Abstract Hoare Logic

Abstract Hoare Logic

Paulo Oliva
(joint work with U. Martin and E. A. Mathiesen)

Queen Mary, University of London, UK
(pbo@dcs.qmul.ac.uk)

London Theory Day, 24 April 2006



Abstract Hoare Logic

Outline

@ Introduction
© System Categories
© Abstract Hoare Logic

@ Instantiations



Abstract Hoare Logic
L Introduction

Outline

@ Introduction



Abstract Hoare Logic
L Introduction

Overview

o What:
Abstraction of modular reasoning about ‘while programs’



Abstract Hoare Logic
L Introduction

Overview

@ What:

Abstraction of modular reasoning about ‘while programs’

o How:

Using system theory, tmc, and fixed-point theory



Abstract Hoare Logic
L Introduction

Overview

@ What:

Abstraction of modular reasoning about ‘while programs’

o How:

Using system theory, tmc, and fixed-point theory

o Why:

Develop Hoare-logic for dynamical systems



Abstract Hoare Logic
L*System Categories

Outline

© System Categories



Abstract Hoare Logic
L*System Categories

Network vs Flowcharts

|
p\




Abstract Hoare Logic
L*System Categories

Network vs Flowcharts

& > —f ’
+ —
_>‘
F [«
A U —> Y
— b [—»
L 5 A
C




Abstract Hoare Logic
L*System Categories

Network vs Flowcharts

C= — (C= x C)

F > | —
+ —
_>‘
F [«
7y U >
Y
— b r
L, Py
¢ H— (HYH)




Abstract Hoare Logic
L*System Categories

Network vs Flowcharts

F > | —
+ —
_>‘
F [«
(HWH)— H
7y U >
Y
— b —
>
¢ H— (HYH)




Abstract Hoare Logic
L*System Categories

Bainbridge Duality

Exploit the duality between sum and product

oHET ~ oH o o7

Each flowchart corresponds to a network




Abstract Hoare Logic
L*System Categories

Bainbridge Duality

Exploit the duality between sum and product

oHET ~ oH o o7

Each flowchart corresponds to a network




Abstract Hoare Logic
L*System Categories

Bainbridge Duality

Exploit the duality between sum and product

oHET ~ oH o o7

Each flowchart corresponds to a network




Abstract Hoare Logic
L*System Categories

Bainbridge Duality

Exploit the duality between sum and product

oHET ~ oH o o7

Each flowchart corresponds to a network




Abstract Hoare Logic
L*System Categories

Bainbridge Duality

Exploit the duality between sum and product

oHET ~ oH o o7

Each flowchart corresponds to a network

<




Abstract Hoare Logic
L*System Categories

Bainbridge Duality

Exploit the duality between sum and product

2HLHJ ~ 2H X 2]

Each flowchart corresponds to a network

— e—
—» b - b
—> —
-
— ~
-~




Abstract Hoare Logic
L*System Categories

Bainbridge Duality

Exploit the duality between sum and product

2HLHJ ~ 2H X 2]

Each flowchart corresponds to a network

—> SO Wy Sl le— SO
—» b - b
| — — S,
-
— ~
-~




Abstract Hoare Logic
L*System Categories

Bainbridge Duality

Exploit the duality between sum and product

2HLHJ ~ 2H X 2]

Each flowchart corresponds to a network

—>— l—
—> b <~— b
—> lt——
S <+
— ~— S
S



Abstract Hoare Logic
Monoidal Categories

o Sequential composition: categorical composition
f:X—=Y ¢g:Y—>Zthengof: X -2

gof — f

Y
ks

o Parallel composition: Monoidal operation
[:X=Y, g:Z—Wthen fRg:(X®Z)—=(YW)

f®g




Abstract Hoare Logic
L*System Categories

Traced Monoidal Categories

o Iteration: Trace operation
fFfr:(Xe®Z)—-(Y®Z)then Tr(f): X =Y

.
X Y x "y

Z Z




Abstract Hoare Logic
L*System Categories

Traced Monoidal Categories

o Iteration: Trace operation
fFfr:(Xe®Z)—-(Y®Z)then Tr(f): X =Y

.
X Y x "y
e I
z z

o Examples
o Disjoint union
Tr(f) = {(z,y) : Fz0,. .., 2n({@,20) € fA .. A (2n, ) € f)}

o Cartesian products

Tr(f) = {(z,y) - 32({{x, 2), (y, 2)) € 1)}



Abstract Hoare Logic
L*System Categories

System Category

Let cl(M) denote the closure of the set of morphisms M under
sequential and monoidal composition, and trace.

Definition (System category)

A system category S is a traced monoidal category with a distinguished
set of morphisms S, C S,,,, so-called basic systems, such that

C|(Sb) — Sm.




Abstract Hoare Logic
System Category

Let cl(M) denote the closure of the set of morphisms M under
sequential and monoidal composition, and trace.

Definition (System category)

A system category S is a traced monoidal category with a distinguished
set of morphisms S, C S,,,, so-called basic systems, such that
C|(Sb) = Sm.

Flowcharts Stream circuits

Boolean Test (X — X W X) Sum (¥ x ¥ — X)

Joining of Wires (X W3 — %) | Splitting of Wires (¥ — X x X)
Assignment (X — X) Scalar Multiplication (X — X)
Register (X — X)




Abstract Hoare Logic

= Abstract Hoare Logic

Outline

© Abstract Hoare Logic



Abstract Hoare Logic
L*Abstract Hoare Logic

Hoare Logic

e Pre/Post-conditions:
Describe properties of input/output



Abstract Hoare Logic
L*Abstract Hoare Logic

Hoare Logic

e Pre/Post-conditions:
Describe properties of input/output

o Ordering on information:
Rule of consequence



Abstract Hoare Logic
L*Abstract Hoare Logic

Hoare Logic

e Pre/Post-conditions:
Describe properties of input/output

o Ordering on information:
Rule of consequence

@ Partial correctness assertions:
Predicate transformers



Abstract Hoare Logic
L*Abstract Hoare Logic

Hoare Logic

e Pre/Post-conditions:
Describe properties of input/output

o Ordering on information:
Rule of consequence

@ Partial correctness assertions:
Predicate transformers

o Others:
Strongest post condition, loop invariant, ...



Abstract Hoare Logic
L*Abstract Hoare Logic

Verification Category

Let Pos denote the category of posets and monotone mappings

Definition (Verification category)

A subcategory V of Pos is called a verification category if for any element
P € X and morphism f: (X x Z) — (Y x Z) the set of pre-fixed
points, i.e.

{Q : 3R. f(P,Q) E(R,Q)}

has a least element. We will denote such least element by u¢ p.




Abstract Hoare Logic
L*Abstract Hoare Logic

Verification Category

Let Pos denote the category of posets and monotone mappings

Definition (Verification category)

A subcategory V of Pos is called a verification category if for any element
P € X and morphism f: (X x Z) — (Y x Z) the set of pre-fixed
points, i.e.

{Q : 3R. f(P,Q) E(R,Q)}

has a least element. We will denote such least element by u¢ p.

By monotonicity of f, pir p is also the least fixed point.



Abstract Hoare Logic
L*Abstract Hoare Logic

Verification Category: Intuition

Usual Hoare Logic Verification Categories
Pre/Post-conditions Points of posets

Logical implication Partial order

Rule of consequence Monotonicity

Strongest loop invariant | Least pre-fixed point



Abstract Hoare Logic
L*Abstract Hoare Logic

Verification Category and TMC

Any verification category V gives rise to a traced monoidal category with
trace defined as

Tr(f)(P):=R
for any morphism f : (X x Z) — (Y x Z), where R is the unique
element of Y such that f(P,usp) = (R, ls,p).

PeX ReY

[— ]

Ky P




Abstract Hoare Logic
Propagation of Upper Bounds

Theorem (Soundness and completeness)

Let V be a verification category and Vy, a set of basic morphisms
spanning V,,,. The following set of propagation of upper bound rules is
sound and complete for V with respect to V,

feVy
J(P)C f(P)

(axiom)




Abstract Hoare Logic
Do
Propagation of Upper Bounds

Theorem (Soundness and completeness)

Let V be a verification category and Vy, a set of basic morphisms
spanning V,,,. The following set of propagation of upper bound rules is
sound and complete for V with respect to V,

FeVs : f(P)EQ g(@QECR
—— (axiom) (o)
J(P)C (P) (9o NP CR

f(P)EQ g(R)ES
(f x 9)(P,R) E(@Q,5)




Abstract Hoare Logic
Do
Propagation of Upper Bounds

Theorem (Soundness and completeness)

Let V be a verification category and Vy, a set of basic morphisms
spanning V,,,. The following set of propagation of upper bound rules is
sound and complete for V with respect to V,

FeVs : f(P)EQ g(@QECR
—— (axiom) (o)
J(P)C (P) (9o NP CR

f(P)EQ g(R)ES f(P,Q) E(R,Q)

X (Trv)

P'CP f(P)CQ QCQ
fPee

(con)




Abstract Hoare Logic

= Abstract Hoare Logic

Abstract Hoare Triples



Abstract Hoare Logic

L Abstract Hoare Logic

Abstract Hoare Triples

Pos




Abstract Hoare Logic

L Abstract Hoare Logic

Abstract Hoare Triples

Pos




Abstract Hoare Triples

Pos
S
X
Vo
Y
PeHX)
Q€H(T)
{P} f1O} H()(P) S Q



Abstract Hoare Logic
L*Abstract Hoare Logic

Abstract Hoare Triples

Definition (Verification functor)

A monoidal functor H : S — Pos is called a verification functor if
@ image of H is a verification category
@ H preserves traces (trace in image of H defined in Lemma (A))




Abstract Hoare Logic
L*Abstract Hoare Logic

Abstract Hoare Triples

Definition (Verification functor)

A monoidal functor H : S — Pos is called a verification functor if
@ image of H is a verification category
@ H preserves traces (trace in image of H defined in Lemma (A))

Let
@ H : S — Pos be a verification functor
e f: X — Y is a morphism (system) in S
e PcH(X)and Qe H(Y)



Abstract Hoare Logic
L*Abstract Hoare Logic

Abstract Hoare Triples

Definition (Verification functor)

A monoidal functor H : S — Pos is called a verification functor if
@ image of H is a verification category
@ H preserves traces (trace in image of H defined in Lemma (A))

Let
@ H : S — Pos be a verification functor
e f: X — Y is a morphism (system) in S
e PcH(X)and Qe H(Y)

We define abstract Hoare triples as

{P} f{Q} :== H(f)(P)Euw) Q



Abstract Hoare Logic

Theorem (Soundness and completeness)

The following set of rules is sound and complete for any system category
S and verification functor H : S — Pos:

fes (axiom) {P} F{Q} {Q}g{R} 0
{P} f{H()(P)} {P}gof{R}
(P} F{Q} {R}g{S} o {(P,Q)} f{(R,Q)} (Trs)
{(P.R)} fog{{(Q,5)} {P} Trs(f) {R}

P Ex P {P}f{Q} QCyQ
{P'} F{Q"}

(wkn)




Abstract Hoare Logic

L Instantiations

Outline

@ Instantiations



Abstract Hoare Logic
L Instantiations

Flowcharts

The embedding H is basically the power-set construction, so that
HXWY):=H(X)x HY)

On morphisms, we define:
o Forward reasoning
H(f)(P):={yeY : JzeP (f(z) =y)}
o Backward reasoning

H(f)(Q) ={ze X : f(x) € Q}

And if sets are described by formulas:
o H(f)(®):=SPC(f,®)
o H(f)(®) := WPC(/, ®)



Abstract Hoare Logic

L Instantiations

While Loop Rule
while, (C) (1wC)oifpo A

J gl




Abstract Hoare Logic

L Instantiations

While Loop Rule
while, (C) Tr((1WC)oify 0 A)

J gl




While Loop Rule
while, (C) Tr((1WC)oify 0 A)

7y aU A“(’i—'
C | C

:

{IA-b}y1{IA=b} {IAb}C{I}
(I} ify {(TA=b,TAB)} {(IA=D,IAD)} 16 C {(IA-D,I)}
(I (LW C)oify {(IA—=b,1)}

(1,1} 1w C)oifyo A {(IA-b,I)}

(I} whiley(C) {1 A —b}

(U

°)
()
(Tr)




While Loop Rule
while, (C) Tr((1WC)oify 0 A)

T »(b {1} —“4~<Ii—> {1 A b}
C | C

{IA-b}y1{IA=b} {IAb}C{I}
(I} ify {(TA=b,TAB)} {(IA=D,IAD)} 16 C {(IA-D,I)}
(I (LW C)oify {(IA—=b,1)}

(1,1} 1w C)oifyo A {(IA-b,I)}

{1} whiley(C) {1 A —b}

(U

°)
()
(Tr)




While Loop Rule
while, (C) Tr((1WC)oify 0 A)

7\ »(b {1} _“4.(;]‘?_. {I A —b}
C | — c b

{1} {1}

{IA-b}1{IA-b} {IAb}C{I}
(I} ify {(TA=b,TABY} {(IA=B,IAD)} 16 C {(IA—D,I)}
(I} (LW C) oify {(I A—b,I)}

(I,D)} (1WC) oifyo A {(IA—b,I)}

{1} whiley(C) {I A —b}

Y

°)
()
(Tr)




While Loop Rule

while, (C) Tr((1WC)oify 0 A)
" - _Aﬂ.qi_. (170}
C — c P
(1) (1)

(TA-B} L{IA—b} {IAB}C{I}
(I} ify {(TA—b, TAB)}Y ((TA—bIAD)}L6C {(IAb D)}
(1Y (1w C)oify {(I A—b, 1)}

(1.1} (16 C)oify0 A {(IA—b 1)} (;r)
(I} whiley(C) {I A —b}

Y

°)




While Loop Rule

while, (C) Tr((1WC)oify 0 A)
" - 0 _Aﬂ.qi_. (175}
C — c P
- A 8

{(IA-b}1{IA-b} {IAb}C{I}
(I} ify {(TA=b,IABY} {(IA—D,IAD)} 16 C {(IA—D,I)}
(I (LW C)oify {(IA=b,I)}

(1,1} Q1w C)oifyo A {(IA-b,I)}

(I} whiley(C) {1 A —b}

(]

°)
()
(Tr)




While Loop Rule

while, (C) Tr((1WC)oify 0 A)
T (b {1} —“4~<Ii—> {I A b}
C | E— c
{I A b} 3

{IA=b} 1{IA=b} {IAD}C{I}
(I ify {(TA=b,TABY} {(IA=D,IAD)} 16 C {(IA—D,I)}
(I} (LW C) o ify {(I A-b,I)}

((I,D)} 1WC) oifyo A {(IA—D,I)}

(I} whiley(C) {T A —b}

(]

°)
()
(Tr)




L Instantiations
Stream Circuits

Smooth functions can be represented as streams

oy = [y(0),5'(0),5(0), .

Stream circuits basic operations:

—> aX —»
—» R —» :




Abstract Hoare Logic
L Instantiations

Stream Circuits
Smooth functions can be represented as streams
oy = [¥(0),4'(0),y"(0), ..]

Stream circuits basic operations:

—> aX —»
—» R —» :




Abstract Hoare Logic
L Instantiations

Stream Circuits
Smooth functions can be represented as streams
oy = [¥(0),4'(0),y"(0), ..]

Stream circuits basic operations:

—> aX —»
—» R —» :




L Instantiations
Stream Circuits

Smooth functions can be represented as streams

oy = [y(0),5'(0),5(0), .

Stream circuits basic operations:

—> aX —»
—» R —» :




Abstract Hoare Logic
L Instantiations
Embedding

@ Stream circuits already have Cartesian product as the monoidal
structure, the embedding H into Pos has to respect that

@ Our verification embedding of stream circuits is as follows:
o Define H(X) as the poset of finite approximations (prefixes) of
elements in 3, with the ordering s < ¢, if ¢ is an extension of s
o For morphisms (stream circuits) f : X — Y define

H(f)t)={ftxT) : T€ X}



Abstract Hoare Logic

L Instantiations

Embedding

@ Stream circuits already have Cartesian product as the monoidal
structure, the embedding H into Pos has to respect that

@ Our verification embedding of stream circuits is as follows:
o Define H(X) as the poset of finite approximations (prefixes) of
elements in 3, with the ordering s < t, if ¢ is an extension of s
o For morphisms (stream circuits) f : X — Y define

H(f)t)={ftxT) : T€ X}

Y

{t+s} f{s} F T
{t} FB(f) {t + s}




Abstract Hoare Logic

L Instantiations

Embedding

@ Stream circuits already have Cartesian product as the monoidal
structure, the embedding H into Pos has to respect that

@ Our verification embedding of stream circuits is as follows:

o Define H(X) as the poset of finite approximations (prefixes) of
elements in 3, with the ordering s < t, if ¢ is an extension of s
o For morphisms (stream circuits) f : X — Y define

H(f)t)={ftxT) : T€ X}

t t+s
()5 T

{t} FB(f) {t + s}

Y




Abstract Hoare Logic
L Instantiations

Conclusions and Future Work

@ Other instantiations (in flowcharts):

o Pointer programs
o Total correctness

o Other instantiations (in stream circuits):

o Boundedness
o Relative stability

@ Related work
o Dijkstra's predicate transformer
o Kozen's KAT (Kleene Algebras with Test)
o Abramsky's specification categories
o Bloom and Esik on iteration theory
o Gurevich's existential fixed-point logic



	Main Part
	Introduction
	System Categories
	Abstract Hoare Logic
	Instantiations


