Abstract Hoare Logic

Paulo Oliva
(joint work with U. Martin and E. A. Mathiesen)
Queen Mary, University of London, UK
(pbo@dcs.qmul.ac.uk)
London Theory Day, 24 April 2006

Outline

(1) Introduction
(2) System Categories
(3) Abstract Hoare Logic

4 Instantiations

Outline

(1) Introduction
(2) System Categories
(3) Abstract Hoare Logic
(4) Instantiations

- ロ 4 司 (

Overview

- What:

Abstraction of modular reasoning about 'while programs'

Overview

- What:

Abstraction of modular reasoning about 'while programs'

- How:

Using system theory, tmc, and fixed-point theory

Overview

- What:

Abstraction of modular reasoning about 'while programs'

- How:

Using system theory, tmc, and fixed-point theory

- Why:

Develop Hoare-logic for dynamical systems

Outline

(1) Introduction

(2) System Categories
(3) Abstract Hoare Logic

4 Instantiations
-

Network vs Flowcharts

Network vs Flowcharts

Network vs Flowcharts

$$
C^{\infty} \rightarrow\left(C^{\infty} \times C^{\infty}\right)
$$

Network vs Flowcharts

$$
C^{\infty} \rightarrow\left(C^{\infty} \times C^{\infty}\right)
$$

$$
\left(C^{\infty} \times C^{\infty}\right) \rightarrow C^{\infty}
$$

$$
(H \uplus H) \rightarrow H
$$

$H \rightarrow(H \uplus H)$

Bainbridge Duality

Exploit the duality between sum and product

$$
2^{H \uplus J} \simeq 2^{H} \times 2^{J}
$$

Each flowchart corresponds to a network

Bainbridge Duality

Exploit the duality between sum and product

$$
2^{H \uplus J} \simeq 2^{H} \times 2^{J}
$$

Each flowchart corresponds to a network

Bainbridge Duality

Exploit the duality between sum and product

$$
2^{H \uplus J} \simeq 2^{H} \times 2^{J}
$$

Each flowchart corresponds to a network

Bainbridge Duality

Exploit the duality between sum and product

$$
2^{H \uplus J} \simeq 2^{H} \times 2^{J}
$$

Each flowchart corresponds to a network

Bainbridge Duality

Exploit the duality between sum and product

$$
2^{H \uplus J} \simeq 2^{H} \times 2^{J}
$$

Each flowchart corresponds to a network

Bainbridge Duality

Exploit the duality between sum and product

$$
2^{H \uplus J} \simeq 2^{H} \times 2^{J}
$$

Each flowchart corresponds to a network

Bainbridge Duality

Exploit the duality between sum and product

$$
2^{H \uplus J} \simeq 2^{H} \times 2^{J}
$$

Each flowchart corresponds to a network

Bainbridge Duality

Exploit the duality between sum and product

$$
2^{H \uplus J} \simeq 2^{H} \times 2^{J}
$$

Each flowchart corresponds to a network

Monoidal Categories

- Sequential composition: categorical composition $f: X \rightarrow Y, g: Y \rightarrow Z$ then $g \circ f: X \rightarrow Z$

- Parallel composition: Monoidal operation $f: X \rightarrow Y, g: Z \rightarrow W$ then $f \otimes g:(X \otimes Z) \rightarrow(Y \otimes W)$

Traced Monoidal Categories

- Iteration: Trace operation

If $f:(X \otimes Z) \rightarrow(Y \otimes Z)$ then $\operatorname{Tr}(f): X \rightarrow Y$

Traced Monoidal Categories

- Iteration: Trace operation

If $f:(X \otimes Z) \rightarrow(Y \otimes Z)$ then $\operatorname{Tr}(f): X \rightarrow Y$

- Examples
- Disjoint union

$$
\operatorname{Tr}(f) \equiv\left\{\langle x, y\rangle: \exists z_{0}, \ldots, z_{n}\left(\left\langle x, z_{0}\right\rangle \in f \wedge \ldots \wedge\left\langle z_{n}, y\right\rangle \in f\right)\right\}
$$

- Cartesian products

$$
\operatorname{Tr}(f) \equiv\{\langle x, y\rangle: \exists z(\langle\langle x, z\rangle,\langle y, z\rangle\rangle \in f)\}
$$

System Category

Let $\mathrm{cl}(M)$ denote the closure of the set of morphisms M under sequential and monoidal composition, and trace.

Definition (System category)

A system category \mathcal{S} is a traced monoidal category with a distinguished set of morphisms $\mathcal{S}_{b} \subseteq \mathcal{S}_{m}$, so-called basic systems, such that $\mathrm{cl}\left(\mathcal{S}_{b}\right)=\mathcal{S}_{m}$.

System Category

Let $\mathrm{cl}(M)$ denote the closure of the set of morphisms M under sequential and monoidal composition, and trace.

Definition (System category)

A system category \mathcal{S} is a traced monoidal category with a distinguished set of morphisms $\mathcal{S}_{b} \subseteq \mathcal{S}_{m}$, so-called basic systems, such that $\mathrm{cl}\left(\mathcal{S}_{b}\right)=\mathcal{S}_{m}$.

Flowcharts	Stream circuits
Boolean Test $(\Sigma \rightarrow \Sigma \uplus \Sigma)$	Sum $(\Sigma \times \Sigma \rightarrow \Sigma)$
Joining of Wires $(\Sigma \uplus \Sigma \rightarrow \Sigma)$	Splitting of Wires $(\Sigma \rightarrow \Sigma \times \Sigma)$
Assignment $(\Sigma \rightarrow \Sigma)$	Scalar Multiplication $(\Sigma \rightarrow \Sigma)$
	Register $(\Sigma \rightarrow \Sigma)$

Outline

(1) Introduction

(2) System Categories
(3) Abstract Hoare Logic

4 Instantiations

- ロ 4 号 1 (

Hoare Logic

- Pre/Post-conditions:

Describe properties of input/output

Hoare Logic

- Pre/Post-conditions:

Describe properties of input/output

- Ordering on information: Rule of consequence

Hoare Logic

- Pre/Post-conditions:

Describe properties of input/output

- Ordering on information:

Rule of consequence

- Partial correctness assertions:

Predicate transformers

Hoare Logic

- Pre/Post-conditions:

Describe properties of input/output

- Ordering on information:

Rule of consequence

- Partial correctness assertions:

Predicate transformers

- Others:

Strongest post condition, loop invariant, ...

Verification Category

Let Pos denote the category of posets and monotone mappings

Definition (Verification category)

A subcategory \mathcal{V} of Pos is called a verification category if for any element $P \in X$ and morphism $f:(X \times Z) \rightarrow(Y \times Z)$ the set of pre-fixed points, i.e.

$$
\{Q: \exists R . f\langle P, Q\rangle \sqsubseteq\langle R, Q\rangle\}
$$

has a least element. We will denote such least element by $\mu_{f, P}$.

Verification Category

Let Pos denote the category of posets and monotone mappings

Definition (Verification category)

A subcategory \mathcal{V} of Pos is called a verification category if for any element $P \in X$ and morphism $f:(X \times Z) \rightarrow(Y \times Z)$ the set of pre-fixed points, i.e.

$$
\{Q: \exists R . f\langle P, Q\rangle \sqsubseteq\langle R, Q\rangle\}
$$

has a least element. We will denote such least element by $\mu_{f, P}$.

By monotonicity of $f, \mu_{f, P}$ is also the least fixed point.

Verification Category: Intuition

Usual Hoare Logic	Verification Categories
Pre/Post-conditions	Points of posets
Logical implication	Partial order
Rule of consequence	Monotonicity
Strongest loop invariant	Least pre-fixed point

Verification Category and TMC

Lemma (A)

Any verification category \mathcal{V} gives rise to a traced monoidal category with trace defined as

$$
\operatorname{Tr}(f)(P): \equiv R
$$

for any morphism $f:(X \times Z) \rightarrow(Y \times Z)$, where R is the unique element of Y such that $f\left\langle P, \mu_{f, P}\right\rangle=\left\langle R, \mu_{f, P}\right\rangle$.

Propagation of Upper Bounds

Theorem (Soundness and completeness)

Let \mathcal{V} be a verification category and \mathcal{V}_{b} a set of basic morphisms spanning \mathcal{V}_{m}. The following set of propagation of upper bound rules is sound and complete for \mathcal{V} with respect to \mathcal{V}_{b}

$$
\frac{f \in \mathcal{V}_{b}}{f(P) \sqsubseteq f(P)}(\text { axiom })
$$

$$
\frac{P^{\prime} \sqsubseteq P \quad f(P) \sqsubseteq Q \quad Q \sqsubseteq Q^{\prime}}{f\left(P^{\prime}\right) \sqsubseteq Q^{\prime}}(\text { con })
$$

Propagation of Upper Bounds

Theorem (Soundness and completeness)

Let \mathcal{V} be a verification category and \mathcal{V}_{b} a set of basic morphisms spanning \mathcal{V}_{m}. The following set of propagation of upper bound rules is sound and complete for \mathcal{V} with respect to \mathcal{V}_{b}

$$
\begin{aligned}
& \frac{f \in \mathcal{V}_{b}}{f(P) \sqsubseteq f(P)}(\text { axiom }) \quad \frac{f(P) \sqsubseteq Q \quad g(Q) \sqsubseteq R}{(g \circ f)(P) \sqsubseteq R}(\circ) \\
& \frac{f(P) \sqsubseteq Q \quad g(R) \sqsubseteq S}{(f \times g)\langle P, R\rangle \sqsubseteq\langle Q, S\rangle}(\times) \\
& \quad \frac{P^{\prime} \sqsubseteq P \quad f(P) \sqsubseteq Q \quad Q \sqsubseteq Q^{\prime}}{f\left(P^{\prime}\right) \sqsubseteq Q^{\prime}}(\mathrm{con})
\end{aligned}
$$

Propagation of Upper Bounds

Theorem (Soundness and completeness)

Let \mathcal{V} be a verification category and \mathcal{V}_{b} a set of basic morphisms spanning \mathcal{V}_{m}. The following set of propagation of upper bound rules is sound and complete for \mathcal{V} with respect to \mathcal{V}_{b}

$$
\begin{gathered}
\frac{f \in \mathcal{V}_{b}}{f(P) \sqsubseteq f(P)}(a x i o m) \quad \frac{f(P) \sqsubseteq Q \quad g(Q) \sqsubseteq R}{(g \circ f)(P) \sqsubseteq R}(\circ) \\
\frac{f(P) \sqsubseteq Q \quad g(R) \sqsubseteq S}{(f \times g)\langle P, R\rangle \sqsubseteq\langle Q, S\rangle}(\times) \quad \frac{f\langle P, Q\rangle \sqsubseteq\langle R, Q\rangle}{\operatorname{Tr}(f)(P) \sqsubseteq R}\left(\operatorname{Tr}_{\mathcal{V}}\right) \\
\frac{P^{\prime} \sqsubseteq P \quad f(P) \sqsubseteq Q}{f\left(P^{\prime}\right) \sqsubseteq Q^{\prime}} Q \sqsubseteq Q^{\prime} \\
(\mathrm{con})
\end{gathered}
$$

Abstract Hoare Triples

Abstract Hoare Triples

Abstract Hoare Triples

Abstract Hoare Triples

Pos

Abstract Hoare Triples

Definition (Verification functor)

A monoidal functor $H: \mathcal{S} \rightarrow$ Pos is called a verification functor if

- image of H is a verification category
- H preserves traces (trace in image of H defined in Lemma (A))

Abstract Hoare Triples

Definition (Verification functor)

A monoidal functor $H: \mathcal{S} \rightarrow$ Pos is called a verification functor if

- image of H is a verification category
- H preserves traces (trace in image of H defined in Lemma (A))

Let

- $H: \mathcal{S} \rightarrow$ Pos be a verification functor
- $f: X \rightarrow Y$ is a morphism (system) in \mathcal{S}
- $P \in H(X)$ and $Q \in H(Y)$

Abstract Hoare Triples

Definition (Verification functor)

A monoidal functor $H: \mathcal{S} \rightarrow$ Pos is called a verification functor if

- image of H is a verification category
- H preserves traces (trace in image of H defined in Lemma (A))

Let

- $H: \mathcal{S} \rightarrow$ Pos be a verification functor
- $f: X \rightarrow Y$ is a morphism (system) in \mathcal{S}
- $P \in H(X)$ and $Q \in H(Y)$

We define abstract Hoare triples as

$$
\{P\} f\{Q\}: \equiv H(f)(P) \sqsubseteq_{H(Y)} Q
$$

Abstract Hoare Logic

Theorem (Soundness and completeness)

The following set of rules is sound and complete for any system category \mathcal{S} and verification functor $H: \mathcal{S} \rightarrow$ Pos:

$$
\begin{gathered}
\frac{f \in \mathcal{S}_{b}}{\{P\} f\{H(f)(P)\}}(\text { axiom }) \\
\frac{\{P\} f\{Q\} \quad\{Q\} g\{R\}}{\{P\} g \circ f\{R\}}(\circ) \\
\frac{\{\langle P, R\rangle f\{Q\}\{R\} g\{S\}}{}(\otimes) \frac{\{\langle P, Q\rangle\} f\{\langle R, Q\rangle\}}{\{P\} \operatorname{Tr}_{\mathcal{S}}(f)\{R\}}\left(\operatorname{Tr}_{\mathcal{S}}\right) \\
\frac{P^{\prime} \sqsubseteq_{X} P\{\langle Q, S\rangle\}}{\{P\} f\{Q\} \quad Q \sqsubseteq_{Y} Q^{\prime}}(\mathrm{wkn})
\end{gathered}
$$

Outline

(1) Introduction

(2) System Categories
(3) Abstract Hoare Logic

4 Instantiations

Flowcharts

The embedding H is basically the power-set construction, so that

$$
H(X \uplus Y): \equiv H(X) \times H(Y)
$$

On morphisms, we define:

- Forward reasoning

$$
H(f)(P): \equiv\{y \in Y: \exists x \in P(f(x)=y)\}
$$

- Backward reasoning

$$
H(f)(Q): \equiv\{x \in X: f(x) \in Q\}
$$

And if sets are described by formulas:

- $H(f)(\Phi): \equiv \operatorname{SPC}(f, \Phi)$
- $H(f)(\Phi): \equiv \mathrm{WPC}(f, \Phi)$

While Loop Rule

while $_{b}(C)$

$(1 \uplus C) \circ \mathrm{if}_{b} \circ \Delta$

While Loop Rule

while $_{b}(C)$

$\operatorname{Tr}\left((1 \uplus C) \circ \mathrm{if}_{b} \circ \Delta\right)$

While Loop Rule

while $_{b}(C)$

$\frac{\{I\} \mathrm{if}_{b}\{\langle I \wedge \neg b, I \wedge b\rangle\} \frac{\{I \wedge \neg b\} 1\{I \wedge \neg b\} \quad\{I \wedge b\} C\{I\}}{\{\langle I \wedge \neg b, I \wedge b\rangle\} 1 \uplus C\{\langle I \wedge \neg b, I\rangle\}}}{\frac{\{I\}(1 \uplus C) \circ \mathrm{if}_{b}\{\langle I \wedge \neg b, I\rangle\}}{\frac{\{\langle I, I\rangle\}(1 \uplus C) \circ \mathrm{if}_{b} \circ \Delta\{\langle I \wedge \neg b, I\rangle\}}{}(\circ)}(\mathrm{or})}$

While Loop Rule

Stream Circuits

Smooth functions can be represented as streams

$$
\sigma_{y}=\left[y(0), y^{\prime}(0), y^{\prime \prime}(0), \ldots\right]
$$

Stream circuits basic operations:

Stream Circuits

Smooth functions can be represented as streams

$$
\sigma_{y}=\left[y(0), y^{\prime}(0), y^{\prime \prime}(0), \ldots\right]
$$

Stream circuits basic operations:

$$
y^{\prime}-y=u
$$

$$
y(0)=0
$$

Stream Circuits

Smooth functions can be represented as streams

$$
\sigma_{y}=\left[y(0), y^{\prime}(0), y^{\prime \prime}(0), \ldots\right]
$$

Stream circuits basic operations:

$y^{\prime}-y=u$

$$
y(0)=0
$$

Stream Circuits

Smooth functions can be represented as streams

$$
\sigma_{y}=\left[y(0), y^{\prime}(0), y^{\prime \prime}(0), \ldots\right]
$$

Stream circuits basic operations:

$y^{\prime}-y=u$

$$
y(0)=0
$$

Embedding

- Stream circuits already have Cartesian product as the monoidal structure, the embedding H into Pos has to respect that
- Our verification embedding of stream circuits is as follows:
- Define $H(\Sigma)$ as the poset of finite approximations (prefixes) of elements in Σ, with the ordering $s \preceq t$, if t is an extension of s
- For morphisms (stream circuits) $f: X \rightarrow Y$ define $H(f)(t): \equiv\{f(t * \tau): \tau \in X\}$

Embedding

- Stream circuits already have Cartesian product as the monoidal structure, the embedding H into Pos has to respect that
- Our verification embedding of stream circuits is as follows:
- Define $H(\Sigma)$ as the poset of finite approximations (prefixes) of elements in Σ, with the ordering $s \preceq t$, if t is an extension of s
- For morphisms (stream circuits) $f: X \rightarrow Y$ define $H(f)(t): \equiv\{f(t * \tau): \tau \in X\}$
$\frac{\{t+s\} f\{s\}}{\{t\} \mathrm{FB}(f)\{t+s\}}(\mathrm{Fd})$

Embedding

- Stream circuits already have Cartesian product as the monoidal structure, the embedding H into Pos has to respect that
- Our verification embedding of stream circuits is as follows:
- Define $H(\Sigma)$ as the poset of finite approximations (prefixes) of elements in Σ, with the ordering $s \preceq t$, if t is an extension of s
- For morphisms (stream circuits) $f: X \rightarrow Y$ define $H(f)(t): \equiv\{f(t * \tau): \tau \in X\}$

$$
\frac{\{t+s\} f\{s\}}{\{t\} \mathrm{FB}(f)\{t+s\}}(\mathrm{Fd})
$$

Conclusions and Future Work

- Other instantiations (in flowcharts):
- Pointer programs
- Total correctness
- Other instantiations (in stream circuits):
- Boundedness
- Relative stability
- Related work
- Dijkstra's predicate transformer
- Kozen's KAT (Kleene Algebras with Test)
- Abramsky's specification categories
- Bloom and Esik on iteration theory
- Gurevich's existential fixed-point logic

