Theorems and Symmetric Games

Paulo Oliva

Queen Mary, University of London, UK (pbo@dcs.qmul.ac.uk)

BMC'07, Swansea 18 April 2007

Mathematicians are happy with proof or counter-example

Mathematicians are happy with proof or counter-example

Mathematics is like a game, mathematicians are always winners because they play both roles

Mathematicians are happy with proof or counter-example

Mathematics is like a game, mathematicians are always winners because they play both roles

View a mathematical statement as the description of a game

$$\forall n \ge 2 \,\exists x, y, z(\frac{4}{n} = \frac{1}{x} + \frac{1}{y} + \frac{1}{z})$$

Paul Erdös

$$\forall n\!\geq\! 2\,\exists x,y,z(\frac{4}{n}=\frac{1}{x}+\frac{1}{y}+\frac{1}{z})$$

Paul Erdös

$$f_0, f_1, f_2: \mathbb{N} \to \mathbb{N}^*$$

$$n \in \{2, \ldots\}$$

$$\forall n\!\geq\! 2\,\exists x,y,z(\frac{4}{n}=\frac{1}{x}+\frac{1}{y}+\frac{1}{z})$$

Paul Erdös

$$f_0, f_1, f_2 : \mathbb{N} \to \mathbb{N}^*$$
 $n \in \{2, \ldots\}$

$$\frac{4}{n} = \frac{1}{f_0(n)} + \frac{1}{f_1(n)} + \frac{1}{f_2(n)}$$

Games: Formal Description

• Game $G \equiv (D_1, D_2, R \subseteq D_1 \times D_2)$

Games: Formal Description

• Game $G \equiv (D_1, D_2, R \subseteq D_1 \times D_2)$

- Two playersEloise and Abelard
- Two domains of moves $x \in D_1$ and $y \in D_2$

Games: Formal Description

• Game $G \equiv (D_1, D_2, R \subseteq D_1 \times D_2)$

- Two playersEloise and Abelard
- Two domains of moves $x \in D_1$ and $y \in D_2$
- Adjudication of Winner Relation R(x,y) between players' moves (usually $|G|_u^x$)

Domain 1	Domain 2	Adjudication
$x \in \{0, 1, 2\}$	$y \in \{0, 1, 2\}$	$x+1=y \bmod 3$

Domain 1	Domain 2	Adjudication
$x \in \{0, 1, 2\}$	$y \in \{0, 1, 2\}$	$x+1=y \bmod 3$
$x \in \{0, \dots, 5\}$	$y \in \{0, \dots, 5\}$	x+y is even

Domain 1	Domain 2	Adjudication
$x \in \{0, 1, 2\}$	$y \in \{0,1,2\}$	$x+1=y \bmod 3$
$x \in \{0, \dots, 5\}$	$y \in \{0, \dots, 5\}$	x+y is even
$x \in \mathbb{N}$	$y \in \mathbb{N}$	$x \ge y$

Domain 1	Domain 2	Adjudication
$x \in \{0,1,2\}$	$y \in \{0,1,2\}$	$x+1=y \bmod 3$
$x \in \{0, \dots, 5\}$	$y \in \{0, \dots, 5\}$	x+y is even
$x \in \mathbb{N}$	$y \in \mathbb{N}$	$x \ge y$
$f\in\mathbb{N}\to\mathbb{N}$	$y \in \mathbb{N}$	$f(y) \ge y$

Domain 1	Domain 2	Adjudication
$x \in \{0, 1, 2\}$	$y \in \{0, 1, 2\}$	$x+1=y \bmod 3$
$x \in \{0, \dots, 5\}$	$y \in \{0, \dots, 5\}$	x+y is even
$x \in \mathbb{N}$	$y \in \mathbb{N}$	$x \ge y$
$f\in\mathbb{N}\to\mathbb{N}$	$y \in \mathbb{N}$	$f(y) \ge y$
$f_i \in \mathbb{N} \to \mathbb{N}^*$	$n \ge 2$	$\frac{4}{n} = \frac{1}{f_0 n} + \frac{1}{f_1 n} + \frac{1}{f_2 n}$

Goal

A is true (is provable) $\label{eq:approx} \text{iff}$ Eloise has winning move in game $|A|_y^x$

Goal

A is true (is provable) $\label{eq:approx} \text{iff}$ Eloise has winning move in game $|A|_y^x$

$$A \quad \text{iff} \quad \exists x \forall y |A|_y^x$$

Symmetry

Game $\neg A$ should be game A with roles reversed

Symmetry

Game $\neg A$ should be game A with roles reversed

$$|\neg A|_y^x \equiv \neg |A|_x^y$$

Symmetry

Game $\neg A$ should be game A with roles reversed

$$|\neg A|_y^x \equiv \neg |A|_x^y$$

$$|\neg \neg A|_y^x \equiv |A|_y^x$$

$$|A \wedge B|_{f,g}^{x,v} \equiv |A|_{fv}^x \text{ and } |B|_{gx}^v$$

$$|A \wedge B|_{f,g}^{x,v} \equiv |A|_{fv}^x \text{ and } |B|_{gx}^v$$

$$|A \rightarrow B|_{x,w}^{f,g} \equiv |A|_{fw}^x \text{ implies } |B|_w^{gx}$$

$$|A \wedge B|_{f,g}^{x,v} \equiv |A|_{fv}^x \text{ and } |B|_{gx}^v$$

$$|A \rightarrow B|_{x,w}^{f,g} \equiv |A|_{fw}^x \text{ implies } |B|_w^{gx}$$

$$|\forall z A(z)|_{y,z}^f \equiv |A(z)|_y^{fz}$$

$$\begin{split} |A \wedge B|_{f,g}^{x,v} & \equiv |A|_{fv}^x \text{ and } |B|_{gx}^v \\ |A \rightarrow B|_{x,w}^{f,g} & \equiv |A|_{fw}^x \text{ implies } |B|_w^{gx} \\ |\forall z A(z)|_{y,z}^f & \equiv |A(z)|_y^{fz} \\ |\exists z A(z)|_f^{x,z} & \equiv |A(z)|_{fz}^x \end{split}$$

$$|A \otimes B|_{f,g}^{x,v} \equiv |A|_{fv}^x \text{ and } |B|_{gx}^v$$

$$|A \longrightarrow B|_{x,w}^{f,g} \equiv |A|_{fw}^x \text{ implies } |B|_w^{gx}$$

$$|\forall z A(z)|_{y,z}^f \equiv |A(z)|_y^{fz}$$

$$|\exists z A(z)|_f^{x,z} \equiv |A(z)|_{fz}^x$$

Linear Logic

!A ?A

$$!A$$
 ? A

$$(1) |!A|^x \equiv \forall y |A|_y^x$$
$$|?A|_y \equiv \exists x |A|_y^x$$

$$!A$$
 ? A

$$(1) |!A|^{x} \equiv \forall y |A|_{y}^{x}$$

$$|?A|_{y} \equiv \exists x |A|_{y}^{x}$$

$$(2) |!A|_{f}^{x} \equiv \forall y \in fx |A|_{y}^{x}$$

$$|?A|_{y}^{f} \equiv \exists x \in fy |A|_{y}^{x}$$

$$!A$$
 ? A

$$(1) |!A|^{x} \equiv \forall y |A|_{y}^{x}$$

$$|?A|_{y} \equiv \exists x |A|_{y}^{x}$$

$$(2) |!A|_{f}^{x} \equiv \forall y \in fx |A|_{y}^{x}$$

$$|?A|_{y}^{f} \equiv \exists x \in fy |A|_{y}^{x}$$

$$(3) |!A|_{f}^{x} \equiv |A|_{fx}^{x}$$

$$|?A|_{y}^{f} \equiv |A|_{y}^{fy}$$

$$\mathsf{LL}\Rightarrow\mathsf{G}$$

Theorem

If A is provable in linear logic then the game $|A|_y^x$ has a winning move

Diller-Nahm interpretation (Diller-Nahm'1974) (Kreisel'1959) Modified realizability $(2) \quad \forall y \in fx \ |A|_y^x$

Dialectica interpretation

Diller-Nahm interpretation

Modified realizability

 $\forall y |A|_u^x$ (2) $\forall y \in fx |A|_y^x$ (Gödel'1956)

(Diller-Nahm'1974)

(Kreisel'1959)

$$|\Gamma|_{r[y]}^v \vdash |A|_y^{t[v]}$$

Simultaneous quantifier

New principles validated:

Sequential choice

$$\forall z \exists J_y^x A(x,y,z) \multimap \exists J_{y,z}^f A(fz,y,z)$$

Parallel choice

$$\mathbf{\mathcal{Y}}_{y}^{x}A(x)\otimes\mathbf{\mathcal{Y}}_{w}^{v}B(v) \multimap \mathbf{\mathcal{Y}}_{y,w}^{f,g}(A(fw)\otimes B(gy))$$

Trump advantage

$$!\exists f_y^x A \multimap \exists x! \forall y A$$

Summary

Functional interpretations of linear logic
 Nice "game" flavour
 Usual interpretations of IL derivable

Interesting new branching quantifier

Sound extensions of linear logic