
Abstract Hoare Logic

Abstract Hoare Logic

Paulo Oliva

(joint work with U. Martin and E. A. Mathiesen)

Queen Mary, University of London, UK

(pbo@dcs.qmul.ac.uk)

London Theory Day, 24 April 2006



Abstract Hoare Logic

Outline

1 Introduction

2 System Categories

3 Abstract Hoare Logic

4 Instantiations



Abstract Hoare Logic

Introduction

Outline

1 Introduction

2 System Categories

3 Abstract Hoare Logic

4 Instantiations



Abstract Hoare Logic

Introduction

Overview

What:

Abstraction of modular reasoning about ‘while programs’

How:

Using system theory, tmc, and fixed-point theory

Why:

Develop Hoare-logic for dynamical systems



Abstract Hoare Logic

Introduction

Overview

What:

Abstraction of modular reasoning about ‘while programs’

How:

Using system theory, tmc, and fixed-point theory

Why:

Develop Hoare-logic for dynamical systems



Abstract Hoare Logic

Introduction

Overview

What:

Abstraction of modular reasoning about ‘while programs’

How:

Using system theory, tmc, and fixed-point theory

Why:

Develop Hoare-logic for dynamical systems



Abstract Hoare Logic

System Categories

Outline

1 Introduction

2 System Categories

3 Abstract Hoare Logic

4 Instantiations



Abstract Hoare Logic

System Categories

Network vs Flowcharts

- k+ -

F

6

�

- kb -

C

6

�



Abstract Hoare Logic

System Categories

Network vs Flowcharts

- k+ -

F

6

�

-
-

+ - -
-

-

- kb -

C

6

�

-
-

b- ?
6

-



Abstract Hoare Logic

System Categories

Network vs Flowcharts

- k+ -

F

6

�

-
-

+ - -
-

-

C∞ → (C∞ × C∞)

- kb -

C

6

�

-
-

b-

H → (H ]H)

?
6

-



Abstract Hoare Logic

System Categories

Network vs Flowcharts

- k+ -

F

6

�

-
-

+ -

(C∞ × C∞) → C∞

-
-

-

C∞ → (C∞ × C∞)

- kb -

C

6

�

-
-

b-

H → (H ]H)

?
6

-

(H ]H) → H



Abstract Hoare Logic

System Categories

Bainbridge Duality

Exploit the duality between sum and product

2H]J ' 2H × 2J

Each flowchart corresponds to a network

-
-

b-

?
6

-



Abstract Hoare Logic

System Categories

Bainbridge Duality

Exploit the duality between sum and product

2H]J ' 2H × 2J

Each flowchart corresponds to a network

-
-

b-

?
6

-

ρ



Abstract Hoare Logic

System Categories

Bainbridge Duality

Exploit the duality between sum and product

2H]J ' 2H × 2J

Each flowchart corresponds to a network

-
-

b-

?
6

-

ρ



Abstract Hoare Logic

System Categories

Bainbridge Duality

Exploit the duality between sum and product

2H]J ' 2H × 2J

Each flowchart corresponds to a network

-
-

b-

?
6

-
ρ



Abstract Hoare Logic

System Categories

Bainbridge Duality

Exploit the duality between sum and product

2H]J ' 2H × 2J

Each flowchart corresponds to a network

-
-

b-

?
6

- ρ



Abstract Hoare Logic

System Categories

Bainbridge Duality

Exploit the duality between sum and product

2H]J ' 2H × 2J

Each flowchart corresponds to a network

-
-

b-

?
6

-

�
�

b�

�

�
�



Abstract Hoare Logic

System Categories

Bainbridge Duality

Exploit the duality between sum and product

2H]J ' 2H × 2J

Each flowchart corresponds to a network

-
-

b-

?
6

-

�
�

b�

�

�
�

S0 ]b S1 S0

S1



Abstract Hoare Logic

System Categories

Bainbridge Duality

Exploit the duality between sum and product

2H]J ' 2H × 2J

Each flowchart corresponds to a network

-
-

b-

?
6

-

�
�

b�

�

�
�

S

S
S



Abstract Hoare Logic

System Categories

Monoidal Categories

Sequential composition: categorical composition
f : X → Y , g : Y → Z then g ◦ f : X → Z

g ◦ f - f - g -

Parallel composition: Monoidal operation
f : X → Y , g : Z → W then f ⊗ g : (X ⊗ Z) → (Y ⊗W )

f ⊗ g
f- -

g- -



Abstract Hoare Logic

System Categories

Traced Monoidal Categories

Iteration: Trace operation
If f : (X ⊗ Z) → (Y ⊗ Z) then Tr(f) : X → Y

f

X
-

Z

-

Y
-

Z

-

Tr(f)

f

X
-
-

Y
-

Examples

Disjoint union
Tr(f) ≡ {〈x, y〉 : ∃z0, . . . , zn(〈x, z0〉 ∈ f ∧ ... ∧ 〈zn, y〉 ∈ f)}

Cartesian products
Tr(f) ≡ {〈x, y〉 : ∃z(〈〈x, z〉, 〈y, z〉〉 ∈ f)}



Abstract Hoare Logic

System Categories

Traced Monoidal Categories

Iteration: Trace operation
If f : (X ⊗ Z) → (Y ⊗ Z) then Tr(f) : X → Y

f

X
-

Z

-

Y
-

Z

-

Tr(f)

f

X
-
-

Y
-

Examples

Disjoint union
Tr(f) ≡ {〈x, y〉 : ∃z0, . . . , zn(〈x, z0〉 ∈ f ∧ ... ∧ 〈zn, y〉 ∈ f)}

Cartesian products
Tr(f) ≡ {〈x, y〉 : ∃z(〈〈x, z〉, 〈y, z〉〉 ∈ f)}



Abstract Hoare Logic

System Categories

System Category

Let cl(M) denote the closure of the set of morphisms M under
sequential and monoidal composition, and trace.

Definition (System category)

A system category S is a traced monoidal category with a distinguished
set of morphisms Sb ⊆ Sm, so-called basic systems, such that
cl(Sb) = Sm.

Flowcharts Stream circuits

Boolean Test (Σ → Σ ] Σ) Sum (Σ× Σ → Σ)

Joining of Wires (Σ ] Σ → Σ) Splitting of Wires (Σ → Σ× Σ)

Assignment (Σ → Σ) Scalar Multiplication (Σ → Σ)

Register (Σ → Σ)



Abstract Hoare Logic

System Categories

System Category

Let cl(M) denote the closure of the set of morphisms M under
sequential and monoidal composition, and trace.

Definition (System category)

A system category S is a traced monoidal category with a distinguished
set of morphisms Sb ⊆ Sm, so-called basic systems, such that
cl(Sb) = Sm.

Flowcharts Stream circuits

Boolean Test (Σ → Σ ] Σ) Sum (Σ× Σ → Σ)

Joining of Wires (Σ ] Σ → Σ) Splitting of Wires (Σ → Σ× Σ)

Assignment (Σ → Σ) Scalar Multiplication (Σ → Σ)

Register (Σ → Σ)



Abstract Hoare Logic

Abstract Hoare Logic

Outline

1 Introduction

2 System Categories

3 Abstract Hoare Logic

4 Instantiations



Abstract Hoare Logic

Abstract Hoare Logic

Hoare Logic

Pre/Post-conditions:
Describe properties of input/output

Ordering on information:
Rule of consequence

Partial correctness assertions:
Predicate transformers

Others:
Strongest post condition, loop invariant, ...



Abstract Hoare Logic

Abstract Hoare Logic

Hoare Logic

Pre/Post-conditions:
Describe properties of input/output

Ordering on information:
Rule of consequence

Partial correctness assertions:
Predicate transformers

Others:
Strongest post condition, loop invariant, ...



Abstract Hoare Logic

Abstract Hoare Logic

Hoare Logic

Pre/Post-conditions:
Describe properties of input/output

Ordering on information:
Rule of consequence

Partial correctness assertions:
Predicate transformers

Others:
Strongest post condition, loop invariant, ...



Abstract Hoare Logic

Abstract Hoare Logic

Hoare Logic

Pre/Post-conditions:
Describe properties of input/output

Ordering on information:
Rule of consequence

Partial correctness assertions:
Predicate transformers

Others:
Strongest post condition, loop invariant, ...



Abstract Hoare Logic

Abstract Hoare Logic

Verification Category

Let Pos denote the category of posets and monotone mappings

Definition (Verification category)

A subcategory V of Pos is called a verification category if for any element
P ∈ X and morphism f : (X × Z) → (Y × Z) the set of pre-fixed
points, i.e.

{Q : ∃R . f〈P,Q〉 v 〈R,Q〉}
has a least element. We will denote such least element by µf,P .

By monotonicity of f , µf,P is also the least fixed point.



Abstract Hoare Logic

Abstract Hoare Logic

Verification Category

Let Pos denote the category of posets and monotone mappings

Definition (Verification category)

A subcategory V of Pos is called a verification category if for any element
P ∈ X and morphism f : (X × Z) → (Y × Z) the set of pre-fixed
points, i.e.

{Q : ∃R . f〈P,Q〉 v 〈R,Q〉}
has a least element. We will denote such least element by µf,P .

By monotonicity of f , µf,P is also the least fixed point.



Abstract Hoare Logic

Abstract Hoare Logic

Verification Category: Intuition

Usual Hoare Logic Verification Categories

Pre/Post-conditions Points of posets

Logical implication Partial order

Rule of consequence Monotonicity

Strongest loop invariant Least pre-fixed point



Abstract Hoare Logic

Abstract Hoare Logic

Verification Category and TMC

Lemma (A)

Any verification category V gives rise to a traced monoidal category with
trace defined as

Tr(f)(P ) :≡ R

for any morphism f : (X × Z) → (Y × Z), where R is the unique
element of Y such that f〈P, µf,P 〉 = 〈R,µf,P 〉.

f

P ∈ X
-
-

R ∈ Y
-

µf,P



Abstract Hoare Logic

Abstract Hoare Logic

Propagation of Upper Bounds

Theorem (Soundness and completeness)

Let V be a verification category and Vb a set of basic morphisms
spanning Vm. The following set of propagation of upper bound rules is
sound and complete for V with respect to Vb

f ∈ Vb
(axiom)

f(P ) v f(P )

f(P ) v Q g(Q) v R
(◦)

(g ◦ f)(P ) v R

f(P ) v Q g(R) v S
(×)

(f × g)〈P,R〉 v 〈Q,S〉

f〈P,Q〉 v 〈R,Q〉
(TrV)

TrV(f)(P ) v R

P ′ v P f(P ) v Q Q v Q′

(con)
f(P ′) v Q′



Abstract Hoare Logic

Abstract Hoare Logic

Propagation of Upper Bounds

Theorem (Soundness and completeness)

Let V be a verification category and Vb a set of basic morphisms
spanning Vm. The following set of propagation of upper bound rules is
sound and complete for V with respect to Vb

f ∈ Vb
(axiom)

f(P ) v f(P )

f(P ) v Q g(Q) v R
(◦)

(g ◦ f)(P ) v R

f(P ) v Q g(R) v S
(×)

(f × g)〈P,R〉 v 〈Q,S〉

f〈P,Q〉 v 〈R,Q〉
(TrV)

TrV(f)(P ) v R

P ′ v P f(P ) v Q Q v Q′

(con)
f(P ′) v Q′



Abstract Hoare Logic

Abstract Hoare Logic

Propagation of Upper Bounds

Theorem (Soundness and completeness)

Let V be a verification category and Vb a set of basic morphisms
spanning Vm. The following set of propagation of upper bound rules is
sound and complete for V with respect to Vb

f ∈ Vb
(axiom)

f(P ) v f(P )

f(P ) v Q g(Q) v R
(◦)

(g ◦ f)(P ) v R

f(P ) v Q g(R) v S
(×)

(f × g)〈P,R〉 v 〈Q,S〉

f〈P,Q〉 v 〈R,Q〉
(TrV)

TrV(f)(P ) v R

P ′ v P f(P ) v Q Q v Q′

(con)
f(P ′) v Q′



Abstract Hoare Logic

Abstract Hoare Logic

Abstract Hoare Triples

f
X

Y

S



Abstract Hoare Logic

Abstract Hoare Logic

Abstract Hoare Triples

Pos

f
X

Y

S



Abstract Hoare Logic

Abstract Hoare Logic

Abstract Hoare Triples

H

V

Pos

H(f)
H(X)

H(Y)

f
X

Y

S



Abstract Hoare Logic

Abstract Hoare Logic

Abstract Hoare Triples

H

V

Pos

H(f)
H(X)

H(Y)

f
X

Y

{P} f {Q}

P ∊ H(X)
Q ∊ H(Y)

H(f)(P) ⊆ Q

S



Abstract Hoare Logic

Abstract Hoare Logic

Abstract Hoare Triples

Definition (Verification functor)

A monoidal functor H : S → Pos is called a verification functor if

image of H is a verification category

H preserves traces (trace in image of H defined in Lemma (A))

Let

H : S → Pos be a verification functor

f : X → Y is a morphism (system) in S
P ∈ H(X) and Q ∈ H(Y )

We define abstract Hoare triples as

{P} f {Q} :≡ H(f)(P ) vH(Y ) Q



Abstract Hoare Logic

Abstract Hoare Logic

Abstract Hoare Triples

Definition (Verification functor)

A monoidal functor H : S → Pos is called a verification functor if

image of H is a verification category

H preserves traces (trace in image of H defined in Lemma (A))

Let

H : S → Pos be a verification functor

f : X → Y is a morphism (system) in S
P ∈ H(X) and Q ∈ H(Y )

We define abstract Hoare triples as

{P} f {Q} :≡ H(f)(P ) vH(Y ) Q



Abstract Hoare Logic

Abstract Hoare Logic

Abstract Hoare Triples

Definition (Verification functor)

A monoidal functor H : S → Pos is called a verification functor if

image of H is a verification category

H preserves traces (trace in image of H defined in Lemma (A))

Let

H : S → Pos be a verification functor

f : X → Y is a morphism (system) in S
P ∈ H(X) and Q ∈ H(Y )

We define abstract Hoare triples as

{P} f {Q} :≡ H(f)(P ) vH(Y ) Q



Abstract Hoare Logic

Abstract Hoare Logic

Abstract Hoare Logic

Theorem (Soundness and completeness)

The following set of rules is sound and complete for any system category
S and verification functor H : S → Pos:

f ∈ Sb
(axiom)

{P} f {H(f)(P )}

{P} f {Q} {Q} g {R}
(◦)

{P} g ◦ f {R}

{P} f {Q} {R} g {S}
(⊗)

{〈P,R〉} f ⊗ g {〈Q,S〉}

{〈P,Q〉} f {〈R,Q〉}
(TrS)

{P} TrS(f) {R}

P ′ vX P {P} f {Q} Q vY Q′

(wkn)
{P ′} f {Q′}



Abstract Hoare Logic

Instantiations

Outline

1 Introduction

2 System Categories

3 Abstract Hoare Logic

4 Instantiations



Abstract Hoare Logic

Instantiations

Flowcharts

The embedding H is basically the power-set construction, so that

H(X ] Y ) :≡ H(X)×H(Y )

On morphisms, we define:

Forward reasoning

H(f)(P ) :≡ {y ∈ Y : ∃x∈P (f(x) = y)}
Backward reasoning

H(f)(Q) :≡ {x ∈ X : f(x) ∈ Q}

And if sets are described by formulas:

H(f)(Φ) :≡ SPC(f,Φ)
H(f)(Φ) :≡ WPC(f,Φ)



Abstract Hoare Logic

Instantiations

While Loop Rule

whileb(C)

- kb -

C

6

�

Tr(

(1 ] C) ◦ ifb ◦∆

)

- kb -

C

6

- -

{I} {I ∧ ¬b}

{I} {I}

{I}

{I ∧ b}

{I} ifb {〈I ∧ ¬b, I ∧ b〉}

{I ∧ ¬b} 1 {I ∧ ¬b} {I ∧ b} C {I}
(])

{〈I ∧ ¬b, I ∧ b〉} 1 ] C {〈I ∧ ¬b, I〉}
(◦)

{I} (1 ] C) ◦ ifb {〈I ∧ ¬b, I〉}
(◦)

{〈I, I〉} (1 ] C) ◦ ifb ◦∆ {〈I ∧ ¬b, I〉}
(Tr)

{I} whileb(C) {I ∧ ¬b}



Abstract Hoare Logic

Instantiations

While Loop Rule

whileb(C)

- kb -

C

6

�

Tr((1 ] C) ◦ ifb ◦∆)

- kb -

C

6

- -

{I} {I ∧ ¬b}

{I} {I}

{I}

{I ∧ b}

{I} ifb {〈I ∧ ¬b, I ∧ b〉}

{I ∧ ¬b} 1 {I ∧ ¬b} {I ∧ b} C {I}
(])

{〈I ∧ ¬b, I ∧ b〉} 1 ] C {〈I ∧ ¬b, I〉}
(◦)

{I} (1 ] C) ◦ ifb {〈I ∧ ¬b, I〉}
(◦)

{〈I, I〉} (1 ] C) ◦ ifb ◦∆ {〈I ∧ ¬b, I〉}
(Tr)

{I} whileb(C) {I ∧ ¬b}



Abstract Hoare Logic

Instantiations

While Loop Rule

whileb(C)

- kb -

C

6

�

Tr((1 ] C) ◦ ifb ◦∆)

- kb -

C

6

- -

{I} {I ∧ ¬b}

{I} {I}

{I}

{I ∧ b}

{I} ifb {〈I ∧ ¬b, I ∧ b〉}

{I ∧ ¬b} 1 {I ∧ ¬b} {I ∧ b} C {I}
(])

{〈I ∧ ¬b, I ∧ b〉} 1 ] C {〈I ∧ ¬b, I〉}
(◦)

{I} (1 ] C) ◦ ifb {〈I ∧ ¬b, I〉}
(◦)

{〈I, I〉} (1 ] C) ◦ ifb ◦∆ {〈I ∧ ¬b, I〉}
(Tr)

{I} whileb(C) {I ∧ ¬b}



Abstract Hoare Logic

Instantiations

While Loop Rule

whileb(C)

- kb -

C

6

�

Tr((1 ] C) ◦ ifb ◦∆)

- kb -

C

6

- -

{I} {I ∧ ¬b}

{I} {I}

{I}

{I ∧ b}

{I} ifb {〈I ∧ ¬b, I ∧ b〉}

{I ∧ ¬b} 1 {I ∧ ¬b} {I ∧ b} C {I}
(])

{〈I ∧ ¬b, I ∧ b〉} 1 ] C {〈I ∧ ¬b, I〉}
(◦)

{I} (1 ] C) ◦ ifb {〈I ∧ ¬b, I〉}
(◦)

{〈I, I〉} (1 ] C) ◦ ifb ◦∆ {〈I ∧ ¬b, I〉}
(Tr)

{I} whileb(C) {I ∧ ¬b}



Abstract Hoare Logic

Instantiations

While Loop Rule

whileb(C)

- kb -

C

6

�

Tr((1 ] C) ◦ ifb ◦∆)

- kb -

C

6

- -

{I} {I ∧ ¬b}

{I} {I}

{I}

{I ∧ b}

{I} ifb {〈I ∧ ¬b, I ∧ b〉}

{I ∧ ¬b} 1 {I ∧ ¬b} {I ∧ b} C {I}
(])

{〈I ∧ ¬b, I ∧ b〉} 1 ] C {〈I ∧ ¬b, I〉}
(◦)

{I} (1 ] C) ◦ ifb {〈I ∧ ¬b, I〉}
(◦)

{〈I, I〉} (1 ] C) ◦ ifb ◦∆ {〈I ∧ ¬b, I〉}
(Tr)

{I} whileb(C) {I ∧ ¬b}



Abstract Hoare Logic

Instantiations

While Loop Rule

whileb(C)

- kb -

C

6

�

Tr((1 ] C) ◦ ifb ◦∆)

- kb -

C

6

- -

{I} {I ∧ ¬b}

{I} {I}

{I}

{I ∧ b}

{I} ifb {〈I ∧ ¬b, I ∧ b〉}

{I ∧ ¬b} 1 {I ∧ ¬b} {I ∧ b} C {I}
(])

{〈I ∧ ¬b, I ∧ b〉} 1 ] C {〈I ∧ ¬b, I〉}
(◦)

{I} (1 ] C) ◦ ifb {〈I ∧ ¬b, I〉}
(◦)

{〈I, I〉} (1 ] C) ◦ ifb ◦∆ {〈I ∧ ¬b, I〉}
(Tr)

{I} whileb(C) {I ∧ ¬b}



Abstract Hoare Logic

Instantiations

While Loop Rule

whileb(C)

- kb -

C

6

�

Tr((1 ] C) ◦ ifb ◦∆)

- kb -

C

6

- -

{I} {I ∧ ¬b}

{I} {I}

{I}

{I ∧ b}

{I} ifb {〈I ∧ ¬b, I ∧ b〉}

{I ∧ ¬b} 1 {I ∧ ¬b} {I ∧ b} C {I}
(])

{〈I ∧ ¬b, I ∧ b〉} 1 ] C {〈I ∧ ¬b, I〉}
(◦)

{I} (1 ] C) ◦ ifb {〈I ∧ ¬b, I〉}
(◦)

{〈I, I〉} (1 ] C) ◦ ifb ◦∆ {〈I ∧ ¬b, I〉}
(Tr)

{I} whileb(C) {I ∧ ¬b}



Abstract Hoare Logic

Instantiations

While Loop Rule

whileb(C)

- kb -

C

6

�

Tr((1 ] C) ◦ ifb ◦∆)

- kb -

C

6

- -

{I} {I ∧ ¬b}

{I}

{I}

{I}

{I ∧ b}

{I} ifb {〈I ∧ ¬b, I ∧ b〉}

{I ∧ ¬b} 1 {I ∧ ¬b} {I ∧ b} C {I}
(])

{〈I ∧ ¬b, I ∧ b〉} 1 ] C {〈I ∧ ¬b, I〉}
(◦)

{I} (1 ] C) ◦ ifb {〈I ∧ ¬b, I〉}
(◦)

{〈I, I〉} (1 ] C) ◦ ifb ◦∆ {〈I ∧ ¬b, I〉}
(Tr)

{I} whileb(C) {I ∧ ¬b}



Abstract Hoare Logic

Instantiations

Stream Circuits

Smooth functions can be represented as streams

σy = [y(0), y′(0), y′′(0), ...]

Stream circuits basic operations:

a×- -

R- -

HHj

��*
k+ - ��*

HHj

y′ − y = u

y(0) = 0

- k+ -

R

6

�

u(t) y′(t)

y(t)



Abstract Hoare Logic

Instantiations

Stream Circuits

Smooth functions can be represented as streams

σy = [y(0), y′(0), y′′(0), ...]

Stream circuits basic operations:

a×- -

R- -

HHj

��*
k+ - ��*

HHj

y′ − y = u

y(0) = 0

- k+ -

R

6

�

u(t) y′(t)

y(t)



Abstract Hoare Logic

Instantiations

Stream Circuits

Smooth functions can be represented as streams

σy = [y(0), y′(0), y′′(0), ...]

Stream circuits basic operations:

a×- -

R- -

HHj

��*
k+ - ��*

HHj

y′ − y = u

y(0) = 0

- k+ -

R

6

�

u(t) y′(t)

y(t)



Abstract Hoare Logic

Instantiations

Stream Circuits

Smooth functions can be represented as streams

σy = [y(0), y′(0), y′′(0), ...]

Stream circuits basic operations:

a×- -

R- -

HHj

��*
k+ - ��*

HHj

y′ − y = u

y(0) = 0

- k+ -

R

6

�

u(t) y′(t)

y(t)



Abstract Hoare Logic

Instantiations

Embedding

Stream circuits already have Cartesian product as the monoidal
structure, the embedding H into Pos has to respect that

Our verification embedding of stream circuits is as follows:

Define H(Σ) as the poset of finite approximations (prefixes) of
elements in Σ, with the ordering s � t, if t is an extension of s
For morphisms (stream circuits) f : X → Y define
H(f)(t) :≡ {f(t ∗ τ) : τ ∈ X}

{t + s} f {s}
(Fd)

{t} FB(f) {t + s}

- k+ -

f

6

�

t t + s

s



Abstract Hoare Logic

Instantiations

Embedding

Stream circuits already have Cartesian product as the monoidal
structure, the embedding H into Pos has to respect that

Our verification embedding of stream circuits is as follows:

Define H(Σ) as the poset of finite approximations (prefixes) of
elements in Σ, with the ordering s � t, if t is an extension of s
For morphisms (stream circuits) f : X → Y define
H(f)(t) :≡ {f(t ∗ τ) : τ ∈ X}

{t + s} f {s}
(Fd)

{t} FB(f) {t + s}

- k+ -

f

6

�

t t + s

s



Abstract Hoare Logic

Instantiations

Embedding

Stream circuits already have Cartesian product as the monoidal
structure, the embedding H into Pos has to respect that

Our verification embedding of stream circuits is as follows:

Define H(Σ) as the poset of finite approximations (prefixes) of
elements in Σ, with the ordering s � t, if t is an extension of s
For morphisms (stream circuits) f : X → Y define
H(f)(t) :≡ {f(t ∗ τ) : τ ∈ X}

{t + s} f {s}
(Fd)

{t} FB(f) {t + s}

- k+ -

f

6

�

t t + s

s



Abstract Hoare Logic

Instantiations

Conclusions and Future Work

Other instantiations (in flowcharts):

Pointer programs
Total correctness

Other instantiations (in stream circuits):

Boundedness
Relative stability

Related work

Dijkstra’s predicate transformer
Kozen’s KAT (Kleene Algebras with Test)
Abramsky’s specification categories
Bloom and Esik on iteration theory
Gurevich’s existential fixed-point logic


	Main Part
	Introduction
	System Categories
	Abstract Hoare Logic
	Instantiations


