Effective WKL Conservation in Feasible Analysis

Paulo Oliva (joint work with Fernando Ferreira)

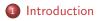
Queen Mary, University of London, UK (pbo@dcs.qmul.ac.uk)

ALS Annual Meeting, Montreal, Canada 18 May 2006

(日) (四) (王) (王) (王)

Outline

Outline



2 WKL Conservation

3 Bounded Dialectica Interpretation

Cook and Urquhart's CPV^ω

- Only polynomial-time construction allowed
- Induction for NP-predicates:

$$\forall x (A(\lfloor \frac{1}{2}x \rfloor) \to A(x)) \to (A(0) \to \forall x A(x))$$

where A is of the form $\exists y \leq t \, (s=u)$

Cook and Urquhart's CPV^ω

- Only polynomial-time construction allowed
- Induction for NP-predicates:

$$\forall x (A(\lfloor \frac{1}{2}x \rfloor) \to A(x)) \to (A(0) \to \forall x A(x))$$

where A is of the form $\exists y \leq t \, (s=u)$

Feasible Analysis

 CPV^{ω} plus quantifier-free choice $\mathsf{AC}_{\mathsf{qf}}$

Cook and Urquhart's CPV^ω

- Only polynomial-time construction allowed
- Induction for NP-predicates:

$$\forall x (A(\lfloor \frac{1}{2}x \rfloor) \to A(x)) \to (A(0) \to \forall x A(x))$$

where A is of the form $\exists y \leq t \, (s=u)$

Feasible Analysis

 CPV^{ω} plus quantifier-free choice $\mathsf{AC}_{\mathsf{qf}}$ ($\mathsf{CPV}^{\omega} + \mathsf{AC}_{\mathsf{qf}} \vdash \Delta_1^{\mathsf{pt}}$ -CA)

Cook and Urquhart's CPV^ω

- Only polynomial-time construction allowed
- Induction for NP-predicates:

$$\forall x (A(\lfloor \frac{1}{2}x \rfloor) \to A(x)) \to (A(0) \to \forall x A(x))$$

where A is of the form $\exists y \leq t \, (s=u)$

Feasible Analysis

 CPV^{ω} plus quantifier-free choice $\mathsf{AC}_{\mathsf{qf}}$ ($\mathsf{CPV}^{\omega} + \mathsf{AC}_{\mathsf{qf}} \vdash \Delta_1^{\mathsf{pt}}$ -CA)

 $\forall n (\exists k A_{\rm qf}(n,k) \leftrightarrow \forall k B_{\rm qf}(n,k)) \ \vdash \ \exists f \forall n (fn = 0 \leftrightarrow \exists k A_{\rm qf}(n,k))$

Weak König's Lemma

Every infinite binary tree has an infinite path
 Compactness of {0,1}^ω under associated product topology

• Formally
$$\underbrace{\mathsf{Bin}(T)}_{\Pi_1^0} \wedge \underbrace{\mathsf{Inf}(T)}_{\forall \Sigma_1^b} \to \exists \alpha^{\{0,1\}^{\omega}} \forall n^{\mathbb{N}}(\overline{\alpha}n \in T)$$

where T is a $\Sigma^b_\infty\text{-formula}$

Weak König's Lemma

- Every infinite binary tree has an infinite path
 Compactness of {0,1}^ω under associated product topology
- Formally

$$\underbrace{\operatorname{Bin}(T)}_{\Pi^0_1} \wedge \underbrace{\operatorname{Inf}(T)}_{\forall \Sigma^b_1} \to \exists \alpha^{\{0,1\}^\omega} \forall n^{\mathbb{N}}(\overline{\alpha}n \in T)$$

where T is a Σ^b_{∞} -formula

- Equivalent (over RCA₀) to:
 - Heine-Borel covering theorem for unit interval

 - Boundedness theorem
 - Extreme value theorem
 - Gödel's completeness theorem for countable languages

Outline

Bounded Dialectica Interpretation

 RCA_0

- As used in 'reverse mathematics'
- Σ_1^0 -induction and Δ_1^0 -comprehension

Theorem (Friedman)

 $\mathsf{RCA}_0 + \mathsf{WKL}$ is Π^0_2 -conservative over PRA, i.e.

 $\mathsf{RCA}_0 + \mathsf{WKL} \vdash \forall n \exists m A_{qf}(n, m) \quad \Rightarrow \quad \mathsf{PRA} \vdash A_{qf}(n, t[n])$

for some term t.

 RCA_0

- As used in 'reverse mathematics'
- Σ_1^0 -induction and Δ_1^0 -comprehension

Theorem (Friedman)

 $\mathsf{RCA}_0 + \mathsf{WKL} \text{ is } \Pi^0_2 \text{-conservative over PRA, i.e.}$

```
\mathsf{RCA}_0 + \mathsf{WKL} \vdash \forall n \exists m A_{qf}(n, m) \Rightarrow \mathsf{PRA} \vdash A_{qf}(n, t[n])
```

for some term t.

- Friedman's proof is model-theoretic
- Effective proof by Kohlenbach [1992] using combination of Dialectica interpretation and majorizability

WKL Conservation: in Feasible Analysis

Theorem (Ferreira'1994)

 $\mathsf{CPV}^{\omega} + \Delta_1^{\mathsf{pt}} - \mathsf{CA} + \mathsf{WKL} \text{ is } \Pi_2^0 \text{-conservative over } \mathsf{PV}^{\omega}.$

WKL Conservation: in Feasible Analysis

Theorem (Ferreira'1994)

 $\mathsf{CPV}^{\omega} + \Delta_1^{\mathsf{pt}} - \mathsf{CA} + \mathsf{WKL} \text{ is } \Pi_2^0 \text{-conservative over } \mathsf{PV}^{\omega}.$

- Ferreira's proof is also model-theoretic (and ineffective)
- Effective version was not known (Kohlenbach's proof makes use of non-feasible constructions)

Avigad and Feferman's Conjecture

"It is reasonable to conjecture that functional interpretations can be used to obtain similar results for systems of polynomial-time-computable arithmetic, especially in view of the conservation result of Ferreira [1994], which showed that a suitable version of WKL is conservative over PV^{ω} for Π_2^0 -formulas"

Handbook of Proof Theory, 1998

Avigad and Feferman's Conjecture

"It is reasonable to conjecture that functional interpretations can be used to obtain similar results for systems of polynomial-time-computable arithmetic, especially in view of the conservation result of Ferreira [1994], which showed that a suitable version of WKL is conservative over PV^{ω} for Π_2^0 -formulas"

Handbook of Proof Theory, 1998

Problem: FI don't distinguish bounded and unbounded quantifiers

Outline

Goal

- Interpretation distinguishing $\exists x^{\rho} \leq tA(x)$ and $\exists x^{\rho}A(x)$.
- Need: bounded quantifiers for all finite types.
- Need: extended \leq to all finite types.

The Bounded Quantifier

- Use Howard/Bezem's strong majorizability relation
- Extension of the \leq -relation to higher types:

$$\begin{array}{lll} x \trianglelefteq_{\mathbb{N}} y & := & x \leq_{\mathbb{N}} y \\ x \trianglelefteq_{\rho \to \sigma} y & := & \forall v^{\rho} \forall u \trianglelefteq_{\rho} v(\underbrace{xu \trianglelefteq_{\sigma} yv}_{\text{above}} \land \underbrace{yu \trianglelefteq_{\sigma} yv}_{\text{monotone}}) \end{array}$$

The Bounded Quantifier

- Use Howard/Bezem's strong majorizability relation
- Extension of the \leq -relation to higher types:

$$\begin{array}{lll} x \trianglelefteq_{\mathbb{N}} y & := & x \le_{\mathbb{N}} y \\ x \trianglelefteq_{\rho \to \sigma} y & := & \forall v^{\rho} \forall u \trianglelefteq_{\rho} v(\underbrace{xu \trianglelefteq_{\sigma} yv}_{\text{above}} \land \underbrace{yu \trianglelefteq_{\sigma} yv}_{\text{monotone}}) \end{array}$$

・ロト ・ 理 ト ・ 国 ト ・ 国 ト ・ 国

• Bounded quantifiers (for all types) defined as

The Bounded Quantifier

- Use Howard/Bezem's strong majorizability relation
- Extension of the \leq -relation to higher types:

$$\begin{array}{lll} x \trianglelefteq_{\mathbb{N}} y & := & x \leq_{\mathbb{N}} y \\ x \trianglelefteq_{\rho \to \sigma} y & := & \forall v^{\rho} \forall u \trianglelefteq_{\rho} v(\underbrace{xu \trianglelefteq_{\sigma} yv}_{\text{above}} \land \underbrace{yu \trianglelefteq_{\sigma} yv}_{\text{monotone}}) \end{array}$$

Bounded quantifiers (for all types) defined as

Let the theory T^ω_≦ be an extension of T^ω with axioms/rule for ⊴, B_∀ and B_∃. (*need to be careful in axiomatisation*)

The Interpretation

• Usual Dialectica interpretation

A assigned to quantifier-free formula $|A|_{\vec{u}}^{\vec{x}}$ $(A \leftrightarrow \exists \vec{x} \forall \vec{y} |A|_{\vec{u}}^{\vec{x}})$

The Interpretation

• Usual Dialectica interpretation

A assigned to quantifier-free formula $|A|_{\vec{u}}^{\vec{x}}$ $(A \leftrightarrow \exists \vec{x} \forall \vec{y} |A|_{\vec{u}}^{\vec{x}})$

• Bounded Dialectica Interpretation

A associated to bounded formula $|A|_{\vec{u}}^{\vec{x}}$ with monotonicity on \vec{x}

$$|A|^{\vec{x}}_{\vec{y}} \wedge \vec{x} \trianglelefteq \vec{w} \to |A|^{\vec{w}}_{\vec{y}}$$

The Interpretation

• Usual Dialectica interpretation

A assigned to quantifier-free formula $|A|_{\vec{u}}^{\vec{x}}$ $(A \leftrightarrow \exists \vec{x} \forall \vec{y} |A|_{\vec{u}}^{\vec{x}})$

• Bounded Dialectica Interpretation

A associated to *bounded* formula $|A|_{\vec{u}}^{\vec{x}}$ with *monotonicity* on \vec{x}

$$|A|^{\vec{x}}_{\vec{y}} \wedge \vec{x} \trianglelefteq \vec{w} \to |A|^{\vec{w}}_{\vec{y}}$$

Some cases:

$$\begin{aligned} |\forall x A(x)|_{a,c}^{f} &:= \quad \forall x \trianglelefteq a |A(x)|_{c}^{fa} \\ |A \to B|_{b,e}^{f,g} &:= \quad \forall c \trianglelefteq gbe |A|_{c}^{b} \to |B|_{e}^{fb} \end{aligned}$$

▲□ → ▲@ → ▲ = → ▲ = → = =

Soundness Theorem

Let $P[\trianglelefteq]$ denote the (family of) bounded version of

- axiom choice
- independence of premise
- Markov principle
- contra collection (generalisation of WKL)
- majorizability axiom, $\forall x \exists y (x \leq y)$

Soundness Theorem

Let $P[\trianglelefteq]$ denote the (family of) bounded version of

- axiom choice
- independence of premise
- Markov principle
- contra collection (generalisation of WKL)
- majorizability axiom, $\forall x \exists y (x \leq y)$

Theorem (Ferreira and Oliva'2006)

lf

 $\mathsf{IPV}^{\omega}_{\lhd} + \mathsf{P}[\trianglelefteq] \vdash A(z)$

then there are closed monotone terms t of appropriate types such that

 $\mathsf{IPV}^{\omega}_{\lhd} \vdash \forall a \forall z \trianglelefteq a \, \forall c |A(z)|^{ta}_{c}$

Corollary

Theorem (Ferreira and Oliva'2006)

lf

$$\begin{split} \mathsf{CPV}^\omega + \Delta_1^{\mathsf{pt}}\text{-}\mathsf{CA} + \mathsf{WKL} \vdash \forall n \exists m A_{\mathrm{qf}}(n,m), \\ \textit{where } A_{\mathrm{qf}} \textit{ is a quantifier-free formula, then} \\ \mathsf{PV}^\omega \vdash A_{\mathrm{qf}}(n,t[n]) \\ \textit{for a closed term } t \textit{ of } \mathsf{CPV}^\omega. \end{split}$$

Proof Sketch

Assume

 $\mathsf{CPV}^{\omega} + \Delta_1^{\mathsf{pt}} \mathsf{-}\mathsf{CA} + \mathsf{WKL} \vdash \forall n \exists m A_{\mathrm{qf}}(n,m)$

Assume

$$\mathsf{CPV}^{\omega} + \Delta_1^{\mathsf{pt}} \mathsf{-}\mathsf{CA} + \mathsf{WKL} \vdash \forall n \exists m A_{qf}(n,m)$$

O Then

$$\mathsf{CPV}^{\omega}_{\trianglelefteq} + \mathsf{AC}^{b}_{\mathsf{qf}} + \mathsf{P}_{\mathrm{bd}}[\trianglelefteq] \vdash \forall n \exists m A_{\mathrm{qf}}(n,m)$$

Assume

$$\mathsf{CPV}^{\omega} + \Delta_1^{\mathsf{pt}} \mathsf{-} \mathsf{CA} + \mathsf{WKL} \vdash \forall n \exists m A_{\mathrm{qf}}(n, m)$$

O Then

$$\mathsf{CPV}^\omega_\trianglelefteq + \mathsf{AC}^b_{\mathsf{qf}} + \mathsf{P}_{\mathrm{bd}}[\trianglelefteq] \vdash \forall n \exists m A_{\mathrm{qf}}(n,m)$$

Objective By the negative translation

$$\mathsf{IPV}_{\leq}^{\omega} + \mathsf{MP}_{\Sigma_{1}^{b}} + \mathsf{AC}_{\mathsf{qf}}^{b} + \mathsf{P}_{\mathrm{bd}}[\leq] \vdash \forall n \exists m A_{\mathrm{qf}}(n,m)$$

Assume

$$\mathsf{CPV}^{\omega} + \Delta_1^{\mathsf{pt}} \mathsf{-} \mathsf{CA} + \mathsf{WKL} \vdash \forall n \exists m A_{\mathrm{qf}}(n,m)$$

O Then

$$\mathsf{CPV}^{\omega}_{\trianglelefteq} + \mathsf{AC}^{b}_{\mathsf{qf}} + \mathsf{P}_{\mathrm{bd}}[\trianglelefteq] \vdash \forall n \exists m A_{\mathrm{qf}}(n,m)$$

O By the negative translation

$$\mathsf{IPV}^{\omega}_{\trianglelefteq} + \mathsf{MP}_{\Sigma^{b}_{1}} + \mathsf{AC}^{b}_{\mathsf{qf}} + \mathsf{P}_{\mathrm{bd}}[\trianglelefteq] \vdash \forall n \exists m A_{\mathrm{qf}}(n,m)$$

By bounded Dialectica interpretation

$$\mathsf{IPV}^{\omega} + \mathsf{MP}_{\Sigma_1^b} + \mathsf{AC}^b_{\mathsf{qf}} \vdash \forall n \exists m \leq t[n] A_{\mathrm{qf}}(n,m)$$

Assume

$$\mathsf{CPV}^{\omega} + \Delta_1^{\mathsf{pt}} \mathsf{-} \mathsf{CA} + \mathsf{WKL} \vdash \forall n \exists m A_{\mathrm{qf}}(n, m)$$

O Then

$$\mathsf{CPV}^\omega_\trianglelefteq + \mathsf{AC}^b_{\mathsf{qf}} + \mathsf{P}_{\mathrm{bd}}[\trianglelefteq] \vdash \forall n \exists m A_{\mathrm{qf}}(n,m)$$

O By the negative translation

$$\mathsf{IPV}^{\omega}_{\trianglelefteq} + \mathsf{MP}_{\Sigma^{b}_{1}} + \mathsf{AC}^{b}_{\mathsf{qf}} + \mathsf{P}_{\mathrm{bd}}[\trianglelefteq] \vdash \forall n \exists m A_{\mathrm{qf}}(n,m)$$

By bounded Dialectica interpretation

$$\mathsf{IPV}^{\omega} + \mathsf{MP}_{\Sigma_1^b} + \mathsf{AC}_{\mathsf{qf}}^b \vdash \forall n \exists m \le t[n] A_{\mathrm{qf}}(n,m)$$

By Cook and Urquhart Dialectica interpretation

$$\mathsf{PV}^{\omega} \vdash A_{\mathrm{qf}}(n, s[n])$$

・ロト ・ 理 ト ・ 国 ト ・ 国 ト ・ 国

Conclusion

Outline

2 WKL Conservation

3 Bounded Dialectica Interpretation

Final remarks

More general result allowing:

- Extensionality
- Σ_1^0 Uniform Boundness

 $\forall f \leq_1 h \exists e^1 A_{\mathbf{b}}(f,h,e) \to \exists g^1 \forall f \leq_1 h \exists e \leq_1 g A_{\mathbf{b}}(f,h,e)$

for any parameter h^1 and Σ^b_{∞} -formula $A_{\rm b}$.

• More general forms of choice

- Conclusion

References

- 1992 W. Kohlenbach Effective bounds from ineffective proofs in analysis The Journal of Symbolic Logic, 57:1239–1273
- 1994 F. Ferreira
 - A feasible theory for analysis. *The Journal of Symbolic Logic*, 59:1001–1011
- 1998 J. Avigad and S. Feferman Gödel's functional ("Dialectica") interpretation. Handbook of proof theory, 137:337–405
- 2005 F. Ferreira and P. Oliva Bounded functional interpretation. Annals of Pure and Applied Logic, 135, 73–112
- 2005 F. Ferreira and P. Oliva Bounded functional interpretation and feasible analysis. Submitted for publication