*:

$$x + (x \to y) = y + (y \to x)$$

Thm. A is provable **ŁLm** iff $[A]_{\mathcal{H}} = 0$ in all hoops \mathcal{H}

Thm. A is provable $\mathbf{LL_i}$ iff $[A]_{\mathcal{H}} = 0$ in all bounded hoops \mathcal{H}

Logics and Algebras

Hoops

The class of (bounded) hoops is a variety One possible equational axiomatisation is

$$(x+y)+z=x+(y+z)$$

 $x+y=y+x$ (commutative monoid)
 $x+0=x$
 $x\to 0=0$ (integral)
 $x\to x=0$ (poset)
 $x+y\to z=x\to (y\to z)$ (residuation)
 $x+(x\to y)=y+(y\to x)$ (divisibility)
 $x+1=1$ (bounded)

DEMO!

Derived Connectives

The **primitive** connectives are \otimes and \multimap

Derived Connectives

The **primitive** connectives are \otimes and \multimap

Our investigation also led us to consider the following:

$$A \wedge B \equiv A \otimes (A \multimap B)$$
 (weak conjunction)

$$A \Rightarrow B \equiv A \multimap (A \otimes B)$$
 (strong implication)

$$A \lor B \equiv (A \multimap B) \multimap B$$
 (strong disjunction)

Derived Connectives

The **primitive** connectives are \otimes and \multimap

Our investigation also led us to consider the following:

$$A \wedge B \equiv A \otimes (A \multimap B) \qquad \qquad \text{(weak conjunction)}$$

$$A \Rightarrow B \equiv A \multimap (A \otimes B) \qquad \qquad \text{(strong implication)}$$

$$A \vee B \equiv (A \multimap B) \multimap B \qquad \qquad \text{(strong disjunction)}$$

Proofs made sense when we took these connectives seriously

De Morgan Properties

Thm. The following are valid in ŁLi

$$(A \otimes B)^{\perp} \simeq A \multimap B^{\perp}$$
$$(A \multimap B)^{\perp} \simeq A^{\perp \perp} \otimes B^{\perp}$$
$$(A \land B)^{\perp} \simeq A \Rightarrow B^{\perp}$$
$$(A \Rightarrow B)^{\perp} \simeq A^{\perp \perp} \land B^{\perp}$$
$$(A \lor B)^{\perp} \simeq A^{\perp} \land B^{\perp}$$

Proofs found by Prover9 (made human-readable by us)

Double Negation a Homomorphism

Thm. The following are valid in $\mathbf{LL_i}$

$$(A \multimap B)^{\perp \perp} \simeq A^{\perp \perp} \multimap B^{\perp \perp}$$
$$(A \otimes B)^{\perp \perp} \simeq A^{\perp \perp} \otimes B^{\perp \perp}$$

Proofs found by Prover9 (made human-readable by us)

Theorem	Length	Depth	Time
$(1) (A^{\perp \perp} \multimap A)^{\perp \perp}$	109 steps	9	1 min

	Theorem	Length	Depth	Time
(1)	$(A^{\perp\perp} \multimap A)^{\perp\perp}$	109 steps	9	1 min
(2)	$(A^{\perp} \multimap B)^{\perp} \simeq A^{\perp} \otimes B^{\perp}$	412 steps	22	133 min

	Theorem	Length	Depth	Time
(1)	$(A^{\perp\perp} \multimap A)^{\perp\perp}$	109 steps	9	1 min
(2)	$(A^{\perp} \multimap B)^{\perp} \simeq A^{\perp} \otimes B^{\perp}$	412 steps	22	133 min
(3)	$(A \wedge B)^{\perp} \simeq A \Rightarrow B^{\perp}$	147 steps	13	86 min

	Theorem	Length	Depth	Time
(1)	$(A^{\perp\perp} \multimap A)^{\perp\perp}$	109 steps	9	1 min
(2)	$(A^{\perp} \multimap B)^{\perp} \simeq A^{\perp} \otimes B^{\perp}$	412 steps	22	133 min
(3)	$(A \wedge B)^{\perp} \simeq A \Rightarrow B^{\perp}$	147 steps	13	86 min
(2)	$(A^\perp \multimap B)^\perp \simeq A^\perp \otimes B^\perp$	140 steps*	10	43 sec

(*) using (3)

Theorem	Length	Depth	Time
$(A^{\perp\perp} \multimap A)^{\perp\perp}$	109 steps	9	1 min
$(A^\perp \multimap B)^\perp \simeq A^\perp \otimes B^\perp$	412 steps	22	133 min
$(A \wedge B)^{\perp} \simeq A \Rightarrow B^{\perp}$	147 steps	13	86 min
$(A^\perp \multimap B)^\perp \simeq A^\perp \otimes B^\perp$	140 steps*	10	43 sec
$(A \multimap B)^{\perp} \simeq A^{\perp \perp} \otimes B^{\perp}$	73 steps**	11	94 sec
	$(A^{\perp \perp} \multimap A)^{\perp \perp}$ $(A^{\perp} \multimap B)^{\perp} \simeq A^{\perp} \otimes B^{\perp}$ $(A \land B)^{\perp} \simeq A \Rightarrow B^{\perp}$ $(A^{\perp} \multimap B)^{\perp} \simeq A^{\perp} \otimes B^{\perp}$	$(A^{\perp\perp} \multimap A)^{\perp\perp} \qquad 109 \text{ steps}$ $(A^{\perp} \multimap B)^{\perp} \simeq A^{\perp} \otimes B^{\perp} \qquad 412 \text{ steps}$ $(A \land B)^{\perp} \simeq A \Rightarrow B^{\perp} \qquad 147 \text{ steps}$ $(A^{\perp} \multimap B)^{\perp} \simeq A^{\perp} \otimes B^{\perp} \qquad 140 \text{ steps}^*$	$(A^{\perp\perp} \multimap A)^{\perp\perp}$ 109 steps 9 $(A^{\perp} \multimap B)^{\perp} \simeq A^{\perp} \otimes B^{\perp}$ 412 steps 22 $(A \land B)^{\perp} \simeq A \Rightarrow B^{\perp}$ 147 steps 13 $(A^{\perp} \multimap B)^{\perp} \simeq A^{\perp} \otimes B^{\perp}$ 140 steps* 10

(*) using
$$(3)$$

(**) using (1) and (2)

Outline

Łukasiewicz Logic

Background

Ulam Game

McNaughton Functions

Intuitionistic Łukasiewicz Logic

Hoops

Prover9 and Mace4

De Morgan Properties

Double Negation a Homomorphism

Double Negation Translations Affine and Łukasiewicz Logic

Double Negations

Double negation elimination is only valid classically

$$\neg \neg A \Rightarrow A$$

Its double negation, however, is also valid intuitionistically

$$\neg\neg(\neg\neg A \Rightarrow A)$$

Double Negations

Double negation elimination is only valid classically

$$\neg \neg A \Rightarrow A$$

Its double negation, however, is also valid intuitionistically

$$\neg\neg(\neg\neg A \Rightarrow A)$$

Idea. Chuck double negations in to constructivize a proof!

Double Negation Translations

For instance: $A \wedge B \Rightarrow C$

Kolmogorov (1925). Place double negations everywhere

$$\neg\neg(\neg\neg(\neg\neg A \land \neg\neg B) \Rightarrow \neg\neg C)$$

Glivenko (1929). Place a single double negation in front

$$\neg\neg(A \land B \Rightarrow C)$$

Gentzen (1936). Place double negations on the atoms

$$\neg \neg A \land \neg \neg B \Rightarrow \neg \neg C$$

Double Negation Translations

For instance: $A \wedge B \Rightarrow C$

Kolmogorov (1925). Place double negations everywhere

$$\neg\neg(\neg\neg(\neg\neg A \land \neg\neg B) \Rightarrow \neg\neg C)$$

Glivenko (1929). Place a single double negation in front

$$\neg\neg(A \land B \Rightarrow C)$$

Gentzen (1936). Place double negations on the atoms

$$\neg \neg A \land \neg \neg B \Rightarrow \neg \neg C$$

Thm. For these translations $(\cdot)^*$, $\mathbf{CL} \vdash A$ iff $\mathbf{IL} \vdash A^*$

Double Negation Translations Substructurally

Thm. Neither Gentzen nor Glivenko "work" for affine logic

Thm. All three translations "work" for Łukasiewicz logic

Final Remarks

Question 1. Analytic system for **ŁL**_i (cut-elimination)?

Question 2. ŁL; decidable, but no complexity bound

References

- R. Arthan and P. Oliva
 On affine logic and Łukasiewicz logic
 arXiv (http://arxiv.org/abs/1404.0570), 2014
- R. Arthan and P. Oliva
 On pocrims and hoops

 arXiv (http://arxiv.org/abs/1404.0816), 2014