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There are no whole truths; all truths are half-truths.
It is trying to treat them as whole truths that plays the devil.

- Alfred North Whitehead
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What if ...

.. we interpret truth values in the [0, 1] interval
Let O denote truth, and 1 falsehood

Let conjunction A A B mean A+ B
Let negation —A mean 1 — A
Or, in general, A= B mean B—- A

True formulas (equal 0) ~ provable

Q. Are the usual rules of logic consistent with this view?
A. Yes! (almost)
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Contraction axiom not valid

The contraction axiom says
A= AnA

But clearly 1 — 1/2 % 0, for instance
However, throwing away the contraction axiom is too much

For instance, the formulas
(A= B) = (A= (BA(B=A)))

are
» valid under our interpretation, but
» not derivable in linear logic



t ukasiewicz Axiomatisation

The following axioms are sound and complete for [0, 1]
(Al) A= (B= A)
(A2) (A= B)=(B=C)= (A= C)
(A3) (A= B)=B)=((B=A)=A)
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with the cut rule, i.e. from A and A = B derive B
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Proven by Wajsberg (1935) and Chang (1959)



t ukasiewicz Axiomatisation

The following axioms are sound and complete for [0, 1]
(Al) A= (B= A)
(A2) (A= B)=(B=C)= (A= C)
(A3) (A= B)=B)=((B=A)=A)
(Ad) (-B=—-A)= (A= B)
with the cut rule, i.e. from A and A = B derive B

Conjectured by tukasiewicz (1920's)
Proven by Wajsberg (1935) and Chang (1959)
Contrast this with the (type of the) S and K combinators

(K) A= (B= A)
S) (A=B)=(A=B=0C)= (A= C)



The Ulam Game

The Ulam Game is a twist on the classical 20-question game:

» Player B thinks of a number between 1 and 10°

» Player A is allowed to ask up to 20 questions

» Player B is supposed to answer only yes or no

» Suppose Player B were allowed to lie once (or n times)

How many questions would A need to get the right answer?
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The Ulam Game

Classical reasoning no longer works

» Conjunction of two equal answers to the same question
no longer equivalent to a single answer

» Conjunction of two opposite answers to the same
question need not lead to a contradiction

Player A can record current knowledge by taking the

tukasiewicz conjunction of information contained in answers
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McNaughton Functions

A function f : [0,1]" — [0, 1] is McNaughton if it is
» continuous
» piecewise linear
» each piece has integer coefficients

McNaughton theorem (1951)
A function f:[0,1]" — [0,1] is a “truth table” of a

tukasiewicz formula iff it is a McNaughton function
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The Logic

In a sub-sctructural setting (no contraction) we use:
» AQ B for “A and B"
» A —o B for “A implies B"
» Falsehood is denoted by 1
» Negation is defined as A+ = A4 — 1
Ex falso quodlibet (EFQ)
1—A
Double negation elimination (DNE)

AJ_J_ o A
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AL¢ — tL¢ — BL

| | |
T T |

ALm — tLm — ML

minimal: only weakening rule
intuitionistic:  minimal plus EFQ

classical: intuitionistic plus DNE



Some Theorems of IL

The following are provable in IL

——=(=—A = A)
—-(A=B) ~ ——AA—-B
—(AAB) ~ A= —-B
-—(A=B) ~ —-—A=—-—-B

~—A A ——B
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Some Theorems of IL
The following are provable in IL
——=(=—A = A)

—-(A=B) ~ ——AA-—-B
—(AAB) ~ A= —-B

-—(A=B) ~ —-—A=—-—-B
——(A A B) ——AA—-—B

0

How many of these are valid in tL;?
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Short derivation in intuitionistic logic

[A]a
——A=A [~(—A= A)s
L
i 4l
4
A p
——A=A [—(—=—A = A)]s
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For instance: ——(——A = A)

Short derivation in intuitionistic logic

[Al.
——A= A [~(——A= A)];
1
A" =45
1
A
——a=a’ [~(——A = A)];
1
——=(——A = A) g

Not valid in intuitionistic affine logic

How about intuitionistic tukasiewicz logic?



For instance: —(A = B) = (——A A —B)

Short derivation in intuitionistic logic

[~ Ala [Bls
A=B [~(A= B)s A=B [~(A= B)js
1 1
—h 5"
——AA—B




For instance: —(A = B) = (——A A —B)

Short derivation in intuitionistic logic

[~ Ala [Bls
A= B [~(A= B)]s A= B [~(A= B)]s
1 1
—h 5"
——AA—B

—(A= B)= (——A A —DB)

Not valid in intuitionistic affine logic



For instance: —(A = B) = (——A A —B)

Short derivation in intuitionistic logic

[~ Ala [Bls
A= B [~(A= B)]s A= B [~(A= B)]s
1 1
—h 5"
——AA—B

—(A= B)= (——A A —DB)

Not valid in intuitionistic affine logic

How about intuitionistic Ltukasiewicz logic?
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The Algebras of tLm and tL;: Hoops

A pocrim (+,0,—) is a commutative monoid (+,0) which is
» partially ordered (with x > y defined as ©+ — y = 0)
» residuated (z +y >z iff x > y — 2)
> integral (z > 0)

A hoop is a pocrim that satisfies the divisibility axiom:

r+(z—y) =y+(y— )

Thm. A is provable £tLm iff [A]y = 0 in all hoops H
Thm. Ais provable tL; iff [A]y = 0 in all bounded hoops H



Logics and Algebras

Alc tlc
inv. pocrim inv. hoop

T I

AL; LL;

b. pocrim b. hoop

T I

ALm tLm
pocrim hoop

. = bounded inv. = involutive

CL
Bool. semi-lat.

|

IL
Brouwer. semi-lat.

|

ML
idem. hoop

idem. = idempotent



Hoops

The class of (bounded) hoops is a variety

One possible equational axiomatisation is

(x+y)+ =
r+y
x4+ 0

xz—0
T —T
T+Yy—=z
T+ (x—y)

z+1

4+ (y + 2)
y+x
T

0
0
T — (y — 2)

y+(y — )

(commutative monoid)

integral)

poset)

(

(
(residuation)
(divisibility)
(

bounded)



Prover9

DEMO!



Derived Connectives

The primitive connectives are ® and —o



Derived Connectives

The primitive connectives are ® and —o

Our investigation also led us to consider the following:
AAB=A® (A — B) (weak conjunction)
A= B=A— (A® B) (strong implication)
AvB=(A—oB)—B (strong disjunction)



Derived Connectives

The primitive connectives are ® and —o

Our investigation also led us to consider the following:

AAB=A® (A — B) (weak conjunction)
A= B=A— (A® B) (strong implication)
AvB=(A—oB)—B (strong disjunction)

Proofs made sense when we took these connectives seriously



De Morgan Properties

Thm. The following are valid in tL;
(A Bt ~ A — Bt
(A—OB)J‘ ZALJ‘@BJ‘

(AANB)r~A= Bt
(A= B)t ~ A+t A Bt
(Av Byt ~ At A B

Proofs found by Prover9 (made human-readable by us)



Double Negation a Homomorphism

Thm. The following are valid in tL;

(A —o B)*+ ~ ALt o Bit
(A® B)*t ~ ALt @ BLt

Proofs found by Prover9 (made human-readable by us)
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(1) (At — A)LL 109 steps 9 1 min



Prover9

Theorem Length | Depth | Time

(1) (At — A)LL 109 steps 9 1 min
(2) (At — B)t ~ At ® Bt | 412 steps 22 | 133 min



Prover9

Theorem
(1) (4 — At
(2) (At - B)t~At® Bt
(3) (ArB)t~A= Bt

Length

109 steps
412 steps
147 steps

Depth

22
13

Time

1 min
133 min
86 min



Prover9

Theorem Length | Depth | Time
(1) (At — A)LL 109 steps 9 1 min
(2) (At — B)t ~ At ® Bt | 412 steps 22 | 133 min
(3) (ArB)t~A= Bt 147 steps | 13 | 86 min
(2) (At — B)t ~ At ® BY | 140 steps* | 10 43 sec

() using (3)



Prover9

Length

109 steps
412 steps
147 steps
140 steps™
73 steps™*

Depth

22
13
10
11

Time

1 min
133 min
86 min
43 sec
94 sec
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Double Negations

Double negation elimination is only valid classically
—A=A
Its double negation, however, is also valid intuitionistically

(A = A)

Idea. Chuck double negations in to constructivize a proof!



Double Negation Translations

For instance: AA B =C
Kolmogorov (1925). Place double negations everywhere
—=(==(==A A —==B) = ==0)
Glivenko (1929). Place a single double negation in front
——(AAB=C)
Gentzen (1936). Place double negations on the atoms

A A =B = —C



Double Negation Translations

For instance: AA B =C
Kolmogorov (1925). Place double negations everywhere
—=(==(==A A —==B) = ==0)
Glivenko (1929). Place a single double negation in front
——(AAB=C)
Gentzen (1936). Place double negations on the atoms
——AA—=B=—-=C
Thm. For these translations (-)*, CL — A iff IL - A*



Double Negation Translations Substructurally

Thm. Neither Gentzen nor Glivenko “work” for affine logic

Thm. All three translations “work” for tukasiewicz logic



Final Remarks

Question 1. Analytic system for £L; (cut-elimination)?

Question 2. tL; decidable, but no complexity bound
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