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System Categories

Monoidal Categories

Sequential composition: categorical composition
f : X → Y , g : Y → Z then g ◦ f : X → Z

g ◦ f - f - g -

Parallel composition: Monoidal operation
f : X → Y , g : Z → W then f ⊗ g : (X ⊗ Z) → (Y ⊗W )

f ⊗ g
f- -

g- -
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Iteration: Trace operation
If f : (X ⊗ Z) → (Y ⊗ Z) then Tr(f) : X → Y
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X
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Y
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Z
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X
-
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Y
-

Examples

Disjoint union
Tr(f) ≡ {〈x, y〉 : ∃z0, . . . , zn(〈x, z0〉 ∈ f ∧ ... ∧ 〈zn, y〉 ∈ f)}

Cartesian products
Tr(f) ≡ {〈x, y〉 : ∃z(〈〈x, z〉, 〈y, z〉〉 ∈ f)}
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System Category

Let cl(M) denote the closure of the set of morphisms M under
sequential and monoidal composition, and trace.

Definition (System category)

A system category S is a traced monoidal category with a distinguished
set of morphisms Sb ⊆ Sm, so-called basic systems, such that
cl(Sb) = Sm.

Flowcharts Stream circuits

Boolean Test (Σ → Σ ] Σ) Sum (Σ× Σ → Σ)

Joining of Wires (Σ ] Σ → Σ) Splitting of Wires (Σ → Σ× Σ)

Assignment (Σ → Σ) Scalar Multiplication (Σ → Σ)

Register (Σ → Σ)
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Verification Category

Let Pos denote the category of posets and monotone mappings

Definition (Verification category)

A subcategory V of Pos is called a verification category if for any element
P ∈ X and morphism f : (X × Z) → (Y × Z) the set of pre-fixed
points, i.e.

{Q : ∃R . f〈P,Q〉 v 〈R,Q〉}
has a least element. We will denote such least element by µf,P .

By monotonicity of f , µf,P is also the least fixed point.
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Verification Category: Intuition

Usual Hoare Logic Verification Categories

Pre/Post-conditions Points of posets

Logical implication Partial order

Rule of consequence Monotonicity

Strongest loop invariant Least pre-fixed point
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Verification Category and TMC

Lemma (A)

Any verification category V gives rise to a traced monoidal category with
trace defined as

Tr(f)(P ) :≡ R

for any morphism f : (X × Z) → (Y × Z), where R is the unique
element of Y such that f〈P, µf,P 〉 = 〈R,µf,P 〉.

f

P ∈ X
-
-

R ∈ Y
-

µf,P
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Propagation of Upper Bounds

Theorem (Soundness and completeness)

Let V be a verification category and Vb a set of basic morphisms
spanning Vm. The following set of propagation of upper bound rules is
sound and complete for V with respect to Vb

f ∈ Vb
(axiom)

f(P ) v f(P )

f(P ) v Q g(Q) v R
(◦)

(g ◦ f)(P ) v R

f(P ) v Q g(R) v S
(×)

(f × g)〈P,R〉 v 〈Q,S〉

f〈P,Q〉 v 〈R,Q〉
(TrV)

TrV(f)(P ) v R

P ′ v P f(P ) v Q Q v Q′

(con)
f(P ′) v Q′
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H

V

Pos

H(f)
H(X)

H(Y)

f
X
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Abstract Hoare Triples

H

V

Pos

H(f)
H(X)

H(Y)

f
X

Y

{P} f {Q}

P ∊ H(X)
Q ∊ H(Y)

H(f)(P) ⊆ Q

S
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Abstract Hoare Triples

Definition (Verification functor)

A monoidal functor H : S → Pos is called a verification functor if

image of H is a verification category

H preserves traces (trace in image of H defined in Lemma (A))

Let

H : S → Pos be a verification functor

f : X → Y is a morphism (system) in S
P ∈ H(X) and Q ∈ H(Y )

We define abstract Hoare triples as

{P} f {Q} :≡ H(f)(P ) vH(Y ) Q
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Theorem (Soundness and completeness)

The following set of rules is sound and complete for any system category
S and verification functor H : S → Pos:

f ∈ Sb
(axiom)

{P} f {H(f)(P )}

{P} f {Q} {Q} g {R}
(◦)

{P} g ◦ f {R}

{P} f {Q} {R} g {S}
(⊗)

{〈P,R〉} f ⊗ g {〈Q,S〉}

{〈P,Q〉} f {〈R,Q〉}
(TrS)

{P} TrS(f) {R}

P ′ vX P {P} f {Q} Q vY Q′

(wkn)
{P ′} f {Q′}
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Instantiations

Flowcharts

The embedding H is basically the power-set construction, so that

H(X ] Y ) :≡ H(X)×H(Y )

On morphisms, we define:

Forward reasoning

H(f)(P ) :≡ {y ∈ Y : ∃x∈P (f(x) = y)}
Backward reasoning

H(f)(Q) :≡ {x ∈ X : f(x) ∈ Q}

And if sets are described by formulas:

H(f)(Φ) :≡ SPC(f,Φ)
H(f)(Φ) :≡ WPC(f,Φ)
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Instantiations

While Loop Rule

whileb(C)

- kb -

C

6

�

Tr(

(1 ] C) ◦ ifb ◦∆

)

- kb -

C

6

- -

{I} {I ∧ ¬b}

{I} {I}

{I}

{I ∧ b}

{I} ifb {〈I ∧ ¬b, I ∧ b〉}

{I ∧ ¬b} 1 {I ∧ ¬b} {I ∧ b} C {I}
(])

{〈I ∧ ¬b, I ∧ b〉} 1 ] C {〈I ∧ ¬b, I〉}
(◦)

{I} (1 ] C) ◦ ifb {〈I ∧ ¬b, I〉}
(◦)

{〈I, I〉} (1 ] C) ◦ ifb ◦∆ {〈I ∧ ¬b, I〉}
(Tr)

{I} whileb(C) {I ∧ ¬b}
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Instantiations

Stream Circuits

Smooth functions can be represented as streams

σy = [y(0), y′(0), y′′(0), ...]

Stream circuits basic operations:

a×- -

R- -

HHj

��*
k+ - ��*

HHj

y′ − y = u

y(0) = 0

- k+ -

R

6

�

u(t) y′(t)

y(t)
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Instantiations

Embedding

Stream circuits already have Cartesian product as the monoidal
structure, the embedding H into Pos has to respect that

Our verification embedding of stream circuits is as follows:

Define H(Σ) as the poset of finite approximations (prefixes) of
elements in Σ, with the ordering s � t, if t is an extension of s
For morphisms (stream circuits) f : X → Y define
H(f)(t) :≡ {f(t ∗ τ) : τ ∈ X}

{t + s} f {s}
(Fd)

{t} FB(f) {t + s}

- k+ -

f

6

�

t t + s

s
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elements in Σ, with the ordering s � t, if t is an extension of s
For morphisms (stream circuits) f : X → Y define
H(f)(t) :≡ {f(t ∗ τ) : τ ∈ X}

{t + s} f {s}
(Fd)

{t} FB(f) {t + s}
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Abstract Hoare Logic

Instantiations

Conclusions and Future Work

Other instantiations (in flowcharts):

Pointer programs
Total correctness

Other instantiations (in stream circuits):

Boundedness
Relative stability

Related work

Dijkstra’s predicate transformer
Kozen’s KAT (Kleene Algebras with Test)
Abramsky’s specification categories
Bloom and Esik on iteration theory
Gurevich’s existential fixed-point logic
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