Understanding and Using Spector's Bar Recursion

Paulo Oliva
Queen Mary, University of London, UK
(pbo@dcs.qmul.ac.uk)

Swansea, 4 July 2006

A 3-player game

1. Person $i \in\{1,2,3\}$ builds a (non-zero) function $g_{i}(x)$
2. Person i is assigned the number $x_{i}:=g_{i}(i)$
3. $g_{1}\left(x_{1}\right)=x_{2}+x_{3}$ and $g_{2}\left(x_{2}\right)=x_{1}+x_{3}$ and $g_{3}\left(x_{3}\right)=x_{1}+x_{2}$

A 3-player game

1. Person $i \in\{1,2,3\}$ builds a (non-zero) function $g_{i}(x)$
2. Person i is assigned the number $x_{i}:=g_{i}(i)$
3. $g_{1}\left(x_{1}\right)=x_{2}+x_{3}$ and $g_{2}\left(x_{2}\right)=x_{1}+x_{3}$ and $g_{3}\left(x_{3}\right)=x_{1}+x_{2}$

$g_{1}(x)=\ldots$

A 3-player game

1. Person $i \in\{1,2,3\}$ builds a (non-zero) function $g_{i}(x)$
2. Person i is assigned the number $x_{i}:=g_{i}(i)$
3. $g_{1}\left(x_{1}\right)=x_{2}+x_{3}$ and $g_{2}\left(x_{2}\right)=x_{1}+x_{3}$ and $g_{3}\left(x_{3}\right)=x_{1}+x_{2}$

$g_{1}(x)=\ldots$
$x_{1}:=g_{1}(1)$

$g_{2}(x)=\ldots$

$$
x_{2}:=g_{2}(2)
$$

A 3-player game

1. Person $i \in\{1,2,3\}$ builds a (non-zero) function $g_{i}(x)$
2. Person i is assigned the number $x_{i}:=g_{i}(i)$
3. $g_{1}\left(x_{1}\right)=x_{2}+x_{3}$ and $g_{2}\left(x_{2}\right)=x_{1}+x_{3}$ and $g_{3}\left(x_{3}\right)=x_{1}+x_{2}$

$$
\begin{aligned}
& g_{1}(x)=c_{1} \\
& x_{1}:=g_{1}(1)
\end{aligned}
$$

$$
\begin{aligned}
& \\
& g_{3}(x)=c_{3} \\
& x_{3}:=g_{3}(3)
\end{aligned}
$$

$$
g_{2}(x)=c_{2}
$$

$$
x_{2}:=g_{2}(2)
$$

A 3-player game

1. Person $i \in\{1,2,3\}$ builds a (non-zero) function $g_{i}(x)$
2. Person i is assigned the number $x_{i}:=g_{i}(i)$
3. $g_{1}\left(x_{1}\right)=x_{2}+x_{3}$ and $g_{2}\left(x_{2}\right)=x_{1}+x_{3}$ and $g_{3}\left(x_{3}\right)=x_{1}+x_{2}$

$$
\begin{aligned}
& g_{1}(x)=\lambda x \cdot(5 x+4) \\
& x_{1}:=g_{1}(1)
\end{aligned}
$$

$$
\begin{aligned}
& g_{3}(x)=\lambda x .29 \\
& x_{3}:=g_{3}(3)
\end{aligned}
$$

$$
\begin{aligned}
& g_{2}(x)=\lambda x \cdot(x+18) \\
& x_{2}:=g_{2}(2)
\end{aligned}
$$

A 3-player game

1. Person $i \in\{1,2,3\}$ builds a (non-zero) function $g_{i}(x)$
2. Person i is assigned the number $x_{i}:=g_{i}(i)$
3. $g_{1}\left(x_{1}\right)=x_{2}+x_{3}$ and $g_{2}\left(x_{2}\right)=x_{1}+x_{3}$ and $g_{3}\left(x_{3}\right)=x_{1}+x_{2}$

$$
\begin{aligned}
& 9 \\
& g_{1}(x)=\lambda x \cdot(5 x+4) \\
& x_{1}:=g_{1}(1)
\end{aligned}
$$

$$
\begin{aligned}
& 29 \\
& g_{3}(x)=\lambda x .29 \\
& x_{3}:=g_{3}(3)
\end{aligned}
$$

A 3-player game

1. Person $i \in\{1,2,3\}$ builds a (non-zero) function $g_{i}(x)$
2. Person i is assigned the number $x_{i}:=g_{i}(i)$
3. $g_{1}\left(x_{1}\right)=x_{2}+x_{3}$ and $g_{2}\left(x_{2}\right)=x_{1}+x_{3}$ and $g_{3}\left(x_{3}\right)=x_{1}+x_{2}$

A 3-player game

1. Person $i \in\{1,2,3\}$ builds a (non-zero) function $g_{i}(x)$
2. Person i is assigned the number $x_{i}:=g_{i}(i)$
3. $g_{1}\left(x_{1}\right)=x_{2}+x_{3}$ and $g_{2}\left(x_{2}\right)=x_{1}+x_{3}$ and $g_{3}\left(x_{3}\right)=x_{1}+x_{2}$

$$
\begin{aligned}
G_{3}\left[x_{1}, x_{2}\right] & :=\lambda x_{3} \cdot x_{1}+x_{2} \\
X_{3}\left[x_{1}, x_{2}\right] & :=x_{1}+x_{2}
\end{aligned}
$$

A 3-player game

1. Person $i \in\{1,2,3\}$ builds a (non-zero) function $g_{i}(x)$
2. Person i is assigned the number $x_{i}:=g_{i}(i)$
3. $g_{1}\left(x_{1}\right)=x_{2}+x_{3}$ and $g_{2}\left(x_{2}\right)=x_{1}+x_{3}$ and $g_{3}\left(x_{3}\right)=x_{1}+x_{2}$

$$
\begin{aligned}
& G_{3}\left[x_{1}, x_{2}\right]:=\lambda x_{3} \cdot x_{1}+x_{2} \\
& X_{3}\left[x_{1}, x_{2}\right]:=x_{1}+x_{2} \\
& G_{2}\left[x_{1}\right]:=\lambda x_{2} \cdot x_{1}+X_{3}\left[x_{1}, x_{2}\right] \\
& X_{2}\left[x_{1}\right]:=x_{1}+X_{3}\left[x_{1}, 2\right]
\end{aligned}
$$

A 3-player game

1. Person $i \in\{1,2,3\}$ builds a (non-zero) function $g_{i}(x)$
2. Person i is assigned the number $x_{i}:=g_{i}(i)$
3. $g_{1}\left(x_{1}\right)=x_{2}+x_{3}$ and $g_{2}\left(x_{2}\right)=x_{1}+x_{3}$ and $g_{3}\left(x_{3}\right)=x_{1}+x_{2}$

$$
\begin{aligned}
& G_{3}\left[x_{1}, x_{2}\right]:=\lambda x_{3} \cdot x_{1}+x_{2} \\
& X_{3}\left[x_{1}, x_{2}\right]:=x_{1}+x_{2} \\
& G_{2}\left[x_{1}\right]:=\lambda x_{2} \cdot x_{1}+X_{3}\left[x_{1}, x_{2}\right] \\
& X_{2}\left[x_{1}\right]:=x_{1}+X_{3}\left[x_{1}, 2\right] \\
& g_{1}:=\lambda x_{1} \cdot X_{2}\left[x_{1}\right]+X_{3}\left[x_{1}, X_{2}\left[x_{1}\right]\right] \\
& x_{1}:=X_{2}[1]+X_{3}\left[1, X_{2}[1]\right]
\end{aligned}
$$

A 3-player game

1. Person $i \in\{1,2,3\}$ builds a (non-zero) function $g_{i}(x)$
2. Person i is assigned the number $x_{i}:=g_{i}(i)$
3. $g_{1}\left(x_{1}\right)=x_{2}+x_{3}$ and $g_{2}\left(x_{2}\right)=x_{1}+x_{3}$ and $g_{3}\left(x_{3}\right)=x_{1}+x_{2}$

$$
\begin{array}{ll}
G_{3}\left[x_{1}, x_{2}\right]:=\lambda x_{3} \cdot x_{1}+x_{2} & \\
X_{3}\left[x_{1}, x_{2}\right]:=x_{1}+x_{2} & \\
G_{2}\left[x_{1}\right]:=\lambda x_{2} \cdot x_{1}+X_{3}\left[x_{1}, x_{2}\right] & \\
X_{2}\left[x_{1}\right]:=x_{1}+X_{3}\left[x_{1}, 2\right] & \\
g_{1}:=\lambda x_{1} \cdot X_{2}\left[x_{1}\right]+X_{3}\left[x_{1}, X_{2}\left[x_{1}\right]\right] & =\lambda x_{1} \cdot\left(5 x_{1}+4\right) \\
x_{1}:=X_{2}[1]+X_{3}\left[1, X_{2}[1]\right] & =9
\end{array}
$$

A 3-player game

1. Person $i \in\{1,2,3\}$ builds a (non-zero) function $g_{i}(x)$
2. Person i is assigned the number $x_{i}:=g_{i}(i)$
3. $g_{1}\left(x_{1}\right)=x_{2}+x_{3}$ and $g_{2}\left(x_{2}\right)=x_{1}+x_{3}$ and $g_{3}\left(x_{3}\right)=x_{1}+x_{2}$

$$
\begin{array}{ll}
G_{3}\left[x_{1}, x_{2}\right]:=\lambda x_{3} \cdot x_{1}+x_{2} & \\
X_{3}\left[x_{1}, x_{2}\right]:=x_{1}+x_{2} & =\lambda x_{2} \cdot\left(x_{2}+18\right) \\
G_{2}\left[x_{1}\right]:=\lambda x_{2} \cdot x_{1}+X_{3}\left[x_{1}, x_{2}\right] & =20 \\
X_{2}\left[x_{1}\right]:=x_{1}+X_{3}\left[x_{1}, 2\right] & =\lambda x_{1} \cdot\left(5 x_{1}+4\right) \\
g_{1}:=\lambda x_{1} \cdot X_{2}\left[x_{1}\right]+X_{3}\left[x_{1}, X_{2}\left[x_{1}\right]\right] & =9 \\
x_{1}:=X_{2}[1]+X_{3}\left[1, X_{2}[1]\right] &
\end{array}
$$

A 3-player game

1. Person $i \in\{1,2,3\}$ builds a (non-zero) function $g_{i}(x)$
2. Person i is assigned the number $x_{i}:=g_{i}(i)$
3. $g_{1}\left(x_{1}\right)=x_{2}+x_{3}$ and $g_{2}\left(x_{2}\right)=x_{1}+x_{3}$ and $g_{3}\left(x_{3}\right)=x_{1}+x_{2}$

$$
\begin{array}{ll}
G_{3}\left[x_{1}, x_{2}\right]:=\lambda x_{3} \cdot x_{1}+x_{2} & =\lambda x_{3} \cdot 29 \\
X_{3}\left[x_{1}, x_{2}\right]:=x_{1}+x_{2} & =29 \\
G_{2}\left[x_{1}\right]:=\lambda x_{2} \cdot x_{1}+X_{3}\left[x_{1}, x_{2}\right] & =\lambda x_{2} \cdot\left(x_{2}+18\right) \\
X_{2}\left[x_{1}\right]:=x_{1}+X_{3}\left[x_{1}, 2\right] & =20 \\
g_{1}:=\lambda x_{1} \cdot X_{2}\left[x_{1}\right]+X_{3}\left[x_{1}, X_{2}\left[x_{1}\right]\right] & =\lambda x_{1} \cdot\left(5 x_{1}+4\right) \\
x_{1}:=X_{2}[1]+X_{3}\left[1, X_{2}[1]\right] & =9
\end{array}
$$

A 3-player game

1. Person $i \in\{1,2,3\}$ builds a (non-zero) function $g_{i}(x)$
2. Person i is assigned the number $x_{i}:=g_{i}(i)$
3. $g_{1}\left(x_{1}\right)=x_{2}+x_{3}$ and $g_{2}\left(x_{2}\right)=x_{1}+x_{3}$ and $g_{3}\left(x_{3}\right)=x_{1}+x_{2}$

A ω-player game

1. Person $i \in\{1,2,3, \ldots\}$ builds a (non-zero) function $g_{i}(x)$
2. Person i is assigned the number $x_{i}:=g_{i}(i)$
3. $g_{1}\left(x_{1}\right)=x_{2}+x_{3}$ and $g_{2}\left(x_{2}\right)=x_{1}+x_{3}$ and $g_{3}\left(x_{3}\right)=x_{1}+x_{2}$

A ω-player game

1. Person $i \in\{1,2,3, \ldots\}$ builds a (non-zero) function $g_{i}(x)$
2. Person i is assigned the number $x_{i}:=\Phi_{i}\left(g_{i}\right)$
3. $g_{1}\left(x_{1}\right)=x_{2}+x_{3}$ and $g_{2}\left(x_{2}\right)=x_{1}+x_{3}$ and $g_{3}\left(x_{3}\right)=x_{1}+x_{2}$

A ω-player game

1. Person $i \in\{1,2,3, \ldots\}$ builds a (non-zero) function $g_{i}(x)$
2. Person i is assigned the number $x_{i}:=\Phi_{i}\left(g_{i}\right)$
3. $g_{i}\left(x_{i}\right)=\Delta\left(x_{1}, x_{2}, \ldots\right)$

Outline

(1) Bar recursion

- Finite bar recursion
- Spector's bar recursion
(2) An application

Outline

(1) Bar recursion

- Finite bar recursion
- Spector's bar recursion

(2) An application

On Bar Recursion

- Facts:
- Classical computational interpretation of countable choice (due to Spector'62)
- In particular, provides interpretation of full comprehension
- Difficult to understand

On Bar Recursion

- Facts:
- Classical computational interpretation of countable choice (due to Spector'62)
- In particular, provides interpretation of full comprehension
- Difficult to understand
- Goal:
- Explain bar recursion
- Use it in simple (practical) examples
- Understand how it solves the problem

Interpreting countable choice

- Give classical computation interpretation of cAC

$$
\forall n^{\mathbb{N}} \exists y^{\tau} A(n, y) \rightarrow \exists f \forall n A(n, f n)
$$

Interpreting countable choice

- Give classical computation interpretation of cAC

$$
\forall n^{\mathbb{N}} \exists y^{\tau} A(n, y) \rightarrow \exists f \forall n A(n, f n)
$$

- Need to interpret the negative translation of cAC

$$
\forall n^{\mathbb{N}} \neg \neg \exists y^{\tau} A^{\dagger}(n, y) \rightarrow \neg \neg \exists f \forall n A^{\dagger}(n, f n)
$$

Interpreting countable choice

- Give classical computation interpretation of cAC

$$
\forall n^{\mathbb{N}} \exists y^{\tau} A(n, y) \rightarrow \exists f \forall n A(n, f n)
$$

- Need to interpret the negative translation of cAC

$$
\forall n^{\mathbb{N}} \neg \neg \exists y^{\tau} A^{\dagger}(n, y) \rightarrow \neg \neg \exists f \forall n A^{\dagger}(n, f n)
$$

- Consider cAC for universal formulas

$$
\forall n^{\mathbb{N}} \neg \neg \exists y^{\tau} \forall x^{\sigma} A_{\mathrm{qf}}(n, y, x) \rightarrow \neg \neg \exists f \forall n, x^{\sigma} A_{\mathrm{qf}}(n, f n, x)
$$

Interpreting countable choice

- Give classical computation interpretation of cAC

$$
\forall n^{\mathbb{N}} \exists y^{\tau} A(n, y) \rightarrow \exists f \forall n A(n, f n)
$$

- Need to interpret the negative translation of cAC

$$
\forall n^{\mathbb{N}} \neg \neg \exists y^{\tau} A^{\dagger}(n, y) \rightarrow \neg \neg \exists f \forall n A^{\dagger}(n, f n)
$$

- Consider cAC for universal formulas

$$
\forall n^{\mathbb{N}} \neg \neg \exists y^{\tau} \forall x^{\sigma} A_{\text {qf }}(n, y, x) \rightarrow \neg \neg \exists f \forall n, x^{\sigma} A_{\text {qf }}(n, f n, x)
$$

Interpretation asks for functionals n, g, f depending on Φ, Ψ, Δ s.t.

$$
\neg \neg A_{\mathrm{qf}}\left(n, \Phi_{n} g, g\left(\Phi_{n} g\right)\right) \rightarrow \neg \neg A_{\mathrm{qf}}(\Psi f, f(\Psi f), \Delta f)
$$

Interpreting countable choice

How to produce n, g, f (parametrised by Φ, Ψ, Δ) such that

$$
\neg \neg A_{\mathrm{qf}}\left(n, \Phi_{n} g, g\left(\Phi_{n} g\right)\right) \rightarrow \neg \neg A_{\mathrm{qf}}(\Psi f, f(\Psi f), \Delta f)
$$

Interpreting countable choice

How to produce n, g, f (parametrised by Φ, Ψ, Δ) such that

$$
\neg \neg A_{\text {qf }}\left(n, \Phi_{n} g, g\left(\Phi_{n} g\right)\right) \rightarrow \neg \neg A_{\text {qf }}(\Psi f, f(\Psi f), \Delta f)
$$

Enough to satisfy equations:

$$
\left\{\begin{array}{lll}
n & \stackrel{\mathbb{N}}{=} & \Psi f \\
f n & \stackrel{\tau}{=} & \Phi_{n} g \\
g(f n) & \stackrel{\sigma}{=} & \Delta f
\end{array}\right\}
$$

Interpreting countable choice

How to produce n, g, f (parametrised by Φ, Ψ, Δ) such that

$$
\neg \neg A_{\mathrm{qf}}\left(n, \Phi_{n} g, g\left(\Phi_{n} g\right)\right) \rightarrow \neg \neg A_{\mathrm{qf}}(\Psi f, f(\Psi f), \Delta f)
$$

Enough to satisfy equations:

$$
\left\{\begin{array}{lll}
n & \stackrel{N}{=} & \Psi f \\
f n & \stackrel{\tau}{=} & \Phi_{n} g \\
g(f n) & \stackrel{\stackrel{\sigma}{=}}{=} & \Delta f
\end{array}\right\} \quad \Rightarrow \quad\left\{\begin{array}{lll}
i & \leq & |x| \\
x_{i} & \stackrel{\tau}{=} & \Phi_{i} g_{i} \\
g_{i}\left(x_{i}\right) & \stackrel{\underline{\sigma}}{=} & \Delta \boldsymbol{x}
\end{array}\right\}
$$

Interpreting countable choice

How to produce n, g, f (parametrised by Φ, Ψ, Δ) such that

$$
\neg \neg A_{\text {qf }}\left(n, \Phi_{n} g, g\left(\Phi_{n} g\right)\right) \rightarrow \neg \neg A_{\text {qf }}(\Psi f, f(\Psi f), \Delta f)
$$

Enough to satisfy equations:

$$
\left\{\begin{array}{lll}
n & \stackrel{N}{=} & \Psi f \\
f n & \stackrel{\tau}{=} & \Phi_{n} g \\
g(f n) & \stackrel{\underline{\sigma}}{=} & \Delta f
\end{array}\right\} \quad \Rightarrow \quad\left\{\begin{array}{lll}
i & \leq & |x| \\
x_{i} & \stackrel{\tau}{=} & \Phi_{i} g_{i} \\
g_{i}\left(x_{i}\right) & \stackrel{\underline{\sigma}}{=} & \Delta \boldsymbol{x}
\end{array}\right\}
$$

Given $\Psi \hat{\boldsymbol{x}}<|\boldsymbol{x}|$ then $f:=\hat{\boldsymbol{x}}$ and $n:=\Psi \hat{\boldsymbol{x}}$ and $g:=g_{n}$.

A particular case

Let's consider the particular case in which $\Psi \leq 3$

$$
\begin{array}{ll}
i & \leq 3 \\
x_{i} & \stackrel{\tau}{=} \Phi_{i} g_{i} \\
g_{i}\left(x_{i}\right) & \stackrel{\sigma}{=} \Delta \boldsymbol{x}
\end{array}
$$

A particular case

Let's consider the particular case in which $\Psi \leq 3$

$$
\begin{array}{cl}
i & \leq 3 \\
x_{i} & \stackrel{\tau}{=} \Phi_{i} g_{i} \\
g_{i}\left(x_{i}\right) & \stackrel{\sigma}{=} \Delta \boldsymbol{x} \\
G_{3}\left[x_{1}, x_{2}\right]:= & \lambda x_{3} \cdot \Delta\left(x_{1}, x_{2}, x_{3}\right) \\
X_{3}\left[x_{1}, x_{2}\right]:= & \Phi_{3}\left(G_{3}\left[x_{1}, x_{2}\right]\right)
\end{array}
$$

A particular case

Let's consider the particular case in which $\Psi \leq 3$

$$
\begin{array}{cl}
i & \leq 3 \\
x_{i} & \stackrel{\sim}{=} \Phi_{i} g_{i} \\
g_{i}\left(x_{i}\right) \quad \stackrel{\sigma}{=} \Delta \boldsymbol{x} \\
G_{3}\left[x_{1}, x_{2}\right]:=\lambda x_{3} \cdot \Delta\left(x_{1}, x_{2}, x_{3}\right) \\
X_{3}\left[x_{1}, x_{2}\right]:=\Phi_{3}\left(G_{3}\left[x_{1}, x_{2}\right]\right) \\
G_{2}\left[x_{1}\right]:=\lambda x_{2} \cdot \Delta\left(x_{1}, x_{2}, X_{3}\left[x_{1}, x_{2}\right]\right) \\
X_{2}\left[x_{1}\right]:=\Phi_{2}\left(G_{2}\left[x_{1}\right]\right)
\end{array}
$$

A particular case

Let's consider the particular case in which $\Psi \leq 3$

$$
\begin{array}{cl}
i & \leq 3 \\
x_{i} & \stackrel{\tau}{=} \Phi_{i} g_{i} \\
g_{i}\left(x_{i}\right) \quad \stackrel{\sigma}{=} \Delta \boldsymbol{x} \\
G_{3}\left[x_{1}, x_{2}\right]:=\lambda x_{3} \cdot \Delta\left(x_{1}, x_{2}, x_{3}\right) \\
X_{3}\left[x_{1}, x_{2}\right]:=\Phi_{3}\left(G_{3}\left[x_{1}, x_{2}\right]\right) \\
G_{2}\left[x_{1}\right]:=\lambda x_{2} \cdot \Delta\left(x_{1}, x_{2}, X_{3}\left[x_{1}, x_{2}\right]\right) \\
X_{2}\left[x_{1}\right]:=\Phi_{2}\left(G_{2}\left[x_{1}\right]\right) \\
g_{1}:=\lambda x_{1} \cdot \Delta\left(x_{1}, X_{2}\left[x_{1}\right], X_{3}\left[x_{1}, X_{2}\left[x_{1}\right]\right]\right) \\
x_{1}:=\Phi_{1}\left(g_{1}\right)
\end{array}
$$

A particular case

Let's consider the particular case in which $\Psi \leq 3$

$$
\begin{gathered}
i \\
x_{i} \quad \stackrel{\tau}{=} \Phi_{i} g_{i} \\
g_{i}\left(x_{i}\right) \stackrel{\sigma}{=} \Delta \boldsymbol{x} \\
G_{3}\left[x_{1}, x_{2}\right]:=\lambda x_{3} \cdot \Delta\left(x_{1}, x_{2}, x_{3}\right) \\
X_{3}\left[x_{1}, x_{2}\right]:=\Phi_{3}\left(G_{3}\left[x_{1}, x_{2}\right]\right) \\
g_{2}:= \\
x_{2}:=\quad \\
G_{2}\left[x_{1}\right]:=\lambda x_{2} \cdot \Delta\left(x_{1}, x_{2}, X_{3}\left[x_{1}, x_{2}\right]\right) \\
\\
\\
g_{1}:=\lambda x_{1} \cdot \Delta\left(x_{1}, X_{2}\left[x_{2}\left[x_{1}\right]\right)\right. \\
\\
x_{1}:=\Phi_{1}\left(g_{1}\right)
\end{gathered}
$$

A particular case

Let's consider the particular case in which $\Psi \leq 3$

\[

\]

Finite bar recursion

General case (with a fixed bound k)

$$
\begin{array}{ll}
i & \leq k \\
x_{i} & \stackrel{\tau}{=} \Phi_{i} g_{i} \\
g_{i}\left(x_{i}\right) & \stackrel{\sigma}{=} \Delta\left(x_{1}, \ldots, x_{k}\right)
\end{array}
$$

Finite bar recursion

General case (with a fixed bound k)

$$
\begin{array}{ll}
i & \leq k \\
x_{i} & \stackrel{\tau}{=} \Phi_{i} g_{i} \\
g_{i}\left(x_{i}\right) & \stackrel{\sigma}{=} \Delta\left(x_{1}, \ldots, x_{k}\right)
\end{array}
$$

General solution can be constructed as follows ($\boldsymbol{x}_{i-1} \equiv x_{1}, \ldots, x_{i-1}$)

$$
\mathrm{fB}\left(\boldsymbol{x}_{i-1}\right)= \begin{cases}x_{1}, \ldots, x_{k} & k=i-1 \\ \mathrm{fB}\left(\boldsymbol{x}_{i-1}, X_{i}\left[\boldsymbol{x}_{i-1}\right]\right) & \text { otherwise }\end{cases}
$$

where $X_{i}\left[\boldsymbol{x}_{i-1}\right]:=\Phi_{i} G_{i}\left[\boldsymbol{x}_{i-1}\right]$ and $G_{i}\left[\boldsymbol{x}_{i-1}\right]:=\lambda x_{i} . \Delta\left(\mathrm{fB}\left(\boldsymbol{x}_{i-1}, x_{i}\right)\right)$.

Finite bar recursion

General case (with a fixed bound k)

$$
\begin{array}{ll}
i & \leq k \\
x_{i} & \stackrel{\tau}{=} \Phi_{i} g_{i} \\
g_{i}\left(x_{i}\right) & \stackrel{\sigma}{=} \Delta\left(x_{1}, \ldots, x_{k}\right)
\end{array}
$$

General solution can be constructed as follows ($\boldsymbol{x}_{i-1} \equiv x_{1}, \ldots, x_{i-1}$)

$$
\mathrm{fB}\left(\boldsymbol{x}_{i-1}\right)= \begin{cases}x_{1}, \ldots, x_{k} & k=i-1 \\ \mathrm{fB}\left(\boldsymbol{x}_{i-1}, X_{i}\left[\boldsymbol{x}_{i-1}\right]\right) & \text { otherwise }\end{cases}
$$

where $X_{i}\left[\boldsymbol{x}_{i-1}\right]:=\Phi_{i} G_{i}\left[\boldsymbol{x}_{i-1}\right]$ and $G_{i}\left[\boldsymbol{x}_{i-1}\right]:=\lambda x_{i} . \Delta\left(\mathrm{fB}\left(\boldsymbol{x}_{i-1}, x_{i}\right)\right)$.
Then take $\left\langle x_{1}, \ldots, x_{k}\right\rangle:=\mathrm{fB}(\langle \rangle)$ and $g_{i}:=G_{i}\left[\boldsymbol{x}_{i-1}\right]$.

Spector's bar recursion

Back to the original problem

$$
\begin{array}{ll}
i & \leq|\boldsymbol{x}| \\
x_{i} & \stackrel{\tau}{=} \Phi_{i} g_{i} \\
g_{i}\left(x_{i}\right) & \stackrel{\sigma}{=} \Delta \boldsymbol{x}
\end{array}
$$

Spector's bar recursion

Back to the original problem

$$
\begin{array}{ll}
i & \leq|\boldsymbol{x}| \\
x_{i} & \stackrel{\tau}{=} \Phi_{i} g_{i} \\
g_{i}\left(x_{i}\right) & \stackrel{\sigma}{=} \Delta \boldsymbol{x}
\end{array}
$$

can be solved with $\left(\boldsymbol{x}_{i-1} \equiv x_{1}, \ldots, x_{i-1}\right)$

$$
\operatorname{BR}\left(\boldsymbol{x}_{i-1}\right)= \begin{cases}\boldsymbol{x}_{i-1} & \Psi \hat{\boldsymbol{x}}<i-1 \\ \operatorname{BR}\left(\boldsymbol{x}_{i-1}, X_{i}\left[\boldsymbol{x}_{i-1}\right]\right) & \text { otherwise }\end{cases}
$$

where $X_{i}\left[\boldsymbol{x}_{i-1}\right]:=\Phi_{i} G_{i}\left[\boldsymbol{x}_{i-1}\right]$ and $G_{i}\left[\boldsymbol{x}_{i-1}\right]:=\lambda x_{i} . \Delta\left(\mathrm{BR}\left(\boldsymbol{x}_{i-1}, x_{i}\right)\right)$.
Finally, take $\boldsymbol{x}:=\mathrm{fB}(\langle \rangle)$ and $g_{i}:=G_{i}\left[\boldsymbol{x}_{i-1}\right]$.

Outline

(1) Bar recursion

- Finite bar recursion
- Spector's bar recursion
(2) An application

No injection from $\mathbb{N} \rightarrow \mathbb{N}$ to \mathbb{N}

Theorem

$\forall \Psi^{1 \rightarrow 0} \exists \alpha^{1}, \beta^{1}(\alpha \neq \beta \wedge \Psi \alpha=\Psi \beta)$.

No injection from $\mathbb{N} \rightarrow \mathbb{N}$ to \mathbb{N}

Theorem

$\forall \Psi^{1 \rightarrow 0} \exists \alpha^{1}, \beta^{1}(\alpha \neq \beta \wedge \Psi \alpha=\Psi \beta)$.

No injection from $\mathbb{N} \rightarrow \mathbb{N}$ to \mathbb{N}

Theorem

$$
\forall \Psi^{1 \rightarrow 0} \exists \alpha^{1}, \beta^{1}(\alpha \neq \beta \wedge \Psi \alpha=\Psi \beta) .
$$

No injection from $\mathbb{N} \rightarrow \mathbb{N}$ to \mathbb{N}

Theorem

$$
\forall \Psi^{1 \rightarrow 0} \exists \alpha^{1}, \beta^{1}(\alpha \neq \beta \wedge \Psi \alpha=\Psi \beta) .
$$

No injection from $\mathbb{N} \rightarrow \mathbb{N}$ to \mathbb{N}

Theorem

$$
\forall \Psi^{1 \rightarrow 0} \exists \alpha^{1}, \beta^{1}(\alpha \neq \beta \wedge \Psi \alpha=\Psi \beta) .
$$

No injection from $\mathbb{N} \rightarrow \mathbb{N}$ to \mathbb{N}

Theorem

$$
\forall \Psi^{1 \rightarrow 0} \exists \alpha^{1}, \beta^{1}(\alpha \neq \beta \wedge \Psi \alpha=\Psi \beta) .
$$

Bar recursive solution

Key in solution is the construction of the enumeration $f: \mathbb{N} \rightarrow(\mathbb{N} \rightarrow \mathbb{N})$

$$
\forall k(\exists \beta(\Psi \beta=k) \rightarrow \Psi(f k)=k)
$$

Bar recursive solution

Key in solution is the construction of the enumeration $f: \mathbb{N} \rightarrow(\mathbb{N} \rightarrow \mathbb{N})$

$$
\forall k(\exists \beta(\Psi \beta=k) \rightarrow \Psi(f k)=k)
$$

Could try to build a finite approximation t for f

$$
\forall k<|t|\left(\exists \beta(\Psi \beta=k) \rightarrow \Psi\left(t_{k}\right)=k\right)
$$

Bar recursive solution

Key in solution is the construction of the enumeration $f: \mathbb{N} \rightarrow(\mathbb{N} \rightarrow \mathbb{N})$

$$
\forall k(\exists \beta(\Psi \beta=k) \rightarrow \Psi(f k)=k)
$$

Could try to build a finite approximation t for f

$$
\forall k<|t|\left(\exists \beta(\Psi \beta=k) \rightarrow \Psi\left(t_{k}\right)=k\right)
$$

This is still too strong. We build finite approximation t satisfying

$$
\forall k<|t|\left(\Psi\left(\delta_{\hat{t}}\right)=k \rightarrow \Psi\left(t_{k}\right)=k\right) \text { and } \Psi\left(\delta_{\hat{t}}\right) \leq|t|
$$

Bar recursive solution

Key in solution is the construction of the enumeration $f: \mathbb{N} \rightarrow(\mathbb{N} \rightarrow \mathbb{N})$

$$
\forall k(\exists \beta(\Psi \beta=k) \rightarrow \Psi(f k)=k)
$$

Could try to build a finite approximation t for f

$$
\forall k<|t|\left(\exists \beta(\Psi \beta=k) \rightarrow \Psi\left(t_{k}\right)=k\right)
$$

This is still too strong. We build finite approximation t satisfying

$$
\forall k<|t|\left(\Psi\left(\delta_{\hat{t}}\right)=k \rightarrow \Psi\left(t_{k}\right)=k\right) \text { and } \Psi\left(\delta_{\hat{t}}\right) \leq|t|
$$

Let

$$
\mathrm{B}(s, k):=\left\{\begin{array}{lll}
s & \Psi \delta_{\hat{s}}<k & \\
r & \Psi \delta_{\hat{r}} \neq k & \text { (and } \left.\Psi \delta_{\hat{s}} \geq k\right) \\
\mathrm{B}\left(s * \delta_{\hat{r}}, k+1\right) & \Psi \delta_{\hat{r}}=k & \text { (and } \left.\Psi \delta_{\hat{s}} \geq k\right)
\end{array}\right.
$$

where $r:=\mathrm{B}\left(s * 0^{1}, k+1\right)$. Then take $t:=\mathrm{B}(\langle \rangle, 0)$.

Final remarks

- Other application in the paper
- compute fixed-point for update procedures (Avigad'02)

Final remarks

- Other application in the paper
- compute fixed-point for update procedures (Avigad'02)
- Models of bar recursion
- Total continuous functions (Scarpellini'71)
- Strongly majorizable functions (Bezem'85)

Final remarks

- Other application in the paper
- compute fixed-point for update procedures (Avigad'02)
- Models of bar recursion
- Total continuous functions (Scarpellini'71)
- Strongly majorizable functions (Bezem'85)
- Interpretation used
- Dialectica interpretation (Gödel'58)
- Using realizability interpretations: Modified bar recursion (Berardi et al.'98, Berger/O.'05)

