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Introduction

Historic digression

BHK interpretation

L.E.J. Brouwer A. Heyting A. N. Kolmogorov

Define “A is constructively true” or “p is a constructive proof of A.

a pair of constructions 〈p0, p1〉 is a proof of A∧B if p0 is proof of A
and p1 is a proof of B.

a construction p is a proof of A → B if whenever a is a construction
for A then p(a) is a construction for B.
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Introduction

Historic digression

Curry-Howard isomorphism

H. Curry W. A. Howard

Isomorphism between formulas and types [[·]] : Form → Type

[[P ]] :≡ τP

[[A ∧B]] :≡ [[A]]× [[B]]

[[A → B]] :≡ [[A]] → [[B]]

So that proofs of A correspond (one-to-one) to λ-terms of type [[A]]
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Introduction

Historic digression

Intuitionistic Type Theory

Martin Löf

Extend isomorphism to predicate logic, using dependent types

[[∀xXA(x)]] :≡ Πx:X [[A(x)]]

[[∃xXA(x)]] :≡ Σx:X [[A(x)]]
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Introduction

Historic digression

Gödel’s Dialectica interpretation

Developed by Gödel since the 1930s

Finally published in 1958

Aim:

solution to Hilbert’s consistence program

reduce consistency of arithmetic to the
consistency of a “finitary calculus” T

Interpretation:

associate formulas A with new formulas (A)D

If HA ` A then T ` (A)D

If Con(T) then Con(HA) (since (⊥)D ≡⊥)

Functional interpretations:

Variations of Dialectica interpretation

K. Gödel
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Introduction

Historic digression

Functional interpretations

Associate formulas A to specifications |A|xy
Intuitively:

A is interpreted by ∃x∀y|A|xy
A associated with the “type” {x : ∀y|A|xy}

Proof of A provides a witness t for interpretation ∀y|A|ty

Formula A Proof π

Curry-Howard [[A]] tπ : [[A]]

Functional Interpretations {x : ∀y|A|xy} ∀y|A|ty

Modular: analysis of sub-proofs reused in analysis of main proof

Flexible definition of negation, using “counter-examples” y
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Introduction

Historic digression

From unwinding to proof mining

1951 Kreisel launches his “unwinding program”, describes the notion of
an “interpretation” and defines his no-counterexample interpretation

1952 Kreisel attempts an application to Littlewood’s theorem

1958 Gödel’s publishes Dialectica interpretation presenting relative
consistency proof of classical arithmetic

1958 Kreisel revisits his program, asking for shift from “Hilbert’s
consistency program” to concrete mathematical applications

1958 Kreisel analyses Artin’s proof of Hilbert’s 17th problem

1959 Kreisel defines a variant of Dialectica called “modified realizability”

1962 Spector extends the Dialectica interpretation to classical analysis

. . .

1992 Kohlenbach develops a “monotone” version of the Dialectica
interpretation and applies to uniqueness proofs

2001- New case studies in approximation theory and fixed-point theory
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1958 Gödel’s publishes Dialectica interpretation presenting relative
consistency proof of classical arithmetic

1958 Kreisel revisits his program, asking for shift from “Hilbert’s
consistency program” to concrete mathematical applications

1958 Kreisel analyses Artin’s proof of Hilbert’s 17th problem

1959 Kreisel defines a variant of Dialectica called “modified realizability”

1962 Spector extends the Dialectica interpretation to classical analysis

. . .

1992 Kohlenbach develops a “monotone” version of the Dialectica
interpretation and applies to uniqueness proofs

2001- New case studies in approximation theory and fixed-point theory



Functional Interpretations

Introduction

Historic digression

From unwinding to proof mining

1951 Kreisel launches his “unwinding program”, describes the notion of
an “interpretation” and defines his no-counterexample interpretation

1952 Kreisel attempts an application to Littlewood’s theorem
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Introduction

Preliminaries

Finite types

We will normally consider multi-sorted first-order theories.

Sorts will be taken from the set “Type” of types:

o ∈ Type

Natural numbers

if ρ, τ ∈ Type then ρ → τ ∈ Type

Functionals

if ρ ∈ Type then ρ∗ ∈ Type

Finite sequences

Quantifications over all finite types: ∀xρ→τ∃yσ . . .
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Introduction

Preliminaries

Majorizability

Partial order between terms of type ρ

n ≤∗o m :≡ n ≤ m

f ≤∗ρ→τ g :≡ ∀xρ∀y ≤∗ρ x(fy ≤∗τ gx ∧ gy ≤∗τ gx)

Define new type structure M as

Mo :≡ N

Mρ→τ :≡ {f ∈MMρ
τ : ∃g ∈MMρ

τ (f ≤∗ g)}
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Introduction

Preliminaries

Majorizability: properties

Monotonicity f ≤∗ g ∧ x ≤∗ y → fx ≤∗ gy

Self-majorizability f ≤∗ g → g ≤∗ g

Joins (a ≤∗ max{a, b}) ∧ (b ≤∗ max{a, b})
(a, b monotone)

Model of T closed terms t of T have majorant t∗

Weak continuity ∀Y Nω→N, f∃n∀g(∀i ≤ n(fi = gi) → Y (g) ≤ n)

g is called monotone if g ≤∗ g

max{a, b} defined as

{
maxo{n, m} := maxN{n, m}

maxρ→τ{f, g}(x) := maxτ{fx, gx}
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Intuitionistic logic

∧ → ∀ fragment of IL

A ` A (id) ⊥ ` A (efq)

Γ ` A ∧B
∧El

Γ ` A

Γ ` A ∧B
∧Er

Γ ` B

Γ ` A ∆ ` B
∧I

Γ,∆ ` A ∧B

Γ, A ` B
→ I

Γ ` A → B

Γ ` A → B
→E

Γ, A ` B

Γ ` A(x)
∀I

Γ ` ∀xA(x)

Γ ` ∀xA(x)
∀E

Γ ` A(s)

Γ ` B
(wkn)

Γ, A ` B

Γ, A, A ` B
(con)

Γ, A ` B

Γ ` A ∆, A ` B
(cut)

Γ,∆ ` B



Functional Interpretations

Intuitionistic logic

∧ → ∀ fragment of IL

A ` A (id) ⊥ ` A (efq)

Γ ` A ∧B
∧El

Γ ` A

Γ ` A ∧B
∧Er

Γ ` B

Γ ` A ∆ ` B
∧I

Γ,∆ ` A ∧B

Γ, A ` B
→ I

Γ ` A → B

Γ ` A → B
→E

Γ, A ` B

Γ ` A(x)
∀I

Γ ` ∀xA(x)

Γ ` ∀xA(x)
∀E

Γ ` A(s)

Γ ` B
(wkn)

Γ, A ` B

Γ, A, A ` B
(con)

Γ, A ` B

Γ ` A ∆, A ` B
(cut)

Γ,∆ ` B



Functional Interpretations

Intuitionistic logic

Parametrised interpretation

Basic interpretation

Associate formulas A to “types” |A|x

|A ∧B|x,v :≡ |A|x ∧ |B|v

|A → B|f :≡ ∀x(|A|x → |B|fx)

|∀zA(z)|f :≡ ∀z|A(z)|fz

Would like to be able to refute |A|t (≡ ∀y|A|ty)

|A ∧B|x,v

y,w

:≡ |A|x

y

∧ |B|v

w

|A → B|fx

,w

:≡ |A|x

y

→ |B|fx

w

|∀zA(z)|fz

,y

:≡ |A(z)|fz

y
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Intuitionistic logic

Parametrised interpretation

Commutative Monoids

For each type ρ let ([ρ], ∗) be a commutative monoid

a ∗ b : [ρ] given that a : [ρ] and b : [ρ]

with η(·) : ρ → [ρ] and µ(·)(·) : (ρ → [σ]) → ([ρ] → [σ])

Define a partial order v on [ρ] as a v b if ∃a′. a ∗ a′ = b
Functionals η(·) and µ(·)(·) should satisfy

µ(f)(a) ∗ µ(f)(b) v µ(f)(a ∗ b)

f(x) v µ(f)(η(x))

Finally, define xρ C a[ρ] as η(x) v a. We have:

(A1) (x C a) ∨ (x C b) → (x C a ∗ b)
(A2) x C η(x)
(A3) (x C a) ∧ (y C fx) → (y C µ(f)(a))
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Functional Interpretations

Intuitionistic logic

Parametrised interpretation

Commutative Monoids: Examples

Axioms:
µ(f)(a) ∗ µ(f)(b) v µ(f)(a ∗ b)

f(x) v µ(f)(η(x))

Instances:

[ρ] a ∗ b η(x) µ(f)(a) x C a

{•} • • • true

finite multi-sets of ρ a ∪ b {x} ∪x∈afx x ∈ a

monotone ρ max{a, b} x∗ f∗(a) x ≤∗ a

ρ ? x f(a) x = a
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Basic parametrised interpretation

|A ∧B|x,v
y,w :≡ |A|xy ∧ |B|vw

|A → B|fx,w :≡ ∀y|A|xy → |B|fx
w

|∀zA(z)|fz,y :≡ |A(z)|fz
y

Let the monoidal embedding be fixed, so that C is defined.

Definition

The parametrised interpretation is defined as:

|A ∧B|x,v
y,w :≡ |A|xy ∧ |B|vw

|A → B|f ,g
x,w :≡ ∀y C gxw |A|xy → |B|fx

w

|∀zA(z)|fy,z :≡ |A(z)|fz
y
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Intuitionistic logic

Parametrised interpretation

Paremetrised soundness

Theorem (Soundness)

Let the monoidal embedding be fixed. If

Γ `IL A

then there are sequences of terms t, s such that

∀w C svy |Γ|vw `ILω |A|t[v]
y

Proof.



Functional Interpretations

Intuitionistic logic

Parametrised interpretation

Paremetrised soundness

Theorem (Soundness)

Let the monoidal embedding be fixed. If

Γ `IL A

then there are sequences of terms t, s such that

∀w C svy |Γ|vw `ILω |A|t[v]
y

Proof. Contraction

∀y C r0 |A|xy ,∀y C r1 |A|xy ` |B|tw
(A1)

∀y C r0 ∗ r1 |A|xy ,∀y C r0 ∗ r1 |A|xy ` |B|tw
(con)

∀y C r0 ∗ r1 |A|xy ` |B|tw
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Γ `IL A
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Proof. Axiom

∀y′ C η(y) |A|xy′ ` |A|xy (A2)
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Parametrised interpretation

Paremetrised soundness

Theorem (Soundness)

Let the monoidal embedding be fixed. If

Γ `IL A

then there are sequences of terms t, s such that

∀w C svy |Γ|vw `ILω |A|t[v]
y

Proof. Cut

∀y C r[z] |Γ|xy ` |A|sz
∀z C q′ ∀y C r[z] |Γ|xy ` ∀z C q′ |A|sz

∀z C q |A|vz ` |B|tw
∀z C q′ |A|sz ` |B|t

′

w

∀z C q′ ∀y C r[z] |Γ|xy ` |B|t
′

w
(A3)

∀y C µ(λz.r[z])(q′) |Γ|xy ` |B|t
′

w
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Intuitionistic logic

Instantiations

Instantiations

x C a ∀y C gxw |A|xy → |B|fx
w

Modified realizability true ∀y |A|xy → |B|fx
w

Diller-Nahm x ∈ a ∀y ∈ gxw |A|xy → |B|fx
w

Bounded f.i. x ≤∗ a ∀y≤∗gxw |A|xy → |B|fx
w

Dialectica x = a |A|xgxw → |B|fx
w

Modified realizability the most natural instantiation

Diller-Nahm requires multi-sets
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Intuitionistic logic

Instantiations

Application: Intuitionistic Herbrand theorem

Theorem (Herbrand, intuitionistic)

If

IL ` ¬∀xAqf(x)
then, for some sequence of terms t0, . . . , tn we have

IL ` ¬(Aqf(t0) ∧ . . . ∧Aqf(tn))

Proof.

1. IL ` ¬∀xAqf(x) (assumption)
2. ILω ` ¬∀x ∈ t Aqf(x) (by f.i.)
3. ILω ` ¬∀x ∈ t0 ∗ . . . ∗ tn Aqf(x) (by normalisation)
4. ILω ` ¬(Aqf(t0) ∧ . . . ∧Aqf(tn))
5. IL ` ¬(Aqf(t0) ∧ . . . ∧Aqf(tn)) (by conservation)
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Instantiations

Instantiations: Dialectica

Take x C a as x = a, so that

∀y C gxw |A|xy → |B|fx
w

simplifies to
|A|xgxw → |B|fx

w

Problem: Not really a monoid...

... unless the type ρ comes equipped with the specification |A|xy

Then monoid can be defined as:

[ρ]|A|xy a ∗ b η(x) µ(f)(a) x C a

ρ if(|A|xb , a, b) x f(a) x = a
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Instantiations

Instantiations: Bounded f.i.

Take x C a as x ≤∗ a, so that

∀y C gxw |A|xy → |B|fx
w

simplifies to
∀y≤∗gxw |A|xy → |B|fx

w

Problem: mapping η(x) = x∗ not effective

... unless x is monotone, in which case η(x) = x

Achieve this through relativization

∀xA(x) ⇒ ∀x∈MA(x) ⇔ ∀a∀x≤∗ aA(x)

∃xA(x) ⇒ ∃x∈MA(x) ⇔ ∃a∃x≤∗ aA(x)
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Instantiations

Instantiations: Bounded f.i.

Definition

Interpretation as before, except:

|∀z≤∗ aA(z)|bc :≡ ∀z≤∗ a |A(z)|bc
|∀zA(z)|fb,a :≡ ∀z≤∗ a |A(z)|fa

b
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Instantiations

Adding ∨∃

New rules:

Γ, A0 ∨A1 ` B
∨I

Γ, Ai ` B

Γ, A0 ` B Γ, A1 ` B
∨E

Γ, A0 ∨A1 ` B

Γ,∃xA(x) ` B
∃I

Γ, A(s) ` B

Γ, A(x) ` B
∃E

Γ,∃xA(x) ` B

Extended interpretation:

|A ∨B|x,v,b
y,w :≡ if(b, |A|xy , |B|vw)

|∃zA(z)|x,z
y :≡ |A(z)|xy
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Instantiations

Adding ∨∃: bounded f.i.

Bounded functional interpretation only searches for bounds...

Therefore:

|∃z≤∗ aA(z)|bc :≡ ∃z≤∗ a∀c′≤∗ c |A(z)|bc′

|∃zA(z)|b,a
c :≡ ∃z≤∗ a∀c′≤∗ c |A(z)|bc′

|A ∨B|b,d
c,e :≡ ∀c′≤∗ c |A|bc′ ∨ ∀e′≤∗e |B|de′
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Quiz

Consider the following game with 3 people.

1. Each person i builds a function gi which given her number
xi > 0 should give the (predicted) sum of all numbers x1 + x2 + x3.

E.g. g2(x2) := 7x2
2 + 111

2. Person i ∈ {1, 2, 3} is then assigned the number xi := gi(i)

3. It should be the case that gi(xi) = x1 + x2 + x3

How should the participants proceed in choosing gi?
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