Functional Interpretations Lecture 1: The parametrised interpretation

Paulo Oliva

Queen Mary, University of London, UK (pbo@dcs.qmul.ac.uk)

Munich, 27 March 2006

Plan of lectures

Lecture 1:

- Parametrised interpretation
- Intuitionistic logic

Lecture 2:

- Classical and linear logic
- Arithmetic

Lecture 3:

- Analysis
- Applications

Aim of lectures

• Broad overview of functional interpretations

Variants

Dialectica, m.r., Diller-Nahm, b.f.i., m.f.i.

Different contexts

logic, arithmetic, analysis

• Details of (some) recent developments

Outline

Introduction

- Historic digression
- Preliminaries

- Parametrised interpretation
- Instantiations

Outline

Introduction

- Historic digression
- Preliminaries

- Parametrised interpretation
- Instantiations

Historic digression

BHK interpretation

L.E.J. Brouwer

A. Heyting

A. N. Kolmogorov

Define "A is constructively true" or "p is a constructive proof of A.

- a pair of constructions $\langle p_0, p_1 \rangle$ is a proof of $A \wedge B$ if p_0 is proof of A and p_1 is a proof of B.
- a construction p is a proof of $A \to B$ if whenever a is a construction for A then p(a) is a construction for B.

Historic digression

Curry-Howard isomorphism

H. Curry W. A. Howard

Isomorphism between formulas and types $[[\cdot]]:\mathbf{Form}\to\mathbf{Type}$

$$[[P]] :\equiv \tau_P$$
$$[[A \land B]] :\equiv [[A]] \times [[B]]$$
$$[[A \to B]] :\equiv [[A]] \to [[B]]$$

So that proofs of A correspond (one-to-one) to λ -terms of type [[A]]

Historic digression

Intuitionistic Type Theory

Martin Löf

Extend isomorphism to predicate logic, using dependent types

 $\begin{aligned} [[\forall x^X A(x)]] &:\equiv & \Pi_{x:X}[[A(x)]] \\ [[\exists x^X A(x)]] &:\equiv & \Sigma_{x:X}[[A(x)]] \end{aligned}$

(日) (四) (日) (日) (日) (日)

- Historic digression

Gödel's Dialectica interpretation

- Developed by Gödel since the 1930s
- Finally published in 1958

• Aim:

solution to Hilbert's consistence program reduce consistency of arithmetic to the consistency of a "finitary calculus" T

K. Gödel

Historic digression

Gödel's Dialectica interpretation

- Developed by Gödel since the 1930s
- Finally published in 1958

• Aim:

solution to Hilbert's consistence program reduce consistency of arithmetic to the consistency of a "finitary calculus" T

Interpretation:

associate formulas A with new formulas $(A)^D$ If HA $\vdash A$ then T $\vdash (A)^D$ If Con(T) then Con(HA) (since $(\bot)^D \equiv \bot$)

K. Gödel

- Historic digression

Gödel's Dialectica interpretation

- Developed by Gödel since the 1930s
- Finally published in 1958

• Aim:

solution to Hilbert's consistence program reduce consistency of arithmetic to the consistency of a "finitary calculus" T

Interpretation:

associate formulas A with new formulas $(A)^D$ If HA $\vdash A$ then T $\vdash (A)^D$ If Con(T) then Con(HA) (since $(\bot)^D \equiv \bot$)

• Functional interpretations:

Variations of Dialectica interpretation

K. Gödel

Functional Interpretations

- Introduction

- Historic digression

Functional interpretations

- Associate formulas A to specifications $|A|_{u}^{x}$
- Intuitively:
 - A is interpreted by $\exists x \forall y | A |_y^x$
 - A associated with the "type" $\{ m{x} \; : \; \forall m{y} | A |_{m{y}}^{m{x}} \}$
- Proof of A provides a witness t for interpretation $\forall y | A |_{y}^{t}$

(日) (四) (王) (王) (王)

- Historic digression

Functional interpretations

- Associate formulas A to specifications $|A|_{y}^{x}$
- Intuitively:
 - A is interpreted by $\exists x \forall y | A |_y^x$
 - A associated with the "type" $\{ m{x} \; : \; \forall m{y} | A |_{m{y}}^{m{x}} \}$
- Proof of A provides a witness \boldsymbol{t} for interpretation $\forall \boldsymbol{y}|A|_{\boldsymbol{y}}^{\boldsymbol{t}}$

	Formula A	$Proof\;\pi$
Curry-Howard	[[A]]	$t_{\pi}:[[A]]$
Functional Interpretations	$\{oldsymbol{x} \ : \ orall oldsymbol{y} A _{oldsymbol{y}}^{oldsymbol{x}}\}$	$orall oldsymbol{y} A _{oldsymbol{y}}^{oldsymbol{t}}$

- Historic digression

Functional interpretations

- Associate formulas A to specifications $|A|_{y}^{x}$
- Intuitively:
 - A is interpreted by $\exists x \forall y | A |_y^x$
 - A associated with the "type" $\{ m{x} \; : \; \forall m{y} | A |_{m{y}}^{m{x}} \}$
- Proof of A provides a witness t for interpretation $\forall y | A |_y^t$

	Formula A	Proof π
Curry-Howard	[[A]]	$t_{\pi}:[[A]]$
Functional Interpretations	$\{oldsymbol{x} \ : \ orall oldsymbol{y} A _{oldsymbol{y}}^{oldsymbol{x}}\}$	$orall oldsymbol{y} A _{oldsymbol{y}}^{oldsymbol{t}}$

- Modular: analysis of sub-proofs reused in analysis of main proof
- ullet Flexible definition of negation, using "counter-examples" y

- Historic digression

From unwinding to proof mining

- 1951 Kreisel launches his "unwinding program", describes the notion of an "interpretation" and defines his no-counterexample interpretation
- 1952 Kreisel attempts an application to Littlewood's theorem
- 1958 Gödel's publishes Dialectica interpretation presenting relative consistency proof of *classical arithmetic*
- 1958 Kreisel revisits his program, asking for shift from "Hilbert's consistency program" to concrete mathematical applications
- 1958 Kreisel analyses Artin's proof of Hilbert's 17th problem
- 1959 Kreisel defines a variant of Dialectica called "modified realizability"
- 1962 Spector extends the Dialectica interpretation to classical analysis
- 1992 Kohlenbach develops a "monotone" version of the Dialectica interpretation and applies to uniqueness proofs
- 2001- New case studies in approximation theory and fixed-point theory

イロト 不得下 イヨト イヨト

- Historic digression

From unwinding to proof mining

- 1951 Kreisel launches his "unwinding program", describes the notion of an "interpretation" and defines his no-counterexample interpretation
- 1952 Kreisel attempts an application to Littlewood's theorem
- 1958 Gödel's publishes Dialectica interpretation presenting relative consistency proof of *classical arithmetic*
- 1958 Kreisel revisits his program, asking for shift from "Hilbert's consistency program" to concrete mathematical applications
- 1958 Kreisel analyses Artin's proof of Hilbert's 17th problem
- 1959 Kreisel defines a variant of Dialectica called "modified realizability"
- 1962 Spector extends the Dialectica interpretation to classical analysis
- 1992 Kohlenbach develops a "monotone" version of the Dialectica interpretation and applies to uniqueness proofs
- 2001- New case studies in approximation theory and fixed-point theory

イロト 不得 トイヨト イヨト

- Historic digression

From unwinding to proof mining

- 1951 Kreisel launches his "unwinding program", describes the notion of an "interpretation" and defines his no-counterexample interpretation
- 1952 Kreisel attempts an application to Littlewood's theorem
- **1958** Gödel's publishes Dialectica interpretation presenting relative consistency proof of *classical arithmetic*
- 1958 Kreisel revisits his program, asking for shift from "Hilbert's consistency program" to concrete mathematical applications
- 1958 Kreisel analyses Artin's proof of Hilbert's 17th problem
- 1959 Kreisel defines a variant of Dialectica called "modified realizability"
- 1962 Spector extends the Dialectica interpretation to classical analysis
- 1992 Kohlenbach develops a "monotone" version of the Dialectica interpretation and applies to uniqueness proofs
- 2001- New case studies in approximation theory and fixed-point theory

イロト 不得 とうき とうとう

- Historic digression

From unwinding to proof mining

- 1951 Kreisel launches his "unwinding program", describes the notion of an "interpretation" and defines his no-counterexample interpretation
- 1952 Kreisel attempts an application to Littlewood's theorem
- **1958** Gödel's publishes Dialectica interpretation presenting relative consistency proof of *classical arithmetic*
- 1958 Kreisel revisits his program, asking for shift from "Hilbert's consistency program" to concrete mathematical applications
- 1958 Kreisel analyses Artin's proof of Hilbert's 17th problem
- 1959 Kreisel defines a variant of Dialectica called "modified realizability"
- 1962 Spector extends the Dialectica interpretation to classical analysis
- 1992 Kohlenbach develops a "monotone" version of the Dialectica interpretation and applies to uniqueness proofs
- 2001- New case studies in approximation theory and fixed-point theory

イロト 人間 ト イヨト イヨト

- Historic digression

From unwinding to proof mining

- 1951 Kreisel launches his "unwinding program", describes the notion of an "interpretation" and defines his no-counterexample interpretation
- 1952 Kreisel attempts an application to Littlewood's theorem
- **1958** Gödel's publishes Dialectica interpretation presenting relative consistency proof of *classical arithmetic*
- 1958 Kreisel revisits his program, asking for shift from "Hilbert's consistency program" to concrete mathematical applications
- 1958 Kreisel analyses Artin's proof of Hilbert's 17th problem
- 1959 Kreisel defines a variant of Dialectica called "modified realizability"1962 Spector extends the Dialectica interpretation to *classical analysis*
- 1992 Kohlenbach develops a "monotone" version of the Dialectica interpretation and applies to uniqueness proofs
- 2001- New case studies in approximation theory and fixed-point theory

イロト 不得 トイヨト イヨト

- Historic digression

From unwinding to proof mining

- 1951 Kreisel launches his "unwinding program", describes the notion of an "interpretation" and defines his no-counterexample interpretation
- 1952 Kreisel attempts an application to Littlewood's theorem
- **1958** Gödel's publishes Dialectica interpretation presenting relative consistency proof of *classical arithmetic*
- 1958 Kreisel revisits his program, asking for shift from "Hilbert's consistency program" to concrete mathematical applications
- 1958 Kreisel analyses Artin's proof of Hilbert's 17th problem
- 1959 Kreisel defines a variant of Dialectica called "modified realizability"
- 1962 Spector extends the Dialectica interpretation to *classical analysis*
- 1992 Kohlenbach develops a "monotone" version of the Dialectica interpretation and applies to uniqueness proofs
- 2001- New case studies in approximation theory and fixed-point theory

イロト 不得下 不良下 不良下

- Historic digression

From unwinding to proof mining

- 1951 Kreisel launches his "unwinding program", describes the notion of an "interpretation" and defines his no-counterexample interpretation
- 1952 Kreisel attempts an application to Littlewood's theorem
- **1958** Gödel's publishes Dialectica interpretation presenting relative consistency proof of *classical arithmetic*
- 1958 Kreisel revisits his program, asking for shift from "Hilbert's consistency program" to concrete mathematical applications
- 1958 Kreisel analyses Artin's proof of Hilbert's 17th problem
- 1959 Kreisel defines a variant of Dialectica called "modified realizability"
- 1962 Spector extends the Dialectica interpretation to *classical analysis*
- 1992 Kohlenbach develops a "monotone" version of the Dialectica interpretation and applies to uniqueness proofs
- 2001- New case studies in approximation theory and fixed-point theory

イロト 不得下 不良下 不良下

- Historic digression

. . .

From unwinding to proof mining

- 1951 Kreisel launches his "unwinding program", describes the notion of an "interpretation" and defines his no-counterexample interpretation
- 1952 Kreisel attempts an application to Littlewood's theorem
- **1958** Gödel's publishes Dialectica interpretation presenting relative consistency proof of *classical arithmetic*
- 1958 Kreisel revisits his program, asking for shift from "Hilbert's consistency program" to concrete mathematical applications
- 1958 Kreisel analyses Artin's proof of Hilbert's 17th problem
- 1959 Kreisel defines a variant of Dialectica called "modified realizability"
- 1962 Spector extends the Dialectica interpretation to *classical analysis*
- 1992 Kohlenbach develops a "monotone" version of the Dialectica interpretation and applies to uniqueness proofs
- 2001- New case studies in approximation theory and fixed-point theory

・ロト ・ 理 ト ・ ヨ ト ・ ヨ ト

We will normally consider multi-sorted first-order theories. Sorts will be taken from the set "Type" of types:

- $o \in \mathbf{Type}$
- if $\rho, \tau \in \mathbf{Type}$ then $\rho \to \tau \in \mathbf{Type}$

We will normally consider multi-sorted first-order theories. Sorts will be taken from the set "**Type**" of types:

- *o* ∈ **Type** Natural numbers
- if $\rho, \tau \in \mathbf{Type}$ then $\rho \to \tau \in \mathbf{Type}$ Functionals

We will normally consider multi-sorted first-order theories.

Sorts will be taken from the set " \mathbf{Type} " of types:

- *o* ∈ **Type** Natural numbers
- if $\rho, \tau \in \mathbf{Type}$ then $\rho \to \tau \in \mathbf{Type}$ Functionals
- if $\rho \in \mathbf{Type}$ then $\rho^* \in \mathbf{Type}$ Finite sequences

We will normally consider multi-sorted first-order theories.

Sorts will be taken from the set " \mathbf{Type} " of types:

- *o* ∈ **Type** Natural numbers
- if $\rho, \tau \in \mathbf{Type}$ then $\rho \to \tau \in \mathbf{Type}$ Functionals
- if $\rho \in \mathbf{Type}$ then $\rho^* \in \mathbf{Type}$ Finite sequences

Quantifications over all finite types: $\forall x^{\rho \to \tau} \exists y^{\sigma} \dots$

└─ Preliminaries

Majorizability

Partial order between terms of type ρ

$$\begin{split} n &\leq_o^* m \qquad :\equiv \quad n \leq m \\ f &\leq_{\rho \to \tau}^* g \qquad :\equiv \quad \forall x^{\rho} \forall y \leq_{\rho}^* x (fy \leq_{\tau}^* gx \land gy \leq_{\tau}^* gx) \end{split}$$

Majorizability

Partial order between terms of type ρ

$$\begin{array}{lll} n \leq_o^* m & :\equiv & n \leq m \\ f \leq_{\rho \to \tau}^* g & :\equiv & \forall x^{\rho} \forall y \leq_{\rho}^* x (fy \leq_{\tau}^* gx \land gy \leq_{\tau}^* gx) \end{array}$$

Define new type structure $\ensuremath{\mathcal{M}}$ as

$$\mathcal{M}_{o} :\equiv \mathbb{N} \mathcal{M}_{\rho \to \tau} :\equiv \{ f \in \mathcal{M}_{\tau}^{\mathcal{M}_{\rho}} : \exists g \in \mathcal{M}_{\tau}^{\mathcal{M}_{\rho}} (f \leq^{*} g) \}$$

Functional Interpretations

Preliminaries

Majorizability: properties

 $\begin{array}{ll} \mbox{Monotonicity} & f \leq^* g \wedge x \leq^* y \to fx \leq^* gy \\ \mbox{Self-majorizability} & f \leq^* g \to g \leq^* g \\ \mbox{Joins} & (a \leq^* \max\{a, b\}) \wedge (b \leq^* \max\{a, b\}) \\ (a, b \mbox{ monotone}) & \\ \mbox{Model of T} & \mbox{closed terms } t \mbox{ of T have majorant } t^* \\ \mbox{Weak continuity} & \forall Y^{\mathbb{N}^\omega \to \mathbb{N}}, f \exists n \forall g (\forall i \leq n (fi = gi) \to Y(g) \leq n) \end{array}$

• g is called monotone if $g \leq^* g$ • $\max\{a, b\}$ defined as $\begin{cases} \max_o\{n, m\} & := \max_{\mathbb{N}}\{n, m\} \\ \max_{\rho \to \tau}\{f, g\}(x) & := \max_{\tau}\{fx, gx\} \end{cases}$

Outline

- Historic digression
- Preliminaries

Intuitionistic logic

- Parametrised interpretation
- Instantiations

$\wedge \rightarrow \forall$ fragment of IL

$$\begin{array}{ll} A \vdash A \quad (\mathsf{id}) & \perp \vdash A \quad (\mathsf{efq}) \\ \\ \hline \Gamma \vdash A \land B \\ \hline \Gamma \vdash A \\ \hline \Gamma \vdash A \\ \hline \Gamma \vdash B \\ \hline \Gamma \vdash A \\ \hline R \\$$

$\wedge \rightarrow \forall$ fragment of IL

▲□ > ▲圖 > ▲ 国 > ▲ 国 > 二 国 三 例

Parametrised interpretation

Basic interpretation

Associate formulas A to "types" $|A|^{\boldsymbol{x}}$

$$\begin{aligned} |A \wedge B|^{\boldsymbol{x}, \boldsymbol{v}} &:\equiv |A|^{\boldsymbol{x}} \wedge |B|^{\boldsymbol{v}} \\ |A \to B|^{\boldsymbol{f}} &:\equiv \forall \boldsymbol{x} (|A|^{\boldsymbol{x}} \to |B|^{\boldsymbol{f}\boldsymbol{x}}) \\ |\forall z A(z)|^{\boldsymbol{f}} &:\equiv \forall z |A(z)|^{\boldsymbol{f}z} \end{aligned}$$

Parametrised interpretation

Basic interpretation

Associate formulas A to "types" $|A|^{\boldsymbol{x}}$

$$\begin{aligned} |A \wedge B|^{\boldsymbol{x}, \boldsymbol{v}} &:\equiv |A|^{\boldsymbol{x}} \wedge |B|^{\boldsymbol{v}} \\ |A \to B|^{\boldsymbol{f}} &:\equiv \forall \boldsymbol{x} (|A|^{\boldsymbol{x}} \to |B|^{\boldsymbol{f}\boldsymbol{x}}) \\ |\forall z A(z)|^{\boldsymbol{f}} &:\equiv \forall z |A(z)|^{\boldsymbol{f}z} \end{aligned}$$

Would like to be able to refute $|A|^t$ $(\equiv \forall y | A|_y^t)$

Parametrised interpretation

Basic interpretation

Associate formulas A to "types" $|A|^{\boldsymbol{x}}$

$$\begin{aligned} |A \wedge B|^{\boldsymbol{x},\boldsymbol{v}} &:\equiv |A|^{\boldsymbol{x}} \wedge |B|^{\boldsymbol{v}} \\ |A \to B|^{\boldsymbol{f}} &:\equiv \forall \boldsymbol{x} (|A|^{\boldsymbol{x}} \to |B|^{\boldsymbol{f}\boldsymbol{x}}) \\ |\forall z A(z)|^{\boldsymbol{f}} &:\equiv \forall z |A(z)|^{\boldsymbol{f}z} \end{aligned}$$

Would like to be able to refute $|A|^t \quad (\equiv \forall y |A|_y^t)$

$$|A \wedge B|^{\boldsymbol{x},\boldsymbol{v}} :\equiv |A|^{\boldsymbol{x}} \wedge |B|^{\boldsymbol{v}}$$
$$|A \rightarrow B|^{\boldsymbol{f}}_{\boldsymbol{x}} :\equiv |A|^{\boldsymbol{x}} \rightarrow |B|^{\boldsymbol{f}\boldsymbol{x}}$$
$$|\forall z A(z)|^{\boldsymbol{f}}_{z} :\equiv |A(z)|^{\boldsymbol{f}z}$$

・ロト ・ 日 ト ・ 日 ト ・ 日

Parametrised interpretation

Basic interpretation

Associate formulas A to "types" $|A|^{\boldsymbol{x}}$

$$\begin{aligned} |A \wedge B|^{\boldsymbol{x},\boldsymbol{v}} &:\equiv |A|^{\boldsymbol{x}} \wedge |B|^{\boldsymbol{v}} \\ |A \to B|^{\boldsymbol{f}} &:\equiv \forall \boldsymbol{x} (|A|^{\boldsymbol{x}} \to |B|^{\boldsymbol{f}\boldsymbol{x}}) \\ |\forall z A(z)|^{\boldsymbol{f}} &:\equiv \forall z |A(z)|^{\boldsymbol{f}z} \end{aligned}$$

Would like to be able to refute $|A|^t \quad (\equiv \forall y |A|_y^t)$

$$\begin{aligned} |A \wedge B|_{\boldsymbol{y},\boldsymbol{w}}^{\boldsymbol{x},\boldsymbol{v}} & :\equiv \quad |A|_{\boldsymbol{y}}^{\boldsymbol{x}} \wedge |B|_{\boldsymbol{w}}^{\boldsymbol{v}} \\ |A \rightarrow B|_{\boldsymbol{x}}^{\boldsymbol{f}} & :\equiv \quad |A|^{\boldsymbol{x}} \rightarrow |B|^{\boldsymbol{f}\boldsymbol{x}} \\ |\forall zA(z)|_{z}^{\boldsymbol{f}} & :\equiv \quad |A(z)|^{\boldsymbol{f}\boldsymbol{z}} \end{aligned}$$

・ロト ・ 日 ト ・ 日 ト ・ 日
Parametrised interpretation

Basic interpretation

Associate formulas A to "types" $|A|^{\boldsymbol{x}}$

$$\begin{aligned} |A \wedge B|^{\boldsymbol{x},\boldsymbol{v}} &:\equiv |A|^{\boldsymbol{x}} \wedge |B|^{\boldsymbol{v}} \\ |A \to B|^{\boldsymbol{f}} &:\equiv \forall \boldsymbol{x} (|A|^{\boldsymbol{x}} \to |B|^{\boldsymbol{f}\boldsymbol{x}}) \\ |\forall z A(z)|^{\boldsymbol{f}} &:\equiv \forall z |A(z)|^{\boldsymbol{f}z} \end{aligned}$$

Would like to be able to refute $|A|^t$ $(\equiv \forall y | A|_y^t)$

$$|A \wedge B|_{\boldsymbol{y},\boldsymbol{w}}^{\boldsymbol{x},\boldsymbol{v}} :\equiv |A|_{\boldsymbol{y}}^{\boldsymbol{x}} \wedge |B|_{\boldsymbol{w}}^{\boldsymbol{v}}$$
$$|A \rightarrow B|_{\boldsymbol{x}}^{\boldsymbol{f}} :\equiv |A|^{\boldsymbol{x}} \rightarrow |B|^{\boldsymbol{f}\boldsymbol{x}}$$
$$|\forall zA(z)|_{z,\boldsymbol{y}}^{\boldsymbol{f}} :\equiv |A(z)|_{\boldsymbol{y}}^{\boldsymbol{f}z}$$

Parametrised interpretation

Basic interpretation

Associate formulas A to "types" $|A|^{\boldsymbol{x}}$

$$\begin{aligned} |A \wedge B|^{\boldsymbol{x},\boldsymbol{v}} &:\equiv |A|^{\boldsymbol{x}} \wedge |B|^{\boldsymbol{v}} \\ |A \to B|^{\boldsymbol{f}} &:\equiv \forall \boldsymbol{x} (|A|^{\boldsymbol{x}} \to |B|^{\boldsymbol{f}\boldsymbol{x}}) \\ |\forall z A(z)|^{\boldsymbol{f}} &:\equiv \forall z |A(z)|^{\boldsymbol{f}z} \end{aligned}$$

Would like to be able to refute $|A|^t$ $(\equiv \forall y | A|_y^t)$

$$\begin{aligned} |A \wedge B|_{\boldsymbol{y},\boldsymbol{w}}^{\boldsymbol{x},\boldsymbol{v}} &:\equiv & |A|_{\boldsymbol{y}}^{\boldsymbol{x}} \wedge |B|_{\boldsymbol{w}}^{\boldsymbol{v}} \\ |A \rightarrow B|_{\boldsymbol{x},\boldsymbol{w}}^{\boldsymbol{f}} &:\equiv & |A|^{\boldsymbol{x}} \rightarrow |B|_{\boldsymbol{w}}^{\boldsymbol{f}\boldsymbol{x}} \\ |\forall zA(z)|_{\boldsymbol{z},\boldsymbol{y}}^{\boldsymbol{f}} &:\equiv & |A(z)|_{\boldsymbol{y}}^{\boldsymbol{f}\boldsymbol{z}} \end{aligned}$$

Parametrised interpretation

Basic interpretation

Associate formulas A to "types" $|A|^{\boldsymbol{x}}$

$$\begin{aligned} |A \wedge B|^{\boldsymbol{x},\boldsymbol{v}} &:\equiv |A|^{\boldsymbol{x}} \wedge |B|^{\boldsymbol{v}} \\ |A \to B|^{\boldsymbol{f}} &:\equiv \forall \boldsymbol{x} (|A|^{\boldsymbol{x}} \to |B|^{\boldsymbol{f}\boldsymbol{x}}) \\ |\forall z A(z)|^{\boldsymbol{f}} &:\equiv \forall z |A(z)|^{\boldsymbol{f}z} \end{aligned}$$

Would like to be able to refute $|A|^t$ $(\equiv \forall y | A|_y^t)$

$$\begin{aligned} |A \wedge B|_{\boldsymbol{y},\boldsymbol{w}}^{\boldsymbol{x},\boldsymbol{v}} &:\equiv & |A|_{\boldsymbol{y}}^{\boldsymbol{x}} \wedge |B|_{\boldsymbol{w}}^{\boldsymbol{v}} \\ |A \rightarrow B|_{\boldsymbol{x},\boldsymbol{w}}^{\boldsymbol{f}} &:\equiv & |A|_{\boldsymbol{y}}^{\boldsymbol{x}} \rightarrow |B|_{\boldsymbol{w}}^{\boldsymbol{f}\boldsymbol{x}} \\ |\forall zA(z)|_{\boldsymbol{z},\boldsymbol{y}}^{\boldsymbol{f}} &:\equiv & |A(z)|_{\boldsymbol{y}}^{\boldsymbol{f}\boldsymbol{z}} \end{aligned}$$

Parametrised interpretation

Basic interpretation

Associate formulas A to "types" $|A|^{\boldsymbol{x}}$

$$\begin{aligned} |A \wedge B|^{\boldsymbol{x},\boldsymbol{v}} &:\equiv |A|^{\boldsymbol{x}} \wedge |B|^{\boldsymbol{v}} \\ |A \to B|^{\boldsymbol{f}} &:\equiv \forall \boldsymbol{x} (|A|^{\boldsymbol{x}} \to |B|^{\boldsymbol{f}\boldsymbol{x}}) \\ |\forall z A(z)|^{\boldsymbol{f}} &:\equiv \forall z |A(z)|^{\boldsymbol{f}z} \end{aligned}$$

Would like to be able to refute $|A|^t$ $(\equiv \forall y | A|_y^t)$

$$\begin{aligned} |A \wedge B|_{\boldsymbol{y},\boldsymbol{w}}^{\boldsymbol{x},\boldsymbol{v}} & :\equiv \quad |A|_{\boldsymbol{y}}^{\boldsymbol{x}} \wedge |B|_{\boldsymbol{w}}^{\boldsymbol{v}} \\ |A \rightarrow B|_{\boldsymbol{x},\boldsymbol{w}}^{\boldsymbol{f}} & :\equiv \quad \forall \boldsymbol{y}|A|_{\boldsymbol{y}}^{\boldsymbol{x}} \rightarrow |B|_{\boldsymbol{w}}^{\boldsymbol{f}\boldsymbol{x}} \\ |\forall zA(z)|_{\boldsymbol{z},\boldsymbol{y}}^{\boldsymbol{f}} & :\equiv \quad |A(z)|_{\boldsymbol{y}}^{\boldsymbol{f}\boldsymbol{z}} \end{aligned}$$

Parametrised interpretation

Commutative Monoids

For each type ρ let $([\rho],\ast)$ be a commutative monoid

• $a * b : [\rho]$ given that $a : [\rho]$ and $b : [\rho]$

with $\eta(\cdot):\rho\to[\rho]$ and $\mu(\cdot)(\cdot):(\rho\to[\sigma])\to([\rho]\to[\sigma])$

Parametrised interpretation

Commutative Monoids

For each type ρ let $([\rho],\ast)$ be a commutative monoid

•
$$a * b : [\rho]$$
 given that $a : [\rho]$ and $b : [\rho]$

with $\eta(\cdot): \rho \to [\rho]$ and $\mu(\cdot)(\cdot): (\rho \to [\sigma]) \to ([\rho] \to [\sigma])$

Define a partial order \sqsubseteq on $[\rho]$ as $a\sqsubseteq b$ if $\exists a'.\,a*a'=b$ Functionals $\eta(\cdot)$ and $\mu(\cdot)(\cdot)$ should satisfy

Parametrised interpretation

Commutative Monoids

For each type ρ let $([\rho],\ast)$ be a commutative monoid

•
$$a * b : [\rho]$$
 given that $a : [\rho]$ and $b : [\rho]$
with $\eta(\cdot) : \rho \to [\rho]$ and $\mu(\cdot)(\cdot) : (\rho \to [\sigma]) \to ([\rho] \to [\sigma])$

Define a partial order \sqsubseteq on $[\rho]$ as $a\sqsubseteq b$ if $\exists a'.\,a*a'=b$ Functionals $\eta(\cdot)$ and $\mu(\cdot)(\cdot)$ should satisfy

$$\mu(f)(a) * \mu(f)(b) \subseteq \mu(f)(a * b)$$
$$f(x) \subseteq \mu(f)(\eta(x))$$

Finally, define $x^{\rho} \lhd a^{[\rho]}$ as $\eta(x) \sqsubseteq a$. We have:

$$\begin{array}{ll} \mbox{(A1)} & (x \lhd a) \lor (x \lhd b) \to (x \lhd a * b) \\ \mbox{(A2)} & x \lhd \eta(x) \\ \mbox{(A3)} & (x \lhd a) \land (y \lhd fx) \to (y \lhd \mu(f)(a)) \end{array}$$

Parametrised interpretation

Commutative Monoids: Examples

Axioms:

$$\mu(f)(a) * \mu(f)(b) \subseteq \mu(f)(a * b)$$

$$f(x) \subseteq \mu(f)(\eta(x))$$

Instances:

[ho]	a * b	$\eta(x)$	$\mu(f)(a)$	$x \lhd a$

Parametrised interpretation

Commutative Monoids: Examples

Axioms:

$$\begin{array}{lll} \mu(f)(a) * \mu(f)(b) & \sqsubseteq & \mu(f)(a * b) \\ f(x) & \sqsubseteq & \mu(f)(\eta(x)) \end{array}$$

Instances:

[ho]	a * b	$\eta(x)$	$\mu(f)(a)$	$x \lhd a$
{●}	•	•	•	true

Parametrised interpretation

Commutative Monoids: Examples

Axioms:

Instances:

[ho]	a * b	$\eta(x)$	$\mu(f)(a)$	$x \lhd a$
{●}	•	•	•	true
finite multi-sets of ρ	$a \cup b$	$\{x\}$	$\cup_{x\in a}fx$	$x \in a$

Parametrised interpretation

Commutative Monoids: Examples

Axioms:

Instances:

[ho]	a * b	$\eta(x)$	$\mu(f)(a)$	$x \lhd a$
{●}	•	•	•	true
finite multi-sets of ρ	$a \cup b$	$\{x\}$	$\cup_{x \in a} fx$	$x \in a$
monotone ρ	$\max\{a,b\}$	x^*	$f^*(a)$	$x\leq^*a$

イロト イポト イヨト イヨト 三日

Parametrised interpretation

Commutative Monoids: Examples

Axioms:

$$\begin{array}{lll} \mu(f)(a) * \mu(f)(b) & \sqsubseteq & \mu(f)(a * b) \\ f(x) & \sqsubseteq & \mu(f)(\eta(x)) \end{array}$$

Instances:

[ho]	a * b	$\eta(x)$	$\mu(f)(a)$	$x \lhd a$
{●}	•	•	•	true
finite multi-sets of ρ	$a \cup b$	$\{x\}$	$\cup_{x\in a} fx$	$x \in a$
monotone ρ	$\max\{a,b\}$	x^*	$f^*(a)$	$x\leq^* a$
ρ	?	x	f(a)	x = a

イロト イポト イモト イモト 三日

Parametrised interpretation

Basic parametrised interpretation

$$\begin{aligned} |A \wedge B|_{\boldsymbol{y},\boldsymbol{w}}^{\boldsymbol{x},\boldsymbol{w}} & :\equiv \quad |A|_{\boldsymbol{y}}^{\boldsymbol{x}} \wedge |B|_{\boldsymbol{w}}^{\boldsymbol{v}} \\ |A \rightarrow B|_{\boldsymbol{x},\boldsymbol{w}}^{\boldsymbol{f}} & :\equiv \quad \forall \boldsymbol{y}|A|_{\boldsymbol{y}}^{\boldsymbol{x}} \rightarrow |B|_{\boldsymbol{w}}^{\boldsymbol{f}\boldsymbol{x}} \\ |\forall zA(z)|_{\boldsymbol{z},\boldsymbol{y}}^{\boldsymbol{f}} & :\equiv \quad |A(z)|_{\boldsymbol{y}}^{\boldsymbol{f}\boldsymbol{z}} \end{aligned}$$

Parametrised interpretation

Basic parametrised interpretation

$$\begin{aligned} |A \wedge B|_{\boldsymbol{y},\boldsymbol{w}}^{\boldsymbol{x},\boldsymbol{v}} & :\equiv \quad |A|_{\boldsymbol{y}}^{\boldsymbol{x}} \wedge |B|_{\boldsymbol{w}}^{\boldsymbol{v}} \\ |A \rightarrow B|_{\boldsymbol{x},\boldsymbol{w}}^{\boldsymbol{f}} & :\equiv \quad \forall \boldsymbol{y}|A|_{\boldsymbol{y}}^{\boldsymbol{x}} \rightarrow |B|_{\boldsymbol{w}}^{\boldsymbol{f}\boldsymbol{x}} \\ |\forall zA(z)|_{\boldsymbol{z},\boldsymbol{y}}^{\boldsymbol{f}} & :\equiv \quad |A(z)|_{\boldsymbol{y}}^{\boldsymbol{f}\boldsymbol{z}} \end{aligned}$$

Let the monoidal embedding be fixed, so that \lhd is defined.

Parametrised interpretation

Basic parametrised interpretation

$$\begin{aligned} |A \wedge B|_{\boldsymbol{y},\boldsymbol{w}}^{\boldsymbol{x},\boldsymbol{w}} & :\equiv \quad |A|_{\boldsymbol{y}}^{\boldsymbol{x}} \wedge |B|_{\boldsymbol{w}}^{\boldsymbol{v}} \\ |A \rightarrow B|_{\boldsymbol{x},\boldsymbol{w}}^{\boldsymbol{f}} & :\equiv \quad \forall \boldsymbol{y}|A|_{\boldsymbol{y}}^{\boldsymbol{x}} \rightarrow |B|_{\boldsymbol{w}}^{\boldsymbol{f}\boldsymbol{x}} \\ |\forall zA(z)|_{\boldsymbol{z},\boldsymbol{y}}^{\boldsymbol{f}} & :\equiv \quad |A(z)|_{\boldsymbol{y}}^{\boldsymbol{f}\boldsymbol{z}} \end{aligned}$$

Let the monoidal embedding be fixed, so that \lhd is defined.

Definition

The parametrised interpretation is defined as:

$$\begin{aligned} |A \wedge B|_{\boldsymbol{y},\boldsymbol{w}}^{\boldsymbol{x},\boldsymbol{v}} & :\equiv \quad |A|_{\boldsymbol{y}}^{\boldsymbol{x}} \wedge |B|_{\boldsymbol{w}}^{\boldsymbol{v}} \\ |A \rightarrow B|_{\boldsymbol{x},\boldsymbol{w}}^{\boldsymbol{f},\boldsymbol{g}} & :\equiv \quad \forall \boldsymbol{y} \lhd \boldsymbol{g} \boldsymbol{x} \boldsymbol{w} \, |A|_{\boldsymbol{y}}^{\boldsymbol{x}} \rightarrow |B|_{\boldsymbol{w}}^{\boldsymbol{f} \boldsymbol{x}} \\ |\forall z A(z)|_{\boldsymbol{y},z}^{\boldsymbol{f}} & :\equiv \quad |A(z)|_{\boldsymbol{y}}^{\boldsymbol{f} z} \end{aligned}$$

<ロ> < (回) < (回) < (回) < (回) < (回) < (回) < (u) < (

Parametrised interpretation

Paremetrised soundness

Theorem (Soundness)

Let the monoidal embedding be fixed. If $\Gamma \vdash_{\mathsf{IL}} A$ then there are sequences of terms t, s such that $\forall w \lhd svy \, |\Gamma|_w^v \vdash_{\mathsf{IL}^\omega} |A|_y^{t[v]}$

Proof.

- Parametrised interpretation

Paremetrised soundness

Theorem (Soundness)

Let the monoidal embedding be fixed. If $\Gamma \vdash_{\mathsf{IL}} A$ then there are sequences of terms t, s such that $\forall w \lhd svy \, |\Gamma|_w^v \vdash_{\mathsf{IL}^\omega} |A|_y^{t[v]}$

Proof. Contraction

$$\frac{\forall \boldsymbol{y} \triangleleft \boldsymbol{r}_{0} |A|_{\boldsymbol{y}}^{\boldsymbol{x}}, \forall \boldsymbol{y} \triangleleft \boldsymbol{r}_{1} |A|_{\boldsymbol{y}}^{\boldsymbol{x}} \vdash |B|_{\boldsymbol{w}}^{\boldsymbol{t}}}{\forall \boldsymbol{y} \triangleleft \boldsymbol{r}_{0} \ast \boldsymbol{r}_{1} |A|_{\boldsymbol{y}}^{\boldsymbol{x}}, \forall \boldsymbol{y} \triangleleft \boldsymbol{r}_{0} \ast \boldsymbol{r}_{1} |A|_{\boldsymbol{y}}^{\boldsymbol{x}} \vdash |B|_{\boldsymbol{w}}^{\boldsymbol{t}}} (A1)}{\forall \boldsymbol{y} \triangleleft \boldsymbol{r}_{0} \ast \boldsymbol{r}_{1} |A|_{\boldsymbol{y}}^{\boldsymbol{x}} \vdash |B|_{\boldsymbol{w}}^{\boldsymbol{t}}} (con)$$

- Parametrised interpretation

Paremetrised soundness

Theorem (Soundness)

Let the monoidal embedding be fixed. If $\Gamma \vdash_{\mathsf{IL}} A$ then there are sequences of terms t, s such that $\forall w \lhd svy \, |\Gamma|_w^v \vdash_{\mathsf{IL}^\omega} |A|_y^{t[v]}$

Proof. Axiom

$$orall oldsymbol{y}' \lhd \eta(oldsymbol{y}) \left| A
ight|_{oldsymbol{y}'}^{oldsymbol{x}} dash \left| A
ight|_{oldsymbol{y}}^{oldsymbol{x}}
ight| (A2)$$

Parametrised interpretation

Paremetrised soundness

Theorem (Soundness)

Let the monoidal embedding be fixed. If $\Gamma \vdash_{\mathsf{IL}} A$ then there are sequences of terms t,s such that

 $orall w \lhd svy \, |\Gamma|_w^v \vdash_{\mathsf{IL}^\omega} |A|_y^{t[v]}$

Proof. Cut

$$\frac{\forall \boldsymbol{y} \triangleleft \boldsymbol{r}[\boldsymbol{z}] |\Gamma|_{\boldsymbol{y}}^{\boldsymbol{x}} \vdash |A|_{\boldsymbol{z}}^{\boldsymbol{s}}}{\forall \boldsymbol{z} \triangleleft \boldsymbol{q}' \forall \boldsymbol{y} \triangleleft \boldsymbol{r}[\boldsymbol{z}] |\Gamma|_{\boldsymbol{y}}^{\boldsymbol{x}} \vdash \forall \boldsymbol{z} \triangleleft \boldsymbol{q}' |A|_{\boldsymbol{z}}^{\boldsymbol{s}}} \frac{\forall \boldsymbol{z} \triangleleft \boldsymbol{q} |A|_{\boldsymbol{z}}^{\boldsymbol{v}} \vdash |B|_{\boldsymbol{w}}^{\boldsymbol{t}}}{\forall \boldsymbol{z} \triangleleft \boldsymbol{q}' |A|_{\boldsymbol{z}}^{\boldsymbol{s}} \vdash |B|_{\boldsymbol{w}}^{\boldsymbol{t}'}} \frac{\forall \boldsymbol{z} \triangleleft \boldsymbol{q}' |A|_{\boldsymbol{z}}^{\boldsymbol{s}} \vdash |B|_{\boldsymbol{w}}^{\boldsymbol{t}'}}{\forall \boldsymbol{y} \triangleleft \boldsymbol{r}[\boldsymbol{z}] |\Gamma|_{\boldsymbol{y}}^{\boldsymbol{x}} \vdash |B|_{\boldsymbol{w}}^{\boldsymbol{t}'}} (A3)$$

イロト イポト イモト イモト ニモニ のく

Functional Int	erpretations
----------------	--------------

Instantiations

	$x \lhd a$	$\forall \boldsymbol{y} \lhd \boldsymbol{g} \boldsymbol{x} \boldsymbol{w} A _{\boldsymbol{y}}^{\boldsymbol{x}} ightarrow B _{\boldsymbol{w}}^{\boldsymbol{f} \boldsymbol{x}}$
Modified realizability	true	$orall oldsymbol{y} A _{oldsymbol{y}}^{oldsymbol{x}} o B _{oldsymbol{w}}^{oldsymbol{fx}}$
Diller-Nahm	$x \in a$	$orall \mathbf{y} \in oldsymbol{gxw} A _{oldsymbol{y}}^{oldsymbol{x}} ightarrow B _{oldsymbol{w}}^{oldsymbol{fx}}$
Bounded f.i.	$x \leq^* a$	$\forall \boldsymbol{y} \leq^* \boldsymbol{g} \boldsymbol{x} \boldsymbol{w} A _{\boldsymbol{y}}^{\boldsymbol{x}} ightarrow B _{\boldsymbol{w}}^{\boldsymbol{f} \boldsymbol{x}}$
Dialectica	x = a	$ A _{oldsymbol{gxw}}^{oldsymbol{x}} ightarrow B _{oldsymbol{w}}^{oldsymbol{fx}}$

Functional	Interpretations

Instantiations

	$x \lhd a$	$\forall \boldsymbol{y} \triangleleft \boldsymbol{g} \boldsymbol{x} \boldsymbol{w} A _{\boldsymbol{y}}^{\boldsymbol{x}} ightarrow B _{\boldsymbol{w}}^{\boldsymbol{f} \boldsymbol{x}}$
Modified realizability	true	$orall oldsymbol{y} A _{oldsymbol{y}}^{oldsymbol{x}} o B _{oldsymbol{w}}^{oldsymbol{fx}}$
Diller-Nahm	$x \in a$	$orall \mathbf{y} \in \boldsymbol{gxw} A _{\boldsymbol{y}}^{\boldsymbol{x}} ightarrow B _{\boldsymbol{w}}^{\boldsymbol{fx}}$
Bounded f.i.	$x\leq^*a$	$\forall \boldsymbol{y} \leq^* \boldsymbol{g} \boldsymbol{x} \boldsymbol{w} A _{\boldsymbol{y}}^{\boldsymbol{x}} ightarrow B _{\boldsymbol{w}}^{\boldsymbol{f} \boldsymbol{x}}$
Dialectica	x = a	$ A _{oldsymbol{gxw}}^{oldsymbol{x}} ightarrow B _{oldsymbol{w}}^{oldsymbol{fx}}$

- Modified realizability the most natural instantiation
- Diller-Nahm requires multi-sets

Application: Intuitionistic Herbrand theorem

Theorem (Herbrand, intuitionistic)

lf

 $\mathsf{IL} \vdash \neg \forall x A_{\mathsf{qf}}(x)$

then, for some sequence of terms t_0, \ldots, t_n we have

 $\mathsf{IL} \vdash \neg (A_{\mathsf{qf}}(t_0) \land \ldots \land A_{\mathsf{qf}}(t_n))$

Proof.

1.	$IL \vdash \neg \forall x A_{qf}(x)$	(assumption)	
2.	$IL^{\omega} \vdash \neg \forall x \in t A_{qf}(x)$	(by f.i.)	
3.	$IL^{\omega} \vdash \neg \forall x \in t_0 * \ldots * t_n A_{qf}(x)$	(by normalisation)	
4.	$IL^{\omega} \vdash \neg (A_{qf}(t_0) \land \ldots \land A_{qf}(t_n))$		
5.	$IL \vdash \neg (A_{qf}(t_0) \land \ldots \land A_{qf}(t_n))$	(by conservation)	

э

Instantiations: Dialectica

• Take $x \lhd a$ as x = a, so that

$$\forall \boldsymbol{y} \lhd \boldsymbol{g} \boldsymbol{x} \boldsymbol{w} \, |A|_{\boldsymbol{y}}^{\boldsymbol{x}}
ightarrow |B|_{\boldsymbol{w}}^{\boldsymbol{f} \boldsymbol{x}}$$

simplifies to

$$|A|_{gxw}^{x} \rightarrow |B|_{w}^{fx}$$

Instantiations: Dialectica

• Take $x \lhd a$ as x = a, so that

$$\forall \boldsymbol{y} \triangleleft \boldsymbol{g} \boldsymbol{x} \boldsymbol{w} \, |A|_{\boldsymbol{y}}^{\boldsymbol{x}} \rightarrow |B|_{\boldsymbol{w}}^{\boldsymbol{f} \boldsymbol{x}}$$

simplifies to

$$|A|_{gxw}^{x} \rightarrow |B|_{w}^{fx}$$

• Problem: Not really a monoid...

Instantiations: Dialectica

• Take $x \lhd a$ as x = a, so that

$$\forall \boldsymbol{y} \lhd \boldsymbol{g} \boldsymbol{x} \boldsymbol{w} \, |A|_{\boldsymbol{y}}^{\boldsymbol{x}}
ightarrow |B|_{\boldsymbol{w}}^{\boldsymbol{f} \boldsymbol{x}}$$

simplifies to

$$|A|_{gxw}^{x} \rightarrow |B|_{w}^{fx}$$

• Problem: Not really a monoid...

... unless the type ρ comes equipped with the specification $|A|_{u}^{x}$

Instantiations

Instantiations: Dialectica

• Take $x \lhd a$ as x = a, so that

$$\forall \boldsymbol{y} \lhd \boldsymbol{g} \boldsymbol{x} \boldsymbol{w} \, |A|_{\boldsymbol{y}}^{\boldsymbol{x}}
ightarrow |B|_{\boldsymbol{w}}^{\boldsymbol{f} \boldsymbol{x}}$$

simplifies to

$$|A|_{gxw}^{x} \to |B|_{w}^{fx}$$

• Problem: Not really a monoid...

... unless the type ρ comes equipped with the specification $|A|_{u}^{x}$

• Then monoid can be defined as:

$$\frac{[\rho]_{|A|_{\mathcal{Y}}^{\mathbf{x}}}}{\rho} \begin{vmatrix} a \ast b & \eta(x) & \mu(f)(a) & x \triangleleft a \\ \hline \rho & \text{if}(|A|_{b}^{\mathbf{x}}, a, b) & x & f(a) & x = a \\ \hline \end{cases}$$

- Instantiations

Instantiations: Bounded f.i.

• Take $x \lhd a$ as $x \leq^* a$, so that

$$\forall \boldsymbol{y} \triangleleft \boldsymbol{g} \boldsymbol{x} \boldsymbol{w} \, |A|_{\boldsymbol{y}}^{\boldsymbol{x}} \rightarrow |B|_{\boldsymbol{w}}^{\boldsymbol{f} \boldsymbol{x}}$$

simplifies to

$$\forall \boldsymbol{y} \leq^* \boldsymbol{g} \boldsymbol{x} \boldsymbol{w} \, |A|_{\boldsymbol{y}}^{\boldsymbol{x}} \to |B|_{\boldsymbol{w}}^{\boldsymbol{f} \boldsymbol{x}}$$

Instantiations

Instantiations: Bounded f.i.

• Take $x \lhd a$ as $x \leq^* a$, so that

$$\forall \boldsymbol{y} \triangleleft \boldsymbol{g} \boldsymbol{x} \boldsymbol{w} \, |A|_{\boldsymbol{y}}^{\boldsymbol{x}} \rightarrow |B|_{\boldsymbol{w}}^{\boldsymbol{f} \boldsymbol{x}}$$

simplifies to

$$orall oldsymbol{y} \leq^* oldsymbol{g} oldsymbol{x} w \, |A|_{oldsymbol{y}}^{oldsymbol{x}}
ightarrow |B|_{oldsymbol{w}}^{oldsymbol{f} oldsymbol{x}}$$

• Problem: mapping $\eta(x) = x^*$ not effective

intuitionistic logic

Instantiations

Instantiations: Bounded f.i.

 $\bullet \ {\sf Take} \ x \lhd a \ {\sf as} \ x \leq^* a {\sf , so that} \\$

$$\forall \boldsymbol{y} \lhd \boldsymbol{g} \boldsymbol{x} \boldsymbol{w} \, |A|_{\boldsymbol{y}}^{\boldsymbol{x}} \rightarrow |B|_{\boldsymbol{w}}^{\boldsymbol{f} \boldsymbol{x}}$$

simplifies to

$$\forall \boldsymbol{y} \leq^* \boldsymbol{g} \boldsymbol{x} \boldsymbol{w} \, |A|_{\boldsymbol{y}}^{\boldsymbol{x}}
ightarrow |B|_{\boldsymbol{w}}^{\boldsymbol{f} \boldsymbol{x}}$$

Problem: mapping η(x) = x* not effective
 ... unless x is monotone, in which case η(x) = x

Intuitionistic logic

Instantiations

Instantiations: Bounded f.i.

• Take $x \lhd a$ as $x \leq^* a$, so that

$$\forall \boldsymbol{y} \lhd \boldsymbol{g} \boldsymbol{x} \boldsymbol{w} \, |A|_{\boldsymbol{y}}^{\boldsymbol{x}} \rightarrow |B|_{\boldsymbol{w}}^{\boldsymbol{f} \boldsymbol{x}}$$

simplifies to

$$\forall \boldsymbol{y} \leq^* \boldsymbol{g} \boldsymbol{x} \boldsymbol{w} \, |A|_{\boldsymbol{y}}^{\boldsymbol{x}}
ightarrow |B|_{\boldsymbol{w}}^{\boldsymbol{f} \boldsymbol{x}}$$

Problem: mapping η(x) = x* not effective
 ... unless x is monotone, in which case η(x) = x

Achieve this through relativization

$$\begin{aligned} \forall x A(x) &\Rightarrow \quad \forall x \in \mathcal{M} A(x) \quad \Leftrightarrow \quad \forall a \forall x \leq^* a A(x) \\ \exists x A(x) &\Rightarrow \quad \exists x \in \mathcal{M} A(x) \quad \Leftrightarrow \quad \exists a \exists x \leq^* a A(x) \end{aligned}$$

Instantiations

Instantiations: Bounded f.i.

Definition

Interpretation as before, except:

$$\begin{aligned} |\forall z \leq^* a A(z)|_{c}^{b} & :\equiv \quad \forall z \leq^* a |A(z)|_{c}^{b} \\ |\forall z A(z)|_{b,a}^{f} & :\equiv \quad \forall z \leq^* a |A(z)|_{b}^{fa} \end{aligned}$$

Adding $\lor \exists$

New rules:

$$\begin{array}{ll} \displaystyle \frac{\Gamma, A_0 \lor A_1 \vdash B}{\Gamma, A_i \vdash B} \lor \mathsf{I} & \qquad \displaystyle \frac{\Gamma, A_0 \vdash B \quad \Gamma, A_1 \vdash B}{\Gamma, A_0 \lor A_1 \vdash B} \lor \mathsf{E} \\ \\ \displaystyle \frac{\Gamma, \exists x A(x) \vdash B}{\Gamma, A(s) \vdash B} \exists \mathsf{I} & \qquad \displaystyle \frac{\Gamma, A(x) \vdash B}{\Gamma, \exists x A(x) \vdash B} \exists \mathsf{E} \end{array}$$

Adding $\lor \exists$

New rules:

$$\begin{array}{ll} \displaystyle \frac{\Gamma, A_0 \lor A_1 \vdash B}{\Gamma, A_i \vdash B} \lor \mathsf{I} & \qquad \displaystyle \frac{\Gamma, A_0 \vdash B \quad \Gamma, A_1 \vdash B}{\Gamma, A_0 \lor A_1 \vdash B} \lor \mathsf{E} \\ \\ \displaystyle \frac{\Gamma, \exists x A(x) \vdash B}{\Gamma, A(s) \vdash B} \exists \mathsf{I} & \qquad \displaystyle \frac{\Gamma, A(x) \vdash B}{\Gamma, \exists x A(x) \vdash B} \exists \mathsf{E} \end{array}$$

Extended interpretation:

$$\begin{aligned} |A \lor B|_{\boldsymbol{y},\boldsymbol{w}}^{\boldsymbol{x},\boldsymbol{v},b} &:\equiv \quad \text{if}(b,|A|_{\boldsymbol{y}}^{\boldsymbol{x}},|B|_{\boldsymbol{w}}^{\boldsymbol{v}}) \\ |\exists z A(z)|_{\boldsymbol{y}}^{\boldsymbol{x},z} &:\equiv \quad |A(z)|_{\boldsymbol{y}}^{\boldsymbol{x}} \end{aligned}$$

・ロト ・ 日 ト ・ 日 ト ・ 日 ト

æ

Instantiations

Adding $\lor \exists$: bounded f.i.

Bounded functional interpretation only searches for bounds...

Instantiations

Adding $\lor \exists$: bounded f.i.

Bounded functional interpretation only searches for bounds... Therefore:

$$\begin{aligned} |\exists z \leq^* a A(z)|_{\mathbf{c}}^{\mathbf{b}} &:\equiv \quad \exists z \leq^* a \,\forall \mathbf{c}' \leq^* \mathbf{c} \,|A(z)|_{\mathbf{c}'}^{\mathbf{b}} \\ |\exists z A(z)|_{\mathbf{c}}^{\mathbf{b},a} &:\equiv \quad \exists z \leq^* a \,\forall \mathbf{c}' \leq^* \mathbf{c} \,|A(z)|_{\mathbf{c}'}^{\mathbf{b}} \\ |A \lor B|_{\mathbf{c},e}^{\mathbf{b},d} &:\equiv \quad \forall \mathbf{c}' \leq^* \mathbf{c} \,|A|_{\mathbf{c}'}^{\mathbf{b}} \lor \forall \mathbf{c}' \leq^* \mathbf{e} \,|B|_{\mathbf{c}'}^{\mathbf{d}} \end{aligned}$$

Quiz

Consider the following game with 3 people.

1. Each person *i* builds a function g_i which given her number $x_i > 0$ should give the (predicted) sum of all numbers $x_1 + x_2 + x_3$. E.g. $g_2(x_2) := 7x_2^2 + 111$

- 2. Person $i \in \{1, 2, 3\}$ is then assigned the number $x_i := g_i(i)$
- 3. It should be the case that $g_i(x_i) = x_1 + x_2 + x_3$
Quiz

Consider the following game with 3 people.

1. Each person *i* builds a function g_i which given her number $x_i > 0$ should give the (predicted) sum of all numbers $x_1 + x_2 + x_3$. E.g. $g_2(x_2) := 7x_2^2 + 111$

- 2. Person $i \in \{1, 2, 3\}$ is then assigned the number $x_i := g_i(i)$
- 3. It should be the case that $g_i(x_i) = x_1 + x_2 + x_3$

How should the participants proceed in choosing g_i ?