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Overview

@ What:

Abstraction of modular reasoning about ‘while programs’

o How:

Using system theory, tmc, and fixed-point theory

o Why:

Develop Hoare-logic for dynamical systems
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Bainbridge Duality

Exploit the duality between sum and product
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Monoidal Categories

o Sequential composition: categorical composition
f:X—=Y ¢g:Y—>Zthengof: X -2

gof — f

Y
ks

o Parallel composition: Monoidal operation
[:X=Y, g:Z—Wthen fRg:(X®Z)—=(YW)

f®g
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Traced Monoidal Categories

o Iteration: Trace operation
fFfr:(Xe®Z)—-(Y®Z)then Tr(f): X =Y

.
X Y x "y
e I
z z

o Examples
o Disjoint union
Tr(f) = {(z,y) : Fz0,. .., 2n({@,20) € fA .. A (2n, ) € f)}

o Cartesian products

Tr(f) = {(z,y) - 32({{x, 2), (y, 2)) € 1)}
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System Category

Let cl(M) denote the closure of the set of morphisms M under
sequential and monoidal composition, and trace.

Definition (System category)

A system category S is a traced monoidal category with a distinguished
set of morphisms S, C S,,,, so-called basic systems, such that

C|(Sb) — Sm.
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System Category

Let cl(M) denote the closure of the set of morphisms M under
sequential and monoidal composition, and trace.

Definition (System category)

A system category S is a traced monoidal category with a distinguished
set of morphisms S, C S,,,, so-called basic systems, such that
C|(Sb) = Sm.

Flowcharts Stream circuits

Boolean Test (X — X W X) Sum (¥ x ¥ — X)

Joining of Wires (X W3 — %) | Splitting of Wires (¥ — X x X)
Assignment (X — X) Scalar Multiplication (X — X)
Register (X — X)
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Hoare Logic

e Pre/Post-conditions:
Describe properties of input/output

o Ordering on information:
Rule of consequence

@ Partial correctness assertions:
Predicate transformers

o Others:
Strongest post condition, loop invariant, ...
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Verification Category

Let Pos denote the category of posets and monotone mappings

Definition (Verification category)

A subcategory V of Pos is called a verification category if for any element
P € X and morphism f: (X x Z) — (Y x Z) the set of pre-fixed
points, i.e.

{Q : 3R. f(P,Q) E(R,Q)}

has a least element. We will denote such least element by u¢ p.
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Verification Category

Let Pos denote the category of posets and monotone mappings

Definition (Verification category)

A subcategory V of Pos is called a verification category if for any element
P € X and morphism f: (X x Z) — (Y x Z) the set of pre-fixed
points, i.e.

{Q : 3R. f(P,Q) E(R,Q)}

has a least element. We will denote such least element by u¢ p.

By monotonicity of f, pir p is also the least fixed point.
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Verification Category: Intuition

Usual Hoare Logic Verification Categories
Pre/Post-conditions Points of posets

Logical implication Partial order

Rule of consequence Monotonicity

Strongest loop invariant | Least pre-fixed point



Abstract Hoare Logic
L*Abstract Hoare Logic

Verification Category and TMC

Any verification category V gives rise to a traced monoidal category with
trace defined as

Tr(f)(P):=R
for any morphism f : (X x Z) — (Y x Z), where R is the unique
element of Y such that f(P,usp) = (R, ls,p).

PeX ReY

[— ]

Ky P
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Propagation of Upper Bounds

Theorem (Soundness and completeness)

Let V be a verification category and Vy, a set of basic morphisms
spanning V,,,. The following set of propagation of upper bound rules is
sound and complete for V with respect to V,

feVy
J(P)C f(P)

(axiom)
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Do
Propagation of Upper Bounds

Theorem (Soundness and completeness)

Let V be a verification category and Vy, a set of basic morphisms
spanning V,,,. The following set of propagation of upper bound rules is
sound and complete for V with respect to V,

FeVs : f(P)EQ g(@QECR
—— (axiom) (o)
J(P)C (P) (9o NP CR

f(P)EQ g(R)ES f(P,Q) E(R,Q)

X (Trv)

P'CP f(P)CQ QCQ
fPee

(con)
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Pos
S
X
Vo
Y
PeHX)
Q€H(T)
{P} f1O} H()(P) S Q
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Definition (Verification functor)

A monoidal functor H : S — Pos is called a verification functor if
@ image of H is a verification category
@ H preserves traces (trace in image of H defined in Lemma (A))
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Abstract Hoare Triples

Definition (Verification functor)

A monoidal functor H : S — Pos is called a verification functor if
@ image of H is a verification category
@ H preserves traces (trace in image of H defined in Lemma (A))

Let
@ H : S — Pos be a verification functor
e f: X — Y is a morphism (system) in S
e PcH(X)and Qe H(Y)

We define abstract Hoare triples as

{P} f{Q} :== H(f)(P)Euw) Q
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Theorem (Soundness and completeness)

The following set of rules is sound and complete for any system category
S and verification functor H : S — Pos:

fes (axiom) {P} F{Q} {Q}g{R} 0
{P} f{H()(P)} {P}gof{R}
(P} F{Q} {R}g{S} o {(P,Q)} f{(R,Q)} (Trs)
{(P.R)} fog{{(Q,5)} {P} Trs(f) {R}

P Ex P {P}f{Q} QCyQ
{P'} F{Q"}

(wkn)
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Flowcharts

The embedding H is basically the power-set construction, so that
HXWY):=H(X)x HY)

On morphisms, we define:
o Forward reasoning
H(f)(P):={yeY : JzeP (f(z) =y)}
o Backward reasoning

H(f)(Q) ={ze X : f(x) € Q}

And if sets are described by formulas:
o H(f)(®):=SPC(f,®)
o H(f)(®) := WPC(/, ®)
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Y
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while, (C) Tr((1WC)oify 0 A)
" - _Aﬂ.qi_. (170}
C — c P
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(1.1} (16 C)oify0 A {(IA—b 1)} (;r)
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while, (C) Tr((1WC)oify 0 A)
T (b {1} —“4~<Ii—> {I A b}
C | E— c
{I A b} 3

{IA=b} 1{IA=b} {IAD}C{I}
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(I} (LW C) o ify {(I A-b,I)}

((I,D)} 1WC) oifyo A {(IA—D,I)}

(I} whiley(C) {T A —b}

(]

°)
()
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Embedding

@ Stream circuits already have Cartesian product as the monoidal
structure, the embedding H into Pos has to respect that

@ Our verification embedding of stream circuits is as follows:
o Define H(X) as the poset of finite approximations (prefixes) of
elements in 3, with the ordering s < ¢, if ¢ is an extension of s
o For morphisms (stream circuits) f : X — Y define

H(f)t)={ftxT) : T€ X}
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Embedding

@ Stream circuits already have Cartesian product as the monoidal
structure, the embedding H into Pos has to respect that

@ Our verification embedding of stream circuits is as follows:
o Define H(X) as the poset of finite approximations (prefixes) of
elements in 3, with the ordering s < t, if ¢ is an extension of s
o For morphisms (stream circuits) f : X — Y define

H(f)t)={ftxT) : T€ X}

Y

{t+s} f{s} F T
{t} FB(f) {t + s}
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L Instantiations

Embedding

@ Stream circuits already have Cartesian product as the monoidal
structure, the embedding H into Pos has to respect that

@ Our verification embedding of stream circuits is as follows:

o Define H(X) as the poset of finite approximations (prefixes) of
elements in 3, with the ordering s < t, if ¢ is an extension of s
o For morphisms (stream circuits) f : X — Y define

H(f)t)={ftxT) : T€ X}

t t+s
()5 T

{t} FB(f) {t + s}

Y
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Conclusions and Future Work

@ Other instantiations (in flowcharts):

o Pointer programs
o Total correctness

o Other instantiations (in stream circuits):

o Boundedness
o Relative stability

@ Related work
o Dijkstra's predicate transformer
o Kozen's KAT (Kleene Algebras with Test)
o Abramsky's specification categories
o Bloom and Esik on iteration theory
o Gurevich's existential fixed-point logic
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