Functional Interpretations

Lecture 2: Classical Logic, Linear Logic and Arithmetic

Paulo Oliva

Queen Mary, University of London, UK (pbo@dcs.qmul.ac.uk)

"I think you should be more explicit here in step two."

The interpretation

$$|A \wedge B|_{\mathbf{y},\mathbf{w}}^{\mathbf{x},\mathbf{v}} \quad :\equiv \quad |A|_{\mathbf{y}}^{\mathbf{x}} \wedge |B|_{\mathbf{w}}^{\mathbf{v}}$$

$$|A \vee B|_{\mathbf{y},\mathbf{w}}^{\mathbf{x},\mathbf{v},b} \quad :\equiv \quad \text{if}(b, |A|_{\mathbf{y}}^{\mathbf{x}}, |B|_{\mathbf{w}}^{\mathbf{v}})$$

$$|A \to B|_{\mathbf{x},\mathbf{w}}^{\mathbf{f},\mathbf{g}} \quad :\equiv \quad \forall \mathbf{y} \lhd \mathbf{g}\mathbf{x}\mathbf{w} \, |A|_{\mathbf{y}}^{\mathbf{x}} \to |B|_{\mathbf{w}}^{\mathbf{f}\mathbf{x}}$$

$$|\forall z A(z)|_{\mathbf{y},z}^{\mathbf{f}} \quad :\equiv \quad |A(z)|_{\mathbf{y}}^{\mathbf{f}z}$$

$$|\exists z A(z)|_{\mathbf{y}}^{\mathbf{x},z} \quad :\equiv \quad |A(z)|_{\mathbf{y}}^{\mathbf{x}}$$

$$|\neg A|_{\mathbf{x}}^{\mathbf{g}} \quad :\equiv \quad \neg \forall \mathbf{y} \lhd \mathbf{g}\mathbf{x} \, |A|_{\mathbf{y}}^{\mathbf{x}}$$

Exercise

Find witnesses for the (parametrised) interpretation of

$$A. \neg \neg \exists n (P(n) \to \forall m P(m))$$

B.
$$\forall n(P(n) \to P(n+1)) \to (P(0) \to P(3))$$

C.
$$\forall x \exists y A(x,y) \rightarrow \exists f \forall x A(x,fx)$$
 (Axiom of Choice)

D.
$$\neg \forall x A_{\mathsf{qf}}(x) \to \exists x \neg A_{\mathsf{qf}}(x)$$
 (Markov Principle)

Outline

- Classical logic
 - Negative translation
 - A-translation
- 2 Linear logic
 - Shirahata's interpretation
- Extensions of basic interpretation
 - Interpretable principles
 - Arithmetic

Outline

- Classical logic
 - Negative translation
 - A-translation
- 2 Linear logic
 - Shirahata's interpretation
- Extensions of basic interpretation
 - Interpretable principles
 - Arithmetic

Kuroda's translation

Classical logic is obtained with the stability rule

$$\frac{\Gamma \vdash \neg \neg A}{\Gamma \vdash A}$$

Theorem (Negative translation, Kuroda)

For each formula of A associate a new formula A^\dagger by placing $\neg\neg$ after each universal quantifier. Let $A^N \equiv \neg \neg A^\dagger$. If

$$\Gamma \vdash_{\mathsf{CL}} A$$

the

$$\Gamma^N \vdash_\mathsf{IL} A^N$$

N-translation simplifications

Useful facts:

(i)
$$(\neg \neg A \rightarrow \neg \neg B) \Leftrightarrow \neg \neg (A \rightarrow B) \Leftrightarrow (A \rightarrow \neg \neg B)$$

$$(ii)$$
 $\neg\neg\forall\neg\neg A \Leftrightarrow \forall\neg\neg A$

For instance:

$$\begin{array}{lll} A & \equiv & \forall (\exists \forall \exists P \rightarrow \forall \exists Q) \\ A^N & \equiv & \neg \neg \forall \neg \neg (\exists \forall \neg \neg \exists P \rightarrow \forall \neg \neg \exists Q) \\ & \stackrel{(ii)}{\Leftrightarrow} & \forall \neg \neg (\exists \forall \neg \neg \exists P \rightarrow \forall \neg \neg \exists Q) \\ & \stackrel{(i)}{\Leftrightarrow} & \forall (\exists \forall \neg \neg \exists P \rightarrow \neg \neg \forall \neg \neg \exists Q) \\ & \stackrel{(ii)}{\Leftrightarrow} & \forall (\exists \forall \neg \neg \exists P \rightarrow \forall \neg \neg \exists Q) \\ & \Leftrightarrow & A & (\text{given Markov's principle}) \end{array}$$

Application 1: Relative consistency

- N-translation of \bot is $(\bot \to \bot) \to \bot$ which is equivalent to \bot .
- Adding classical logic cannot make intuitionistic theory inconsistent.

Theorem

 $\mathsf{CL} \vdash \perp$ if and only if $\mathsf{IL} \vdash \perp$

Application 2: Classical Herbrand theorem

Theorem (Herbrand, classical)

If

$$\mathsf{CL} \vdash \exists x A_{\mathsf{qf}}(x)$$

then, for some sequence of terms t_0, \ldots, t_n , we have

$$\mathsf{CL} \vdash A_{\mathsf{qf}}(t_0) \lor \ldots \lor A_{\mathsf{qf}}(t_n)$$

Proof.

- $\mathsf{CL} \vdash \exists x A_{\mathsf{af}}(x)$

 - $\mathsf{IL} \vdash \neg \forall x \neg A_{\mathsf{af}}(x)$
- 3. IL $\vdash \neg(\neg A_{\mathsf{qf}}(t_0) \land \ldots \land \neg A_{\mathsf{qf}}(t_n))$ $\mathsf{CL} \vdash A_{\mathsf{af}}(t_0) \lor \ldots \lor A_{\mathsf{af}}(t_n)$
- (assumption)
- (by n.t.)
- (by int. Herbrand)

A-translation

Negative translation as special case of the A-translation

Negative translation

$$B^N \equiv (B^\dagger \to \perp) \to \perp, \text{ where } \left\{ \begin{array}{ll} P^\dagger & \equiv & P \\ (\forall x B(x))^\dagger & \equiv & \forall x ((B^\dagger \to \perp) \to \perp) \end{array} \right.$$

A-translation

Negative translation as special case of the A-translation

Negative translation

$$B^N \equiv (B^\dagger \to \bot) \to \bot, \text{ where } \left\{ \begin{array}{ll} P^\dagger & \equiv & P \\ (\forall x B(x))^\dagger & \equiv & \forall x ((B^\dagger \to \bot) \to \bot) \end{array} \right.$$

• **A-translation** (for fixed formula *A*)

$$B^A \equiv (B_A \to A) \to A, \text{ where } \left\{ \begin{array}{lcl} P_A & \equiv & P \vee A \\ (\forall x B(x))_A & \equiv & \forall x ((B_A \to A) \to A) \end{array} \right.$$

A-translation

Negative translation as special case of the A-translation

Negative translation

$$B^N \equiv (B^\dagger \to \bot) \to \bot, \text{ where } \left\{ \begin{array}{ll} P^\dagger & \equiv & P \\ (\forall x B(x))^\dagger & \equiv & \forall x ((B^\dagger \to \bot) \to \bot) \end{array} \right.$$

• **A-translation** (for fixed formula *A*)

$$B^A \equiv (B_A \to A) \to A, \text{ where } \left\{ \begin{array}{lcl} P_A & \equiv & P \vee A \\ (\forall x B(x))_A & \equiv & \forall x ((B_A \to A) \to A) \end{array} \right.$$

Theorem (Friedman)

Assume A does not have free variables which are bounded in B. If $\Gamma \vdash_{\mathsf{CL}} B$ then $\Gamma^A \vdash_{\mathsf{IL}} B^A$.

Application: Π_2^0 -conservation

Observe that the A-translation of $\exists y P(x,y)$ is

$$(\exists y (P(x,y) \lor A) \to A) \to A$$

Taking $A \equiv \exists y P(x,y)$ we have that $\exists y P(x,y)^{\exists y P(x,y)}$ is

$$(\exists y (P(x,y) \lor \exists y P(x,y)) \to \exists y P(x,y)) \to \exists y P(x,y)$$

which is equivalent to $\exists y P(x,y)$, given that

$$\exists y (P(x,y) \lor \exists y P(x,y)) \to \exists y P(x,y)$$

is intuitionistically provable.

Theorem

 $\mathsf{CL} \vdash \forall x \exists y P(x,y)$ if and only if $\mathsf{IL} \vdash \forall x \exists y P(x,y)$

Outline

- Classical logic
 - Negative translation
 - A-translation
- 2 Linear logic
 - Shirahata's interpretation
- Extensions of basic interpretation
 - Interpretable principles
 - Arithmetic

Linear vs. non-linear negation

- Intuitionistic negation $A \to \perp$ some set of consequences of A is inconsistent $(A \land ... \land A \rightarrow \bot)$
- Linear negation $A \longrightarrow \bot$ one single instance of A implies \bot

Linear vs. non-linear negation

- Intuitionistic negation $A \to \bot$ some set of consequences of A is inconsistent $(A \land ... \land A \to \bot)$
- Linear negation $A \multimap \bot$ one single instance of A implies \bot
- $\bullet \ \, \mathsf{Linear} \ \, \mathsf{Logic} \, \left\{ \begin{array}{l} \mathsf{identifies} \ \, A \ \, \mathsf{with} \ \, (A^\perp)^\perp \\ \mathsf{has} \ \, \mathsf{the} \ \, \mathsf{existence} \ \, \mathsf{property} \end{array} \right.$

Linear vs. non-linear negation

- Intuitionistic negation $A \to \perp$ some set of consequences of A is inconsistent $(A \land ... \land A \rightarrow \bot)$
- Linear negation $A \longrightarrow \bot$ one single instance of A implies \perp
- Linear Logic $\begin{cases} & \text{identifies } A \text{ with } (A^{\perp})^{\perp} \\ & \text{has the existence property} \end{cases}$
- Girard's comment:

"This exceptional behaviour of 'nill' (the linear negation) comes from the fact that A^{\perp} negates a single action of type A, whereas usual negation only negates some (unspecified) iteration of A, what usually leads to a Herbrand disjunction of unspecified length"

Classical linear logic

Connectives	Exponentials	Structural
$ \frac{\vdash \Gamma, A \vdash \Gamma, B}{\vdash \Gamma, A \land B} (\land) $	$\frac{\vdash \Gamma}{\vdash \Gamma, ?A}$ (wkn)	$rac{dash \Gamma}{dash \pi\{\Gamma\}}$ (per)
$\frac{\vdash \Gamma, A_i}{\vdash \Gamma, A_0 \lor A_1} (\lor_r)$	$\frac{\vdash \Gamma, ?A, ?A}{\vdash \Gamma, ?A} \text{ (con)}$	$dash lpha^\perp,lpha$ (id)
$ \frac{\vdash \Gamma, A \vdash \Delta, B}{\vdash \Gamma, \Delta, A \otimes B} (\otimes) $	$\frac{\vdash ?\Gamma, A}{\vdash ?\Gamma, !A} \ (!)$	$ \frac{ \vdash \Gamma, A \vdash \Delta, A^{\perp}}{\vdash \Gamma, \Delta} \text{ (cut)} $
$\frac{\vdash \Gamma, A, B}{\vdash \Gamma, A \otimes B} (\otimes)$	$\frac{\vdash \Gamma, A}{\vdash \Gamma, ?A} (?)$	

Classical linear logic

Connectives	Exponentials	Structural
$\frac{\vdash \Gamma, A \vdash \Gamma, B}{\vdash \Gamma, A \land B} (\land)$	$\frac{\vdash \Gamma}{\vdash \Gamma, ?A}$ (wkn)	$rac{dash \Gamma}{dash \pi\{\Gamma\}}$ (per)
$\frac{\vdash \Gamma, A_i}{\vdash \Gamma, A_0 \lor A_1} (\lor_r)$	$\frac{\vdash \Gamma, ?A, ?A}{\vdash \Gamma, ?A} \text{ (con)}$	$\vdash lpha^\perp, lpha$ (id)
$ \frac{\vdash \Gamma, A \vdash \Delta, B}{\vdash \Gamma, \Delta, A \otimes B} (\otimes) $	$\frac{\vdash ?\Gamma, A}{\vdash ?\Gamma, !A} (!)$	$ \frac{ \vdash \Gamma, A \vdash \Delta, A^{\perp}}{\vdash \Gamma, \Delta} \text{ (cut)} $
$\frac{\vdash \Gamma, A, B}{\vdash \Gamma, A \otimes B} (\otimes)$	$\frac{\vdash \Gamma, A}{\vdash \Gamma, ?A} \ (?)$	

- Symmetric logic should lead to a symmetric interpretation
- Intuition: A interpreted as a two-player game $|A|_{m y}^{m x}$ \exists -player chooses m x and \forall -player chooses m y simultaneously

- Symmetric logic should lead to a symmetric interpretation
- Intuition: A interpreted as a two-player game $|A|_{m y}^{m x}$ \exists -player chooses m x and \forall -player chooses m y simultaneously

$$\begin{aligned} |A \wedge B|_{\boldsymbol{y}, \boldsymbol{w}, b}^{\boldsymbol{x}, \boldsymbol{v}} &:\equiv & \text{if}(b, |A|_{\boldsymbol{y}}^{\boldsymbol{x}}, |B|_{\boldsymbol{w}}^{\boldsymbol{v}}) \\ |A \vee B|_{\boldsymbol{y}, \boldsymbol{w}}^{\boldsymbol{x}, \boldsymbol{v}, b} &:\equiv & \text{if}(b, |A|_{\boldsymbol{y}}^{\boldsymbol{x}}, |B|_{\boldsymbol{w}}^{\boldsymbol{v}}) \end{aligned}$$

- Symmetric logic should lead to a symmetric interpretation
- Intuition: A interpreted as a two-player game $|A|_{m y}^{m x}$ \exists -player chooses m x and \forall -player chooses m y simultaneously

$$\begin{array}{lll} |A \wedge B|_{\boldsymbol{y},\boldsymbol{w},b}^{\boldsymbol{x},\boldsymbol{v}} &:\equiv & \mathrm{if}(b,|A|_{\boldsymbol{y}}^{\boldsymbol{x}},|B|_{\boldsymbol{w}}^{\boldsymbol{v}}) & |\forall zA(z)|_{\boldsymbol{y},z}^{\boldsymbol{f}} &:\equiv & |A(z)|_{\boldsymbol{y}}^{\boldsymbol{f}z} \\ |A \vee B|_{\boldsymbol{y},\boldsymbol{w}}^{\boldsymbol{x},\boldsymbol{v},b} &:\equiv & \mathrm{if}(b,|A|_{\boldsymbol{y}}^{\boldsymbol{x}},|B|_{\boldsymbol{w}}^{\boldsymbol{v}}) & |\exists zA(z)|_{\boldsymbol{f}}^{\boldsymbol{x},z} &:\equiv & |A(z)|_{\boldsymbol{f}z}^{\boldsymbol{x}} \end{array}$$

- Symmetric logic should lead to a symmetric interpretation
- Intuition: A interpreted as a two-player game $|A|_{m y}^{m x}$ \exists -player chooses m x and \forall -player chooses m y simultaneously

$$|A \wedge B|_{\boldsymbol{y},\boldsymbol{w},b}^{\boldsymbol{x},\boldsymbol{v}} :\equiv \operatorname{if}(b,|A|_{\boldsymbol{y}}^{\boldsymbol{x}},|B|_{\boldsymbol{w}}^{\boldsymbol{v}}) \qquad |\forall z A(z)|_{\boldsymbol{y},z}^{\boldsymbol{f}} :\equiv |A(z)|_{\boldsymbol{y}}^{\boldsymbol{f}z}$$

$$|A \vee B|_{\boldsymbol{y},\boldsymbol{w}}^{\boldsymbol{x},\boldsymbol{v},b} :\equiv \operatorname{if}(b,|A|_{\boldsymbol{y}}^{\boldsymbol{x}},|B|_{\boldsymbol{w}}^{\boldsymbol{v}}) \qquad |\exists z A(z)|_{\boldsymbol{f}}^{\boldsymbol{x},z} :\equiv |A(z)|_{\boldsymbol{f}z}^{\boldsymbol{x}}$$

$$|A \otimes B|_{\boldsymbol{f},\boldsymbol{g}}^{\boldsymbol{x},\boldsymbol{v}} :\equiv |A|_{\boldsymbol{f}\boldsymbol{v}}^{\boldsymbol{x}} \wedge |B|_{\boldsymbol{g}\boldsymbol{x}}^{\boldsymbol{v}}$$

$$|A \otimes B|_{\boldsymbol{g},\boldsymbol{g}}^{\boldsymbol{x},\boldsymbol{v}} :\equiv |A|_{\boldsymbol{g}}^{\boldsymbol{y}} \vee |B|_{\boldsymbol{g}}^{\boldsymbol{f}\boldsymbol{y}}$$

- Symmetric logic should lead to a symmetric interpretation
- Intuition: A interpreted as a two-player game $|A|_{y}^{x}$ \exists -player chooses x and \forall -player chooses y simultaneously

$$|A \wedge B|_{\boldsymbol{y},\boldsymbol{w},b}^{\boldsymbol{x},\boldsymbol{v}} :\equiv \text{if}(b,|A|_{\boldsymbol{y}}^{\boldsymbol{x}},|B|_{\boldsymbol{w}}^{\boldsymbol{v}}) \qquad |\forall zA(z)|_{\boldsymbol{y},z}^{\boldsymbol{f}} :\equiv |A(z)|_{\boldsymbol{y}}^{\boldsymbol{f}z}$$

$$|A \vee B|_{\boldsymbol{y},\boldsymbol{w}}^{\boldsymbol{x},\boldsymbol{v},b} :\equiv \text{if}(b,|A|_{\boldsymbol{y}}^{\boldsymbol{x}},|B|_{\boldsymbol{w}}^{\boldsymbol{v}}) \qquad |\exists zA(z)|_{\boldsymbol{f}}^{\boldsymbol{x},z} :\equiv |A(z)|_{\boldsymbol{f}z}^{\boldsymbol{x}}$$

$$|A \otimes B|_{\boldsymbol{f},\boldsymbol{g}}^{\boldsymbol{x},\boldsymbol{v}} :\equiv |A|_{\boldsymbol{f}\boldsymbol{v}}^{\boldsymbol{x}} \wedge |B|_{\boldsymbol{g}\boldsymbol{x}}^{\boldsymbol{v}} \qquad |!A|_{\boldsymbol{f}}^{\boldsymbol{x}} :\equiv \forall \boldsymbol{y} \triangleleft \boldsymbol{f}\boldsymbol{x} |A|_{\boldsymbol{y}}^{\boldsymbol{x}}$$

$$|A \otimes B|_{\boldsymbol{f},\boldsymbol{g}}^{\boldsymbol{f},\boldsymbol{g}} :\equiv |A|_{\boldsymbol{g}}^{\boldsymbol{g}\boldsymbol{w}} \vee |B|_{\boldsymbol{g}}^{\boldsymbol{f}\boldsymbol{y}} \qquad |?A|_{\boldsymbol{f}}^{\boldsymbol{f}} :\equiv \exists \boldsymbol{x} \triangleleft \boldsymbol{f}\boldsymbol{y} |A|_{\boldsymbol{w}}^{\boldsymbol{x}}$$

- Symmetric logic should lead to a symmetric interpretation
- Intuition: A interpreted as a two-player game $|A|_{\pmb{y}}^{\pmb{x}}$ \exists -player chooses \pmb{x} and \forall -player chooses \pmb{y} simultaneously

$$\begin{aligned} |A \wedge B|_{\boldsymbol{y}, \boldsymbol{w}, b}^{\boldsymbol{x}, \boldsymbol{v}} &:\equiv & \text{if}(b, |A|_{\boldsymbol{y}}^{\boldsymbol{x}}, |B|_{\boldsymbol{w}}^{\boldsymbol{v}}) & |\forall z A(z)|_{\boldsymbol{y}, z}^{\boldsymbol{f}} &:\equiv & |A(z)|_{\boldsymbol{y}}^{\boldsymbol{f}z} \\ |A \vee B|_{\boldsymbol{y}, \boldsymbol{w}}^{\boldsymbol{x}, \boldsymbol{v}, b} &:\equiv & \text{if}(b, |A|_{\boldsymbol{y}}^{\boldsymbol{x}}, |B|_{\boldsymbol{w}}^{\boldsymbol{v}}) & |\exists z A(z)|_{\boldsymbol{f}}^{\boldsymbol{x}, z} &:\equiv & |A(z)|_{\boldsymbol{f}z}^{\boldsymbol{x}} \\ |A \otimes B|_{\boldsymbol{f}, g}^{\boldsymbol{x}, \boldsymbol{v}} &:\equiv & |A|_{\boldsymbol{f}}^{\boldsymbol{x}} \wedge |B|_{\boldsymbol{g}x}^{\boldsymbol{v}} & |!A|_{\boldsymbol{f}}^{\boldsymbol{x}} &:\equiv & \forall \boldsymbol{y} \triangleleft \boldsymbol{f}x |A|_{\boldsymbol{y}}^{\boldsymbol{x}} \\ |A \otimes B|_{\boldsymbol{f}, g}^{\boldsymbol{f}, g} &:\equiv & |A|_{\boldsymbol{g}}^{\boldsymbol{g}w} \vee |B|_{\boldsymbol{w}}^{\boldsymbol{f}y} & |?A|_{\boldsymbol{f}}^{\boldsymbol{f}} &:\equiv & \exists \boldsymbol{x} \triangleleft \boldsymbol{f}\boldsymbol{y} |A|_{\boldsymbol{y}}^{\boldsymbol{x}} \end{aligned}$$

$$\bullet |A^{\perp}|_{x}^{y} \equiv \neg |A|_{y}^{x}$$

$$\bullet |A \multimap B|_{\boldsymbol{x},\boldsymbol{w}}^{\boldsymbol{f},\boldsymbol{g}} \equiv |A|_{\boldsymbol{q}\boldsymbol{w}}^{\boldsymbol{x}} \to |B|_{\boldsymbol{w}}^{\boldsymbol{f}\boldsymbol{x}}$$

Theorem (Shirahata)

If $\vdash_{\mathsf{LL}} A_0, \ldots, A_n$ then there are sequences of terms t_0, \ldots, t_n $(y_i \not\in \mathsf{FV}(t_i))$ such that $\vdash_{\mathsf{CL}^\omega} |A_0|_{y_0}^{t_0}, \ldots, |A_n|_{y_n}^{t_n}$.

Proof.

Theorem (Shirahata)

If $\vdash_{\mathsf{LL}} A_0, \ldots, A_n$ then there are sequences of terms t_0, \ldots, t_n $(y_i \not\in \mathsf{FV}(t_i))$ such that $\vdash_{\mathsf{CL}^\omega} |A_0|_{y_0}^{t_0}, \ldots, |A_n|_{y_n}^{t_n}$.

Proof.

Consider "promotion". Assume we have

$$\vdash_{\mathsf{CL}^{\omega}} |?\Gamma|_{\boldsymbol{w}}^{\boldsymbol{s}[\boldsymbol{y}]}, |A|_{\boldsymbol{y}}^{\boldsymbol{t}[\boldsymbol{w}]}$$

Theorem (Shirahata)

If $\vdash_{\mathsf{LL}} A_0, \ldots, A_n$ then there are sequences of terms t_0, \ldots, t_n $(y_i \not\in \mathsf{FV}(t_i))$ such that $\vdash_{\mathsf{CL}^\omega} |A_0|_{y_0}^{t_0}, \ldots, |A_n|_{y_n}^{t_n}$.

Proof.

Consider "promotion". Assume we have

$$\vdash_{\mathsf{CL}^{\omega}} |?\Gamma|_{\boldsymbol{w}}^{\boldsymbol{s}[\boldsymbol{y}]}, |A|_{\boldsymbol{y}}^{\boldsymbol{t}[\boldsymbol{w}]}$$

Unwinding the definition of $?\Gamma$ we have

$$\vdash_{\mathsf{CL}^\omega} \exists v \lhd s[y](w) \, |\Gamma|_w^v, |A|_y^{t[w]}$$

Theorem (Shirahata)

If $\vdash_{\mathsf{LL}} A_0, \ldots, A_n$ then there are sequences of terms t_0, \ldots, t_n $(y_i \not\in \mathsf{FV}(t_i))$ such that $\vdash_{\mathsf{CL}^\omega} |A_0|_{y_0}^{t_0}, \ldots, |A_n|_{y_n}^{t_n}$.

Proof.

Consider "promotion". Assume we have

$$\vdash_{\mathsf{CL}^{\omega}} |?\Gamma|_{\boldsymbol{w}}^{\boldsymbol{s}[\boldsymbol{y}]}, |A|_{\boldsymbol{y}}^{\boldsymbol{t}[\boldsymbol{w}]}$$

Unwinding the definition of $?\Gamma$ we have

$$\vdash_{\mathsf{CL}^\omega} \exists v \lhd s[y](w) \, |\Gamma|_w^v, |A|_y^{t[w]}$$

Let
$$ilde{s}[f](w) := \bigcup_{v \in f(t[w])} ((\lambda y.s[y](w))v)$$
, then

$$dash_{\mathsf{CL}^\omega} \ \exists v \lhd ilde{s}[f](w) \ |\Gamma|_w^v, orall y \lhd f(t[w]) \ |A|_y^{t[w]}$$

i.e.
$$\vdash_{\mathsf{CL}^{\omega}} |?\Gamma|_{m{w}}^{\tilde{m{s}}[m{f}]}, |!A|_{m{f}}^{m{t}[m{w}]}.$$

Outline

- Classical logic
 - Negative translation
 - A-translation
- 2 Linear logic
 - Shirahata's interpretation
- 3 Extensions of basic interpretation
 - Interpretable principles
 - Arithmetic

Soundness Extension I

- ullet We have seen how to interpret IL into $\ensuremath{\mathsf{IL}}^\omega$
- Interpretation extends easily to $\mathsf{IL}^\omega \mapsto \mathsf{IL}^\omega$
- ... with a neutral treatment of equality:
 - $x =_{\rho} y$ for each finite type ρ
 - reflexivity
 - transitivity
 - $x =_{\rho} y \rightarrow z(x) =_{\tau} z(y)$
 - $x =_{\rho \to \tau} y \to xz =_{\tau} yz$

Extensional equality

• We would like to have an extensional treatment of equality, i.e.

$$\forall z^{\rho}(xz =_{\tau} yz) \to x =_{\rho \to \tau} y$$

Theorem (Howard)

Any witness for the Dialectica interpretation of

$$\mathsf{EXT} \; : \; \forall Y, f, g(\forall n (fn =_o gn) \to Y(f) =_o Y(g))$$

is not majorizable.

Extensional equality

• We would like to have an extensional treatment of equality, i.e.

$$\forall z^{\rho}(xz =_{\tau} yz) \to x =_{\rho \to \tau} y$$

Theorem (Howard)

Any witness for the Dialectica interpretation of

$$\mathsf{EXT} \ : \ \forall Y, f, g(\forall n (fn =_o gn) \to Y(f) =_o Y(g))$$

is not majorizable.

Proof.

The Dialectica interpretation of EXT asks for a functional $\boldsymbol{\Phi}$ satisfying

$$\forall Y, f, g((f(\Phi Y f g) =_o g(\Phi Y f g)) \rightarrow Y(f) =_o Y(g))$$

Let $\Phi \leq^* \Phi^*$ and $Y, f, g \leq^* 1$ so that $\Phi Y f g \leq \Phi^* 111 = k$, for some k.

Let f, g coincide up to k and differ at k + 1, and Y(f) = f(k + 1).

Soundness Extension I

Theorem (Soundness - Extension I)

Let the monoidal embedding be fixed. If

$$\Gamma \vdash_{\mathsf{IL}^{\omega}} A$$

then there are sequences of terms $oldsymbol{t}, oldsymbol{s}$ such that

$$\forall w \lhd svy \, |\Gamma|_{w}^{v} \vdash_{\mathsf{IL}^{\omega}} |A|_{y}^{t[v]}$$

Interpretable principles

Definition (Interpretable principles)

If P is such that $\mathsf{IL} \not\vdash P$ but $\mathsf{IL}^\omega \vdash \exists x \forall y |P|_x^x$ then P is called a \lhd -interpretable principle (for short, I_{\lhd}).

One such example (for all instantiations) is the axiom of choice

$$\mathsf{AC} \quad : \quad \forall x^{\rho} \exists y^{\tau} A(x,y) \to \exists f^{\rho \to \tau} \forall x A(x,fx)$$

given $|A(x,y)|_{\boldsymbol{w}}^{\boldsymbol{v}}$ the interpretation of premise is

$$|A(x,y)|_{\boldsymbol{w},x}^{\boldsymbol{v},fx}$$

which is the same as $|A(x, fx)|_{w,x}^{v,f}$ (the interpretation of conclusion).

Soundness Extension II

Theorem (Soundness - Extension II)

Let the monoidal embedding be fixed. If

$$\Gamma \vdash_{\mathsf{IL}^\omega + \mathsf{I}_\lhd} A$$

then there are sequences of terms $oldsymbol{t}, oldsymbol{s}$ such that

$$\forall w \lhd svy \, |\Gamma|_{w}^{v} \vdash_{\mathsf{IL}^{\omega}} |A|_{y}^{t[v]}$$

Image and kernel of interpretation

Definition (∀<-bounded formulas)

The $\forall \triangleleft$ -bounded formulas (we use $A_{\rm b}$ and $B_{\rm b}$) are those built out of

- prime formulas
- conjunction $(A_{\rm b} \wedge B_{\rm b})$
- ullet implication $(A_{
 m b}
 ightarrow B_{
 m b})$ and
- bounded quantification $(\forall x \lhd tA_{\rm b})$
- The verifying system only needs <-bounded formulas
- ullet Most interpretations are idempotent, so that $||A|| \leftrightarrow |A|$
- ullet \lhd -bounded formulas also form kernel K_{\lhd} of interpretation
- Formulas in the kernel can be trivially added to soundness

Image of Functional Interpretations

	$x \lhd a$	d-bounded formulas
Modified realizability	true	∃-free formulas
Diller-Nahm	$x \in a$	∀∈-bounded formulas
Bounded f.i.	$x \leq^* a$	$\forall \leq^*$ -bounded formulas
Dialectica	x = a	quantifier-free formulas

Soundness Extension III

Theorem (Soundness - Extension III)

Let the monoidal embedding be fixed. If

$$\Gamma \vdash_{\mathsf{IL}^\omega + \mathsf{I}_\lhd + \mathsf{K}_\lhd} A$$

then there are sequences of terms $oldsymbol{t}, oldsymbol{s}$ such that

$$\forall w \lhd svy |\Gamma|_{w}^{v} \vdash_{\mathsf{IL}^{\omega} + \mathsf{K}_{\lhd}} |A|_{y}^{t[v]}$$

Interpreting induction

We consider the induction rule and recursor

$$\frac{A(0) \quad A(k) \rightarrow A(k')}{A(n)} \, \text{IND} \qquad \begin{array}{rcl} \operatorname{Rec}(g,f,0) & = & g \\ \operatorname{Rec}(g,f,n') & = & f(n,\operatorname{Rec}(g,f,n)) \end{array}$$

That can be interpreted as follows:

$$\frac{\frac{|\forall y' \lhd q[x,y] | A(k)|_{y'}^{x} \vdash |A(k')|_{y}^{tx}}{|\forall y|A(0)|_{y}^{s}} - \frac{|\forall y' \lhd q[x,y] | A(k)|_{y'}^{x} \vdash |A(k')|_{y}^{tx}}{|\forall y|A(k)|_{y}^{x} \vdash \forall y|A(k')|_{y}^{t}} - \frac{|\forall y|A(k)|_{y}^{\text{Rec}(s,t,k)} \vdash \forall y|A(k')|_{y}^{t}}{|\forall y|A(k)|_{y}^{\text{Rec}(s,t,k)} \vdash \forall y|A(k')|_{y}^{\text{Rec}(s,t,k')}}}{|\forall y|A(k)|_{y}^{\text{Rec}(s,t,k)} \vdash \forall y|A(k')|_{y}^{\text{Rec}(s,t,k')}}}$$

$$\vdash \forall y|A(n)|_{y}^{\text{Rec}(s,t,n)}$$

Feasible arithmetic

- Functional interpretations can also be used for very weak subsystem
- ullet Consider induction restricted to $\Sigma^b_{\mbox{\tiny 1}}$ -formulas

$$A(0) \wedge \forall n (A(n/2) \to A(n)) \to \forall n A(n)$$

where A(n) is of the form $\exists k \leq s \, (t[k, n] = 0)$.

Restricted induction can be interpreted via restricted recursion

$$R(n) = \left\{ \begin{array}{ll} a & n = 0 \\ b(n) & b(n) < c(n, R(n/2)) \\ c(n, R(n/2)) & \text{otherwise} \end{array} \right.$$

Application: Parikh's theorem

Theorem (Parikh)

Let $A_{\rm b}(x,y)$ be a bounded formula. If

$$\mathsf{CPV}^{\omega} \vdash \forall x^o \exists y^o A_{\mathrm{b}}(x,y)$$

then there exists a term t such that

$$\mathsf{CPV}^{\omega} \vdash \forall x \exists y \le t[x] A_{\mathsf{b}}(x,y).$$

Application: Parikh's theorem

Theorem (Parikh)

Let $A_{\mathrm{b}}(x,y)$ be a bounded formula. If

$$\mathsf{CPV}^{\omega} \vdash \forall x^o \exists y^o A_{\mathrm{b}}(x,y)$$

then there exists a term t such that

$$\mathsf{CPV}^{\omega} \vdash \forall x \exists y \le t[x] A_{\mathsf{b}}(x,y).$$

Proof.

The bounded functional interpretation of $\forall x \exists y A_{\mathrm{b}}(x,y)$ is

$$\forall a \forall x \leq^* a \exists b \exists y \leq^* b A_{\mathbf{b}}(x, y)$$

$$\forall a \exists b \forall x \leq^* a \exists y \leq^* b A_b(x, y)$$

$$\exists f \forall a \forall x \leq^* a \exists y \leq^* f a A_b(x, y)$$

Proof gives monotone witness t such that

$$\forall a \forall x \leq^* a \exists y \leq^* t[a] A_b(x, y)$$

Parikh's theorem: extension

Let Σ^0_1 -UB be the following uniform boundedness principle:

$$\forall f \leq_1 h \exists e^1 A_0(f, e) \to \exists g \forall f \leq_1 h \exists e \leq_1 g A_0(f, e)$$

Theorem

Let $A_{\rm b}(x,y)$ a bounded formula. If

$$\mathsf{CPV}^{\omega} + \Sigma_1^0 \text{-}\mathsf{UB} \vdash \forall x^o \exists y^\rho A_{\mathrm{b}}(x,y)$$

then there exists a term t such that

$$\mathsf{CPV}^{\omega} \vdash \forall x^o \exists y \leq_{\rho}^* t[x] A_{\mathsf{b}}(x,y).$$

Quiz

Consider the following game with 3 people.

- 1. Each person i builds a function g_i which given her number $x_i>0$ should give the (predicted) sum of all numbers $x_1+x_2+x_3$. E.g. $g_2(x_2):=7x_2^2+111$
- 2. Person $i \in \{1, 2, 3\}$ is then assigned the number $x_i := g_i(i)$
- 3. It should be the case that $g_i(x_i) = x_1 + x_2 + x_3$

How should the participants proceed in choosing g_i ?

Restriction: Functions g_i must be linear, i.e. $g_i(x) = a_i x + b_i$.

