The Theory of Selection Functions

Paulo Oliva

(based on joint work with M. Escardó)

Queen Mary, University of London, UK

Swansea University
23 November 2010
Outline

1. Quantifiers and Selection Functions

2. Finite and Infinite Products

3. Sequential Games
Outline

1. Quantifiers and Selection Functions
2. Finite and Infinite Products
3. Sequential Games
Quantifiers

\[\phi : (X \to R) \to R \]
Quantifiers

\[\phi : (X \to R) \to R \]

For instance:

<table>
<thead>
<tr>
<th>Operation</th>
<th>(\phi : (X \to R) \to R)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Quantifiers</td>
<td>(\forall X, \exists X : (X \to \mathbb{B}) \to \mathbb{B})</td>
</tr>
<tr>
<td>Supremum</td>
<td>(\text{sup}_{[0,1]} : ([0, 1] \to \mathbb{R}) \to \mathbb{R})</td>
</tr>
<tr>
<td>Integration</td>
<td>(\int_0^1 : ([0, 1] \to \mathbb{R}) \to \mathbb{R})</td>
</tr>
<tr>
<td>Double negation</td>
<td>(\neg\neg X : (X \to \bot) \to \bot)</td>
</tr>
<tr>
<td>Fixed point operator</td>
<td>(\text{fix}_X : (X \to X) \to X)</td>
</tr>
</tbody>
</table>
Quantifiers

\[\phi : (X \to R) \to R \quad (\equiv K_RX) \]

For instance:

<table>
<thead>
<tr>
<th>Operation</th>
<th>(\phi) : ((X \to R) \to R)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Quantifiers (\forall X, \exists X)</td>
<td>((X \to \mathbb{B}) \to \mathbb{B})</td>
</tr>
<tr>
<td>Supremum (\text{sup}_{[0,1]})</td>
<td>([0, 1] \to \mathbb{R}) \to \mathbb{R})</td>
</tr>
<tr>
<td>Integration (\int_0^1)</td>
<td>([0, 1] \to \mathbb{R}) \to \mathbb{R})</td>
</tr>
<tr>
<td>Double negation (\neg\neg X)</td>
<td>((X \to \bot) \to \bot)</td>
</tr>
<tr>
<td>Fixed point operator (\text{fix}_X)</td>
<td>((X \to X) \to X)</td>
</tr>
</tbody>
</table>
Quantifiers (Multi-valued)

\[\phi : (X \to R) \to 2^R \quad (\equiv K_R X) \]

For instance:

<table>
<thead>
<tr>
<th>Operation</th>
<th>(\phi : (X \to R) \to 2^R)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Quantifiers</td>
<td>(\forall_X, \exists_X : (X \to \mathbb{B}) \to 2^\mathbb{B})</td>
</tr>
<tr>
<td>Supremum-(i)</td>
<td>(\sup_{[0,1]}^i : ([0, 1] \to \mathbb{R}^n) \to 2^{\mathbb{R}^n})</td>
</tr>
<tr>
<td>Integration</td>
<td>(\int_0^1 : ([0, 1] \to \mathbb{R}) \to 2^{\mathbb{R}})</td>
</tr>
<tr>
<td>Double negation</td>
<td>(\neg\neg X : (X \to \bot) \to 2^\bot)</td>
</tr>
<tr>
<td>Fixed point operator</td>
<td>(\text{fix}_X : (X \to X) \to 2^X)</td>
</tr>
</tbody>
</table>
Theorem (Witness Theorem)

For any $p : X \rightarrow \mathbb{B}$ there is a point $a \in X$ such that

$$p(a) \iff \exists x^X p(x)$$

(similar to Hilbert's ε-term)
The Theory of Selection Functions

Quantifiers and Selection Functions

Theorem (Witness Theorem)
For any \(p: X \rightarrow \mathbb{B} \) there is a point \(a \in X \) such that
\[
p(a) \iff \exists x^X p(x)
\]
(similar to Hilbert’s \(\varepsilon \)-term)

Theorem (Counter-example Theorem)
For any \(p: X \rightarrow \mathbb{B} \) there is a point \(a \in X \) such that
\[
p(a) \iff \forall x^X p(x)
\]
(\(a \) is counter-example to \(p \) if one exists)
Theorem (Mean Value Theorem)

For any \(p \in C[0, 1] \) there is a point \(a \in [0, 1] \) such that

\[
p(a) = \int_{0}^{1} p
\]
Theorem (Mean Value Theorem)

For any \(p \in C[0, 1] \) there is a point \(a \in [0, 1] \) such that

\[
p(a) = \int_0^1 p
\]

Theorem (Maximum Value Theorem)

For any \(p \in [0, 1] \rightarrow \mathbb{R}^n \) there is a point \(a \in [0, 1] \) such that

\[
p(a) \in \sup^i p
\]
Selection Functions

\[\varepsilon : (X \to R) \to X \]
Selection Functions

\[\varepsilon : (X \rightarrow R) \rightarrow X \quad (\equiv J_R X) \]
Selection Functions

\[\varepsilon : (X \rightarrow R) \rightarrow X \quad (\equiv J_{RX}) \]

For instance:

<table>
<thead>
<tr>
<th>Operation</th>
<th>Operation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hilbert’s operator</td>
<td>[\varepsilon : (X \rightarrow \mathbb{B}) \rightarrow X]</td>
</tr>
<tr>
<td>Arg sup</td>
<td>[\text{argsup}_{[0,1]} : ([0,1] \rightarrow \mathbb{R}) \rightarrow [0,1]]</td>
</tr>
<tr>
<td>Fixed point operator</td>
<td>[\text{fix}_{X} : (X \rightarrow X) \rightarrow X]</td>
</tr>
</tbody>
</table>
Attainable Quantifiers

Definition (Selection Functions for a Quantifier)

$\varepsilon: JX$ is called a *selection function* for $\phi: KX$ if

$$p(\varepsilon p) \in \phi(p)$$

holds for all $p: X \to R$.
Attainable Quantifiers

Definition (Selection Functions for a Quantifier)

$\varepsilon : JX$ is called a **selection function** for $\phi : KX$ if

$$p(\varepsilon p) \in \phi(p)$$

holds for all $p : X \rightarrow R$

Definition (Attainable Quantifiers)

A quantifier $\phi : KX$ is called **attainable** if it has a selection function $\varepsilon : JX$
Attainable Quantifiers: Examples

- $\sup: \mathcal{K}_\mathbb{R}[0, 1]$ is an attainable quantifier

 \[\sup(p) = p(\arg\sup(p)) \]

 where $\arg\sup: \mathcal{J}_\mathbb{R}[0, 1]$.
Attainable Quantifiers: Examples

- \(\sup: \mathbb{K}_R[0, 1] \) is an attainable quantifier
 \[
 \sup(p) = p(\text{argsup}(p))
 \]
 where \(\text{argsup}: \mathbb{J}_R[0, 1] \).

- \(\text{fix}: \mathbb{K}_X X \) is an attainable quantifier
 \[
 \text{fix}(p) = p(\text{fix}(p))
 \]
 where \(\text{fix}: \mathbb{J}_X X \ (= \mathbb{K}_X X) \).
From Selection Functions to Quantifiers

Every selection function $\varepsilon : JX$ defines a quantifier $\overline{\varepsilon} : KX$

$$\overline{\varepsilon}(p) = p(\varepsilon(p))$$
From Selection Functions to Quantifiers

$\varepsilon : J X \rightarrow \overline{\varepsilon} : K X$

Not all quantifiers are attainable, e.g. $R = \{0, 1\}$

$\phi(p) = 0$
From Selection Functions to Quantifiers

Different ε might define same ϕ, e.g. $X = [0, 1]$ and $R = \mathbb{R}$

$$
\varepsilon_0(p) = \mu x. \sup p = p(x)
$$

$$
\varepsilon_1(p) = \nu x. \sup p = p(x)
$$
The Theory of Selection Functions

Finite and Infinite Products

Outline

1 Quantifiers and Selection Functions

2 Finite and Infinite Products

3 Sequential Games
Nested quantifiers \(\equiv \) single quantifier on \textbf{product space}
Nested quantifiers \(\equiv \) single quantifier on **product space**

\[\exists x^X \forall y^Y p(x, y) \]
Nested quantifiers \equiv single quantifier on **product space**

$$\exists x^X \forall y^Y p(x, y) \equiv (\exists X \otimes \forall Y)(p^{X \times Y} \rightarrow \mathbb{B})$$
Nested quantifiers \equiv single quantifier on \textbf{product space}

\[
\exists x^X \forall y^Y p(x, y) \quad \equiv \quad (\exists X \otimes \forall Y)(p^{X \times Y} \to \mathbb{B})
\]

\[
\text{sup}_x \int_0^1 p(x, y) dy \quad \equiv \quad (\text{sup} \otimes \int)(p^{[0,1]^2} \to \mathbb{R})
\]
Nested quantifiers \(\equiv\) single quantifier on **product space**

\[
\exists x^X \forall y^Y p(x, y) \equiv (\exists x \otimes \forall y)(p^{X \times Y \to \mathbb{B}})
\]

\[
\sup_x \int_0^1 p(x, y) dy \equiv (\sup \otimes \int)(p^{[0,1]^2 \to \mathbb{R}})
\]

Definition (Product of Single-valued Quantifiers)

Given \(\phi: KX\) and \(\psi: KY\) define \(\phi \otimes \psi: K(X \times Y)\)

\[
(\phi \otimes \psi)(p) :\equiv \phi(\lambda x^X. \psi(\lambda y^Y. p(x, y)))
\]

where \(p: X \times Y \to \mathbb{R}\).
Nested quantifiers \(\equiv \) single quantifier on \textbf{product space}

\[
\exists x^X \forall y^Y p(x, y) \quad \equiv \quad (\exists X \otimes \forall Y)(p^{X \times Y} \rightarrow \mathbb{B})
\]

\[
\sup_x \int_0^1 p(x, y) \, dy \quad \equiv \quad (\sup \otimes \int)(p^{[0,1]^2} \rightarrow \mathbb{R})
\]

Definition (Product of Single-valued Quantifiers)

Given \(\phi : KX \) and \(\psi : KY \) define \(\phi \otimes \psi : K(X \times Y) \)

\[
(\phi \otimes \psi)(p) \quad \overset{R}{=} \quad \phi(\lambda x^X. \psi(\lambda y^Y.p(x, y)))
\]

where \(p : X \times Y \rightarrow \mathbb{R} \).

Does not work with multi-valued quantifiers!
Quantifier Elimination

Suppose X and Y are such that for some ε and δ

$$
\exists x^X p(x) = p(\varepsilon p)
$$
$$
\forall y^Y p(y) = p(\delta p).
$$
Suppose X and Y are such that for some ε and δ
\begin{align*}
\exists x^X p(x) &= p(\varepsilon p) \\
\forall y^Y p(y) &= p(\delta p).
\end{align*}
Then
\begin{equation*}
\exists x^X \forall y^Y p(x, y) = \exists x p(x, b(x))
\end{equation*}
where
\begin{equation*}
b(x) = \delta(\lambda y.p(x, y))
\end{equation*}
Quantifier Elimination

Suppose X and Y are such that for some ε and δ

\[
\exists x^X p(x) = p(\varepsilon p) \\
\forall y^Y p(y) = p(\delta p).
\]

Then

\[
\exists x^X \forall y^Y p(x, y) = \exists x p(x, b(x)) \\
= p(a, b(a))
\]

where

\[
b(x) = \delta(\lambda y.p(x, y)) \\
a = \varepsilon(\lambda x.p(x, b(x))).
\]
Product of Selection Functions

Definition (Product of Selection Functions)

Given $\varepsilon: JX$ and $\delta: JY$ define $\varepsilon \otimes \delta: J(X \times Y)$ as

$$(\varepsilon \otimes \delta)(p^{X \times Y \to R})^{X \times Y} := (a, b(a))$$

where

$$b(x) = \delta(\lambda y. p(x, y))$$

$$a = \varepsilon(\lambda x. p(x, b(x)))$$.
Homomorphism Lemma

\[\varepsilon \otimes \delta = \bar{\varepsilon} \otimes \bar{\delta} \]
Homomorphism Lemma

\[\varepsilon \otimes \delta = \varepsilon \otimes \bar{\delta} \]

Proof.
\[
(\varepsilon \otimes \delta)(q) = q(a, b_a) = \varepsilon(\lambda x.q(x, b_x)) = \varepsilon(\lambda x.\bar{\delta}(\lambda y.q(x, y))) = (\varepsilon \otimes \bar{\delta})(q). \quad \square
\]
Homomorphism Lemma

Lemma

\[\varepsilon \otimes \delta = \overline{\varepsilon} \otimes \overline{\delta} \]

Proof.

\[(\varepsilon \otimes \delta)(q) = q(a, b_a) = \overline{\varepsilon}(\lambda x. q(x, b_x)) = \overline{\varepsilon}(\lambda x. \overline{\delta}(\lambda y. q(x, y))) = (\overline{\varepsilon} \otimes \overline{\delta})(q). \]

Corollary

If \(\phi: KX \) and \(\psi: KY \) are attainable single-valued quantifiers with sel. fct. \(\varepsilon: JX \) and \(\delta: JY \) then

\[\overline{\varepsilon} \otimes \overline{\delta} = \phi \otimes \psi \]
Definition (Iterated Product – Finite)

Given $\varepsilon_i : JX_i$, $0 \leq i \leq n$, define $(\bigotimes_{i=k}^n \varepsilon_i) : \Pi_{i=k}^n X_i$ as

$$\left(\bigotimes_{i=k}^n \varepsilon_i \right) = \varepsilon_k \otimes \left(\bigotimes_{i=k+1}^n \varepsilon_i \right)$$
Definition (Iterated Product – Finite)

Given $\varepsilon_i : JX_i$, $0 \leq i \leq n$, define $(\bigotimes_{i=k}^n \varepsilon_i) : J\Pi_{i=k}^n\ X_i$ as

\[
\left(\bigotimes_{i=k}^n \varepsilon_i \right) = \varepsilon_k \otimes \left(\bigotimes_{i=k+1}^n \varepsilon_i \right)
\]

Definition (Iterated Product – Infinite)

Given $\varepsilon_i : JX_i$, $i \in \mathbb{N}$, define $(\bigotimes_{i\geq k} \varepsilon_i) : J\Pi_{i\geq k}\ X_i$ as

\[
\left(\bigotimes_{i\geq k} \varepsilon_i \right) = \varepsilon_k \otimes \left(\bigotimes_{i\geq k+1} \varepsilon_i \right)
\]

for $q : \Pi_i X_i \to R$ continuous and $R = \mathbb{N}$ (assumed henceforth)
Theorem (Idempotency)

Given $\varepsilon_i : JX_i$ and $q : \prod_i X_i \to R$, let

$$\alpha \equiv \prod_{i \geq 0} X_i \left(\bigotimes_{i \geq 0} \varepsilon_i \right) (q)$$

then, for all k,

$$\text{tail}^k (\alpha) \equiv \prod_{i \geq k} X_i \left(\bigotimes_{i \geq k} \varepsilon_i \right) (q[\alpha](k))$$
Theorem (Idempotency)

Given $\varepsilon_i: J X_i$ and $q: \Pi_i X_i \to R$, let

$$\alpha \equiv \prod_{i \geq 0} X_i \left(\bigotimes_{i \geq 0} \varepsilon_i \right) (q)$$

then, for all k,

$$\text{tail}^k (\alpha) \equiv \prod_{i \geq k} X_i \left(\bigotimes_{i \geq k} \varepsilon_i \right) (q_{\alpha}(k))$$

Proof.

By course-of-values induction on k
Theorem (Product Quantifier)

Given attainable $\phi_i : K X_i$, with sel. func. $\varepsilon_i : J X_i$, and $q : \prod_i X_i \to R$, there exist $p_i : X_i \to R$ such that

$$
q(\alpha) = \left(\bigotimes_{i \geq 0} \varepsilon_i \right)(q) \in \bigcap_i \phi_i(p_i)
$$

(α as before)
Theorem (Product Quantifier)

Given attainable $\phi_i : KX_i$, with sel. func. $\varepsilon_i : JX_i$, and $q : \prod_i X_i \to R$, there exist $p_i : X_i \to R$ such that

$$q(\alpha) = \left(\bigotimes_{i \geq 0} \varepsilon_i \right)(q) \in \bigcap_i \phi_i(p_i)$$

(α as before)

Proof.

Take $p_i = \lambda y_i \cdot (\bigotimes_{k \geq i} \varepsilon_k)(q[\alpha](i) * y_i)$

Recall that $p_i(\varepsilon_i(p_i)) \in \phi_i(p_i)$

Then $p_i(\varepsilon_i(p_i)) = p_i(\alpha(i)) = q(\alpha)$ (Idempotency theorem)
Corollary (Spector Equation)

Given attainable quantifiers $\phi_i : KX_i$, with selection functions $\varepsilon_i : JX_i$, and $q : \Pi X_i \rightarrow R$, there exist α and p_i such that

$$
\alpha(i) = \varepsilon_i(p_i)
$$

$$
q(\alpha) \in \phi_i(p_i) \quad \text{(for all } i)\n$$
Corollary (Spector Equation)

Given attainable quantifiers $\phi_i : K X_i$, *with selection functions* $\varepsilon_i : J X_i$, *and* $q : \Pi X_i \rightarrow R$, *there exist* α *and* p_i *such that*

\[
\alpha(i) = \varepsilon_i(p_i)
\]

\[
q(\alpha) \in \phi_i(p_i) \quad (\text{for all } i)
\]

Proof.

Take α and p_i as before, i.e.

\[
p_i = \lambda y_i . (\bigotimes_{k \geq i} \varepsilon_k)(q[\alpha](i) \ast y_i)
\]

\[
\alpha = (\bigotimes_{k \geq i} \varepsilon_k)(q)
\]
Theorem (Optimal Strategy)

Given attainable \(\phi_i : KX_i \), with sel. func. \(\varepsilon_i : JX_i \), and
\(q : \Pi_i X_i \rightarrow R \), **there exist** \(\alpha_k : \Pi_{i<k} X_i \rightarrow X_k \) **such that**

\[
q(\alpha^{\vec{x}}) \in \phi_k(\lambda y_k. q(\alpha^{\vec{x}}, y_k)) \quad (\vec{x} = x_0, \ldots, x_{k-1})
\]

where \(\alpha^{\vec{x}}(i) = x_i \) **if** \(i < k \) **and** \(\alpha_i([\alpha^{\vec{x}}](i)) \) **otherwise**
Theorem (Optimal Strategy)

Given attainable $\phi_i: KX_i$, with sel. func. $\varepsilon_i: JX_i$, and $q: \Pi_i X_i \to R$, there exist $\alpha_k: \Pi_{i<k} X_i \to X_k$ such that

$$q(\alpha^{\vec{x}}) \in \phi_k(\lambda y_k. q(\alpha^{\vec{x}}, y_k)) \quad (\vec{x} = x_0, \ldots, x_{k-1})$$

where $\alpha^{\vec{x}}(i) = x_i$ if $i < k$ and $\alpha_i([\alpha^{\vec{x}}](i))$ otherwise

Proof.

Take $\alpha_k(\vec{x}) = \pi_0((\bigotimes_{k \geq i} \varepsilon_i)(q\vec{x}, y_i))$

We have $\alpha^{\vec{x}} = (\bigotimes_{k \geq i} \varepsilon_i)(q\vec{x})$ (Idempotency thm)

Use Product Quantifier theorem
Outline

1. Quantifiers and Selection Functions
2. Finite and Infinite Products
3. Sequential Games
Sequential Games

Definition

A Game is a tuple \((R, (X_i)_{i \in \mathbb{N}}, (\phi_i)_{i \in \mathbb{N}}, q)\) where

- \(R\) is the set of **possible outcomes**
- \(X_i\) is the set of **available moves** at round \(i\)
- \(\phi_i: K_R X_i\) is the **goal (mul.-val.) quantifier** for round \(i\)
- \(q: \prod_{i \in \mathbb{N}} X_i \to R\) is the **outcome function**

with \(q\) determined after **finitely** many moves
Definition (Strategy)

Family of mappings $\text{next}_k : \prod_{i=0}^{k-1} X_i \rightarrow X_k$
Definition (Strategy)

Family of mappings $\text{next}_k : \prod_{i=0}^{k-1} X_i \rightarrow X_k$

Definition (Strategic Play)

Given strategy next_k and partial play $\vec{a} = a_0, \ldots, a_{k-1}$, the **strategic extension** of \vec{a} is $b^{\vec{a}} = b_k^{\vec{a}}, \ldots, b_{n-1}^{\vec{a}}$ where

$$b_i^{\vec{a}} = \text{next}_i(\vec{a}, b_k^{\vec{a}}, \ldots, b_{i-1}^{\vec{a}})$$
Definition (Strategy)

Family of mappings \(\text{next}_k : \prod_{i=0}^{k-1} X_i \rightarrow X_k \)

Definition (Strategic Play)

Given strategy \(\text{next}_k \) and partial play \(\vec{a} = a_0, \ldots, a_{k-1} \), the strategic extension of \(\vec{a} \) is \(\vec{b} \vec{a} = b^\vec{a}_k, \ldots, b^\vec{a}_{n-1} \) where

\[
 b^\vec{a}_i = \text{next}_i(\vec{a}, b^\vec{a}_k, \ldots, b^\vec{a}_{i-1})
\]

Definition (Optimal Strategy)

Strategy \(\text{next}_k \) is optimal if for any partial play \(\vec{a} \)

\[
 q(\vec{a}, \vec{b}) \in \phi_k(\lambda x_k . q(\vec{a}, x_k, \vec{b}^\vec{a}, x_k))
\]
Product of selection functions computes optimal strategies!
Product of selection functions computes optimal strategies!

Corollary

For any game with attainable goal quantifiers $\phi_i: KX_i$ an optimal strategy can be computed as

$$\text{next}_k(\vec{x}) = \pi_0 \left(\left(\bigotimes_{i \geq k} \varepsilon_i \right) (q_{\vec{x}}) \right)$$
Product of selection functions computes optimal strategies!

Corollary

For any game with attainable goal quantifiers $\phi_i: KX_i$ an optimal strategy can be computed as

$$\text{next}_k(\vec{x}) = \pi_0 \left(\left(\bigotimes_{i \geq k} \varepsilon_i \right) (q_{\vec{x}}) \right)$$

Proof.

Follows directly from Optimal Strategy theorem
Standard Game Theory

When $R = \mathbb{R}^n$ and ϕ_i are \max^i or \sup^i

(attainable quantifiers with selection functions argsup^i)

Generalised Game \mapsto Standard Game
Optimal strategy \mapsto Strategy in Nash equilibrium
Product of argsup^i \mapsto Backward induction!
Proof Theory

Computational interpretation

$$\exists i \leq n \forall x^{X_i} \exists^R A_i(x, r) \quad \leftrightarrow \quad \forall \varepsilon(.) \exists i \leq n \exists p A_i(\varepsilon i p, p(\varepsilon i p))$$
Proof Theory

Computational interpretation

$$\exists i \leq n \forall x^X_i \exists r^R A_i(x, r) \rightarrow \forall \varepsilon(.) \exists i \leq n \exists p A_i(\varepsilon_i p, p(\varepsilon_i p))$$

ε’s define quantifiers, which partially define a game
Proof Theory

Computational interpretation

$$\exists i \leq n \forall x \exists r A_i(x, r) \implies \forall \varepsilon(.) \exists i \leq n \exists p A_i(\varepsilon_i p, p(\varepsilon p))$$

ε's define quantifiers, which partially define a game

Computational interpretation relies on completing the definition of the game so optimal strategy solves problem
Open Questions

1. Relation of product of selection functions \otimes to the different product BBC (over system T)

$$BBC(\varepsilon)(q) = \lambda n.\varepsilon_n \left(\lambda x_n.\overline{BBC(\varepsilon)(q_{(n,x_n)})} \right)$$

(due to Berardi, Bezem, Coquand)
Open Questions

1. Relation of product of selection functions \(\otimes \) to the different product BBC (over system T)

\[
\text{BBC}(\varepsilon)(q) = \lambda n.\varepsilon_n \left(\lambda x_n.\overline{\text{BBC}(\varepsilon)}(q_{(n,x_n)}) \right)
\]

(due to Berardi, Bezem, Coquand)

2. Does BBC compute optimal strategies in some different (but also natural) notion of game
References

M. Escardó and P. Oliva
Selection functions, bar recursion and backward induction
MSCS, 20(2):127-168, 2010

M. Escardó and P. Oliva
What sequential games, the Tychonoff theorem and the double-negation shift have in common
ACM SIGPLAN MSFP, ACM Press 2010

M. Escardó and P. Oliva
Sequential games and optimal strategies