The Logic of the Unit Interval $[0,1]$

Paulo Oliva
Queen Mary University of London

Florida Atlantic University
16 April 2014

There are no whole truths; all truths are half-truths.
It is trying to treat them as whole truths that plays the devil.

- Alfred North Whitehead

Outline

Łukasiewicz Logic
Background
Ulam Game
McNaughton Functions

Intuitionistic Łukasiewicz Logic
Hoops
Prover9 and Mace4
De Morgan Properties
Double Negation a Homomorphism

Double Negation Translations
Affine and Łukasiewicz Logic

Outline

Łukasiewicz Logic
Background Ulam Game
McNaughton Functions

Intuitionistic Łukasiewicz Logic
Hoops
Prover9 and Mace4
De Morgan Properties
Double Negation a Homomorphism

Double Negation Translations
Affine and Łukasiewicz Logic

What if ...

... we interpret truth values in the $[0,1]$ interval

What if ...

... we interpret truth values in the $[0,1]$ interval
Let 0 denote truth, and 1 falsehood
Let conjunction $A \wedge B$ mean $A+B$
Let negation $\neg A$ mean $1-A$
Or, in general, $A \Rightarrow B$ mean $B \doteq A$

What if ...

... we interpret truth values in the $[0,1]$ interval
Let 0 denote truth, and 1 falsehood
Let conjunction $A \wedge B$ mean $A \dot{+} B$
Let negation $\neg A$ mean $1-A$
Or, in general, $A \Rightarrow B$ mean $B \doteq A$
True formulas $($ equal 0$) \simeq$ provable

What if ...

... we interpret truth values in the $[0,1]$ interval
Let 0 denote truth, and 1 falsehood
Let conjunction $A \wedge B$ mean $A+B$
Let negation $\neg A$ mean $1-A$
Or, in general, $A \Rightarrow B$ mean $B \doteq A$
True formulas $($ equal 0$) \simeq$ provable
Q. Are the usual rules of logic consistent with this view?

What if ...

... we interpret truth values in the $[0,1]$ interval
Let 0 denote truth, and 1 falsehood
Let conjunction $A \wedge B$ mean $A+B$
Let negation $\neg A$ mean $1-A$
Or, in general, $A \Rightarrow B$ mean $B \doteq A$
True formulas $($ equal 0$) \simeq$ provable
Q. Are the usual rules of logic consistent with this view?
A. Yes! (almost)

Contraction axiom not valid

The contraction axiom says

$$
A \Rightarrow A \wedge A
$$

But clearly $1-1 / 2 \neq 0$, for instance

Contraction axiom not valid

The contraction axiom says

$$
A \Rightarrow A \wedge A
$$

But clearly $1-1 / 2 \neq 0$, for instance

However, throwing away the contraction axiom is too much

Contraction axiom not valid

The contraction axiom says

$$
A \Rightarrow A \wedge A
$$

But clearly $1-1 / 2 \neq 0$ ，for instance

However，throwing away the contraction axiom is too much

For instance，the formulas

$$
(A \Rightarrow B) \Rightarrow(A \Rightarrow(B \wedge(B \Rightarrow A)))
$$

are
－valid under our interpretation，but
－not derivable in linear logic

Łukasiewicz Axiomatisation

The following axioms are sound and complete for $[0,1]$
(A1) $A \Rightarrow(B \Rightarrow A)$
(A2) $(A \Rightarrow B) \Rightarrow(B \Rightarrow C) \Rightarrow(A \Rightarrow C)$
(A3) $((A \Rightarrow B) \Rightarrow B) \Rightarrow((B \Rightarrow A) \Rightarrow A)$
(A4) $(\neg B \Rightarrow \neg A) \Rightarrow(A \Rightarrow B)$
with the cut rule, i.e. from A and $A \Rightarrow B$ derive B
Conjectured by Łukasiewicz (1920's)
Proven by Wajsberg (1935) and Chang (1959)

Łukasiewicz Axiomatisation

The following axioms are sound and complete for $[0,1]$
(A1) $A \Rightarrow(B \Rightarrow A)$
(A2) $(A \Rightarrow B) \Rightarrow(B \Rightarrow C) \Rightarrow(A \Rightarrow C)$
(A3) $((A \Rightarrow B) \Rightarrow B) \Rightarrow((B \Rightarrow A) \Rightarrow A)$
(A4) $(\neg B \Rightarrow \neg A) \Rightarrow(A \Rightarrow B)$
with the cut rule, i.e. from A and $A \Rightarrow B$ derive B
Conjectured by Łukasiewicz (1920's)
Proven by Wajsberg (1935) and Chang (1959)
Contrast this with the (type of the) S and K combinators
(K) $A \Rightarrow(B \Rightarrow A)$
(S) $(A \Rightarrow B) \Rightarrow(A \Rightarrow B \Rightarrow C) \Rightarrow(A \Rightarrow C)$

The Ulam Game

The Ulam Game is a twist on the classical 20-question game:

- Player B thinks of a number between 1 and 10^{6}
- Player A is allowed to ask up to 20 questions
- Player B is supposed to answer only yes or no
- Suppose Player B were allowed to lie once (or n times)

How many questions would A need to get the right answer?

The Ulam Game

Classical reasoning no longer works

- Conjunction of two equal answers to the same question no longer equivalent to a single answer
- Conjunction of two opposite answers to the same question need not lead to a contradiction

The Ulam Game

Classical reasoning no longer works

- Conjunction of two equal answers to the same question no longer equivalent to a single answer
- Conjunction of two opposite answers to the same question need not lead to a contradiction

Player A can record current knowledge by taking the $Ł u k a s i e w i c z$ conjunction of information contained in answers

McNaughton Functions

A function $f:[0,1]^{n} \rightarrow[0,1]$ is McNaughton if it is

- continuous
- piecewise linear
- each piece has integer coefficients

McNaughton Functions

A function $f:[0,1]^{n} \rightarrow[0,1]$ is McNaughton if it is
－continuous
－piecewise linear
－each piece has integer coefficients

McNaughton theorem（1951）
A function $f:[0,1]^{n} \rightarrow[0,1]$ is a＂truth table＂of a Łukasiewicz formula iff it is a McNaughton function

Outline

Łukasiewicz Logic
 Background
 Ulam Game
 McNaughton Functions

Intuitionistic Łukasiewicz Logic
Hoops
Prover9 and Mace4
De Morgan Properties
Double Negation a Homomorphism

Double Negation Translations
Affine and Łukasiewicz Logic

The Logic

In a sub-sctructural setting (no contraction) we use:

- $A \otimes B$ for " A and B "
- $A \multimap B$ for " A implies B "
- Falsehood is denoted by 1
- Negation is defined as $A^{\perp}=A \multimap 1$

The Logic

In a sub-sctructural setting (no contraction) we use:

- $A \otimes B$ for " A and B "
- $A \multimap B$ for " A implies B "
- Falsehood is denoted by 1
- Negation is defined as $A^{\perp}=A \multimap 1$

Ex falso quodlibet (EFQ)

$$
1 \multimap A
$$

The Logic

In a sub－sctructural setting（no contraction）we use：
－$A \otimes B$ for＂A and B＂
－$A \multimap B$ for＂A implies B＂
－Falsehood is denoted by 1
－Negation is defined as $A^{\perp}=A \multimap 1$

Ex falso quodlibet（EFQ）

$$
1 \multimap A
$$

Double negation elimination（DNE）

$$
A^{\perp \perp} \multimap A
$$

Affine, Łukasiewicz and Boolean Logic

minimal: only weakening rule
intuitionistic: minimal plus EFQ
classical: intuitionistic plus DNE

Affine, Łukasiewicz and Boolean Logic

minimal: only weakening rule
intuitionistic: minimal plus EFQ
classical: intuitionistic plus DNE

Some Theorems of IL

The following are provable in IL

$$
\begin{aligned}
\neg \neg(\neg \neg A & \Rightarrow A) \\
\neg(A \Rightarrow B) & \simeq \neg \neg A \wedge \neg B \\
\neg(A \wedge B) & \simeq A \Rightarrow \neg B \\
\neg \neg(A \Rightarrow B) & \simeq \neg \neg A \Rightarrow \neg \neg B \\
\neg \neg(A \wedge B) & \simeq \neg \neg A \wedge \neg \neg B
\end{aligned}
$$

Some Theorems of IL

The following are provable in IL

$$
\begin{aligned}
\neg \neg(\neg \neg A & \Rightarrow A) \\
\neg(A \Rightarrow B) & \simeq \neg \neg A \wedge \neg B \\
\neg(A \wedge B) & \simeq A \Rightarrow \neg B \\
\neg \neg(A \Rightarrow B) & \simeq \neg \neg A \Rightarrow \neg \neg B \\
\neg \neg(A \wedge B) & \simeq \neg \neg A \wedge \neg \neg B
\end{aligned}
$$

How many of these are valid in $\boldsymbol{t} \mathbf{L}_{\mathbf{i}}$?

For instance: $\neg \neg(\neg \neg A \Rightarrow A)$
Short derivation in intuitionistic logic

For instance: $\neg \neg(\neg \neg A \Rightarrow A)$
Short derivation in intuitionistic logic

$$
\begin{aligned}
& {[A]_{\alpha}} \\
& \neg \neg A \Rightarrow A \quad[\neg(\neg \neg A \Rightarrow A)]_{\delta} \\
& \overline{\neg A}^{\alpha} \\
& {[\neg \neg A]_{\beta}} \\
& {[\neg(\neg \neg A \Rightarrow A)]_{\delta}} \\
& \frac{\perp}{\neg \neg(\neg \neg A \Rightarrow A)} \delta
\end{aligned}
$$

Not valid in intuitionistic affine logic

For instance：$\neg \neg(\neg \neg A \Rightarrow A)$
Short derivation in intuitionistic logic

$$
\begin{aligned}
& {[A]_{\alpha}} \\
& \neg \neg A \Rightarrow A \quad[\neg(\neg \neg A \Rightarrow A)]_{\delta} \\
& \neg_{\neg A} \alpha \\
& {[\neg \neg A]_{\beta}} \\
& \frac{\stackrel{\perp}{A}}{\neg \neg A \Rightarrow A} \beta \\
& {[\neg(\neg \neg A \Rightarrow A)]_{\delta}} \\
& \frac{\perp}{\neg \neg(\neg \neg A \Rightarrow A)} \delta
\end{aligned}
$$

Not valid in intuitionistic affine logic
How about intuitionistic Łukasiewicz logic？

For instance: $\neg(A \Rightarrow B) \Rightarrow(\neg \neg A \wedge \neg B)$

Short derivation in intuitionistic logic

$$
\begin{array}{ll}
\frac{[\neg A]_{\alpha}}{A \Rightarrow B} & {[\neg(A \Rightarrow B)]_{\delta}} \\
\frac{\frac{\perp}{\neg \neg A} \alpha}{\frac{[B]_{\beta}}{A \Rightarrow B}} \frac{[\neg(A \Rightarrow B)]_{\delta}}{} \\
& \frac{\square}{\neg(A \Rightarrow B) \Rightarrow(\neg \neg A \wedge \neg B)} \beta
\end{array}
$$

For instance: $\neg(A \Rightarrow B) \Rightarrow(\neg \neg A \wedge \neg B)$

Short derivation in intuitionistic logic

$$
\begin{array}{llll}
\frac{[\neg A]_{\alpha}}{A \Rightarrow B} & {[\neg(A \Rightarrow B)]_{\delta}} & \frac{[B]_{\beta}}{A \Rightarrow B} & {[\neg(A \Rightarrow B)]_{\delta}} \\
\hline \frac{\perp}{\neg \neg A} \alpha & \frac{\perp}{\neg B} \beta \\
& \frac{\neg \neg A \wedge \neg B}{\neg(A \Rightarrow B) \Rightarrow(\neg \neg A \wedge \neg B)}
\end{array}
$$

Not valid in intuitionistic affine logic

For instance: $\neg(A \Rightarrow B) \Rightarrow(\neg \neg A \wedge \neg B)$

Short derivation in intuitionistic logic

$$
\begin{array}{ll}
\frac{[\neg A]_{\alpha}}{A \Rightarrow B} & {[\neg(A \Rightarrow B)]_{\delta}}
\end{array} \frac{\frac{[B]_{\beta}}{A \Rightarrow B}}{\frac{\perp}{\square} \alpha} \quad \frac{[\neg(A \Rightarrow B)]_{\delta}}{\frac{\neg \neg A}{\neg B}} \beta
$$

Not valid in intuitionistic affine logic How about intuitionistic Łukasiewicz logic?

The Algebras of $\boldsymbol{Ł L \mathbf { m }}$ and $\boldsymbol{Ł L _ { \mathbf { i } }}$: Hoops

A pocrim $(+, 0, \rightarrow)$ is a commutative monoid $(+, 0)$ which is

- partially ordered (with $x \geqslant y$ defined as $x \rightarrow y=0$)
- residuated $(x+y \geqslant z$ iff $x \geqslant y \rightarrow z)$
- integral $(x \geqslant 0)$

The Algebras of $\boldsymbol{Ł L \mathbf { m }}$ and $\boldsymbol{Ł L _ { \mathbf { i } }}$: Hoops

A pocrim $(+, 0, \rightarrow)$ is a commutative monoid $(+, 0)$ which is

- partially ordered (with $x \geqslant y$ defined as $x \rightarrow y=0$)
- residuated $(x+y \geqslant z$ iff $x \geqslant y \rightarrow z)$
- integral $(x \geqslant 0)$

A hoop is a pocrim that satisfies the divisibility axiom:

$$
x+(x \rightarrow y)=y+(y \rightarrow x)
$$

The Algebras of $\boldsymbol{Ł L \mathbf { m }}$ and $\boldsymbol{Ł L _ { \mathbf { i } }}$: Hoops

A pocrim $(+, 0, \rightarrow)$ is a commutative monoid $(+, 0)$ which is

- partially ordered (with $x \geqslant y$ defined as $x \rightarrow y=0$)
- residuated $(x+y \geqslant z$ iff $x \geqslant y \rightarrow z)$
- integral $(x \geqslant 0)$

A hoop is a pocrim that satisfies the divisibility axiom:

$$
x+(x \rightarrow y)=y+(y \rightarrow x)
$$

Thm. A is provable $\mathbf{L L}_{\mathbf{m}}$ iff $[A]_{\mathcal{H}}=0$ in all hoops \mathcal{H}
Thm. A is provable $\mathbf{t} \mathbf{L}_{\mathbf{i}}$ iff $[A]_{\mathcal{H}}=0$ in all bounded hoops \mathcal{H}

Logics and Algebras

b. = bounded \quad inv. = involutive \quad idem. $=$ idempotent

Hoops

The class of (bounded) hoops is a variety
One possible equational axiomatisation is

$$
\begin{aligned}
(x+y)+z & =x+(y+z) & & \\
x+y & =y+x & & \text { (commutative monoid) } \\
x+0 & =x & & \\
x \rightarrow 0 & =0 & & \text { (integral) } \\
x \rightarrow x & =0 & & \text { (poset) } \\
x+y \rightarrow z & =x \rightarrow(y \rightarrow z) & & \text { (residuation) } \\
x+(x \rightarrow y) & =y+(y \rightarrow x) & & \text { (divisibility) } \\
x+1 & =1 & & \text { (bounded) }
\end{aligned}
$$

Prover9

DEMO！

Derived Connectives

The primitive connectives are \otimes and \multimap

Derived Connectives

The primitive connectives are \otimes and \multimap
Our investigation also led us to consider the following:

$$
\begin{aligned}
A \wedge B & \equiv A \otimes(A \multimap B) & & \text { (weak conjunction) } \\
A \Rightarrow B & \equiv A \multimap(A \otimes B) & & \text { (strong implication) } \\
A \vee B & \equiv(A \multimap B) \multimap B & & \text { (strong disjunction) }
\end{aligned}
$$

Derived Connectives

The primitive connectives are \otimes and \multimap
Our investigation also led us to consider the following:

$$
\begin{aligned}
A \wedge B & \equiv A \otimes(A \multimap B) & & \text { (weak conjunction) } \\
A \Rightarrow B & \equiv A \multimap(A \otimes B) & & \text { (strong implication) } \\
A \vee B & \equiv(A \multimap B) \multimap B & & \text { (strong disjunction) }
\end{aligned}
$$

Proofs made sense when we took these connectives seriously

De Morgan Properties

Thm. The following are valid in $\boldsymbol{t} \mathbf{L}_{\mathbf{i}}$

$$
\begin{aligned}
&(A \otimes B)^{\perp} \simeq A \multimap B^{\perp} \\
&(A \multimap B)^{\perp} \simeq A^{\perp \perp} \otimes B^{\perp} \\
&(A \wedge B)^{\perp} \simeq A \Rightarrow B^{\perp} \\
&(A \Rightarrow B)^{\perp} \simeq A^{\perp \perp} \wedge B^{\perp} \\
&(A \vee B)^{\perp} \simeq A^{\perp} \wedge B^{\perp}
\end{aligned}
$$

Proofs found by Prover9 (made human-readable by us)

Double Negation a Homomorphism

Thm. The following are valid in $\boldsymbol{Ł} \mathbf{L}_{\mathbf{i}}$

$$
\begin{aligned}
(A \multimap B)^{\perp \perp} & \simeq A^{\perp \perp} \multimap B^{\perp \perp} \\
(A \otimes B)^{\perp \perp} & \simeq A^{\perp \perp} \otimes B^{\perp \perp}
\end{aligned}
$$

Proofs found by Prover9 (made human-readable by us)

Prover9

Theorem
 (1) $\left(A^{\perp \perp} \multimap A\right)^{\perp \perp}$

Prover9

Theorem
(1) $\left(A^{\perp \perp} \multimap A\right)^{\perp \perp}$
(2) $\left(A^{\perp} \multimap B\right)^{\perp} \simeq A^{\perp} \otimes B^{\perp}$

Length	Depth	Time
109 steps	9	1 min
412 steps	22	133 min

Prover9

Theorem
(1) $\left(A^{\perp \perp} \multimap A\right)^{\perp \perp}$
(2) $\left(A^{\perp} \multimap B\right)^{\perp} \simeq A^{\perp} \otimes B^{\perp}$
(3) $(A \wedge B)^{\perp} \simeq A \Rightarrow B^{\perp}$

Length	Depth	Time
109 steps	9	1 min
412 steps	22	133 min
147 steps	13	86 min

Prover9

Theorem
(1) $\left(A^{\perp \perp} \multimap A\right)^{\perp \perp}$
(2) $\left(A^{\perp} \multimap B\right)^{\perp} \simeq A^{\perp} \otimes B^{\perp}$
(3) $(A \wedge B)^{\perp} \simeq A \Rightarrow B^{\perp}$
(2) $\left(A^{\perp} \multimap B\right)^{\perp} \simeq A^{\perp} \otimes B^{\perp}$

Length	Depth	Time
109 steps	9	1 min
412 steps	22	133 min
147 steps	13	86 min
140 steps*	10	43 sec

(*) using (3)

Prover9

Theorem

(1) $\left(A^{\perp \perp} \multimap A\right)^{\perp \perp}$
(2) $\left(A^{\perp} \multimap B\right)^{\perp} \simeq A^{\perp} \otimes B^{\perp}$
(3) $(A \wedge B)^{\perp} \simeq A \Rightarrow B^{\perp}$
(2) $\left(A^{\perp} \multimap B\right)^{\perp} \simeq A^{\perp} \otimes B^{\perp}$
(4) $(A \multimap B)^{\perp} \simeq A^{\perp \perp} \otimes B^{\perp}$

Length	Depth	Time
109 steps	9	1 min
412 steps	22	133 min
147 steps	13	86 min
140 steps*	10	43 sec
73 steps**	11	94 sec

(*) using (3)
(**) using (1) and (2)

Outline

Łukasiewicz Logic
 Background
 Ulam Game
 McNaughton Functions

Intuitionistic Łukasiewicz Logic
Hoops
Prover9 and Mace4
De Morgan Properties
Double Negation a Homomorphism

Double Negation Translations
Affine and Łukasiewicz Logic

Double Negations

Double negation elimination is only valid classically

$$
\neg \neg A \Rightarrow A
$$

Its double negation, however, is also valid intuitionistically

$$
\neg \neg(\neg \neg A \Rightarrow A)
$$

Double Negations

Double negation elimination is only valid classically

$$
\neg \neg A \Rightarrow A
$$

Its double negation, however, is also valid intuitionistically

$$
\neg \neg(\neg \neg A \Rightarrow A)
$$

Idea. Chuck double negations in to constructivize a proof!

Double Negation Translations

For instance: $A \wedge B \Rightarrow C$
Kolmogorov (1925). Place double negations everywhere

$$
\neg \neg(\neg \neg(\neg \neg A \wedge \neg \neg B) \Rightarrow \neg \neg C)
$$

Glivenko (1929). Place a single double negation in front

$$
\neg \neg(A \wedge B \Rightarrow C)
$$

Gentzen (1936). Place double negations on the atoms

$$
\neg \neg A \wedge \neg \neg B \Rightarrow \neg \neg C
$$

Double Negation Translations

For instance: $A \wedge B \Rightarrow C$
Kolmogorov (1925). Place double negations everywhere

$$
\neg \neg(\neg \neg(\neg \neg A \wedge \neg \neg B) \Rightarrow \neg \neg C)
$$

Glivenko (1929). Place a single double negation in front

$$
\neg \neg(A \wedge B \Rightarrow C)
$$

Gentzen (1936). Place double negations on the atoms

$$
\neg \neg A \wedge \neg \neg B \Rightarrow \neg \neg C
$$

Thm. For these translations $(\cdot)^{*}, \mathbf{C L} \vdash A$ iff $\mathbf{I L} \vdash A^{*}$

Double Negation Translations Substructurally

Thm. Neither Gentzen nor Glivenko "work" for affine logic
Thm. All three translations "work" for Łukasiewicz logic

Final Remarks

Question 1. Analytic system for $\boldsymbol{t} \mathbf{L}_{\mathbf{i}}$ (cut-elimination)?
Question 2. $\boldsymbol{t} \mathbf{L}_{\mathbf{i}}$ decidable, but no complexity bound

References

囯 R. Arthan and P. Oliva
On affine logic and Łukasiewicz logic
arXiv (http://arxiv.org/abs/1404.0570), 2014
R. Arthan and P. Oliva

On pocrims and hoops
arXiv (http://arxiv.org/abs/1404.0816), 2014

