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On Herbrand theorem
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Γ, A, . . . , A ⊢ B

Γ, A ⊢ B

Stability

Γ ⊢ ¬¬A

Γ ⊢ A

⊢ ∃xA ⇐ ⊢ ¬¬∃xA
⇐ ∀x¬A ⊢⊥
⇐ ∀x¬A, . . . ,∀x¬A ⊢⊥
⇐ ¬A(t0), . . . ,¬A(tn) ⊢⊥
⇔ ⊢ A(t0) ∨ . . . ∨ A(tn)
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When talking about the fact that LL has the existence property,
despite identifying A with (A⊥)⊥, he writes:
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from the fact that A⊥ negates a single action of type A, whereas
usual negation only negates some (unspecified) iteration of A,
what usually leads to a Herbrand disjunction of unspecified
length”
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When talking about the fact that LL has the existence property,
despite identifying A with (A⊥)⊥, he writes:

“This exceptional behaviour of ‘nill’ (the linear negation) comes
from the fact that A⊥ negates a single action of type A, whereas
usual negation only negates some (unspecified) iteration of A,
what usually leads to a Herbrand disjunction of unspecified
length”

Linear logic does not deal with contractions, simply avoids it!
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Herbrand theorem : Example

Theorem (A)

∃n(P(n) → P(n + 1))

Proof.
Assume ∀n(P(n) ∧ ¬P(n + 1)), then we have both

P(0) ∧ ¬P(1)

P(1) ∧ ¬P(2)

which implies ⊥. Hence ∃n(P(n) → P(n + 1)).

Theorem (A+)

(P(0) → P(1)) ∨ (P(1) → P(2))
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Intuitionistic version

Theorem (B)

¬∀n(P(n) ∧ ¬P(n + 1))

Proof.
Assume ∀n(P(n) ∧ ¬P(n + 1)), then we have both

P(0) ∧ ¬P(1)

P(1) ∧ ¬P(2)

which implies ⊥.

Theorem (B+)

¬((P(0) ∧ ¬P(1)) ∧ (P(1) ∧ ¬P(2)))
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∀xA(x) → B =⇒ (A(t0) ∧ . . . ∧ A(tn)) → B
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|∀zA(z)|
~f :≡ ∀z(|A(z)|

~f z)

|∃zA(z)|~x ,z :≡ |A(z)|~x

A ∨b B ≡ if b then A else B
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|A → B|
~f :≡ ∀~x(|A|~x → |B|

~f~x)

|∀zA(z)|
~f :≡ ∀z(|A(z)|

~f z)

|∃zA(z)|~x ,z :≡ |A(z)|~x

A ∨b B ≡ if b then A else B

|A → A ∧ A|λx.〈x,x〉, i.e. λx .〈x , x〉 witnesses A → A ∧ A
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Non-linear negation

A →⊥ (A ∧ . . . ∧ A →⊥)

some set of consequences of A is inconsistent

Made precise via the notion of counter-example:

Witness for A →⊥ consists of a (unspecified but finite)
collection of counter-examples for A
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Generalised interpretation

∀~y |A|~x~y ≡ ~x is a witness for A

¬|A|~x~y ≡ ~y is a counter-example to the witness ~x

(Diller-Nahm’74)

|A → B|
~f ,~g
~x,~w :≡ ∀~y ∈~g~x ~w |A|~x~y → |B|

~f~x
~w

(Dialectica’58)

|A → B|
~f ,~g
~x,~w :≡ |A|~x~g~x ~w → |B|

~f~x
~w

If |A| decidable then ∀~y ∈~g~x ~w |A|~x~y equivalent to |A|~x
~̃g~x~w
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Generalised interpretation

(Diller-Nahm’74)

∀~y ∈ {~y0, ~y1}|A|
~x
~y → |A|~x~y0

∧ |A|~x~y1
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Generalised interpretation

(Diller-Nahm’74)

∀~y ∈ {~y0, ~y1}|A|
~x
~y → |A|~x~y0

∧ |A|~x~y1

(Dialectica’58)

|A|~xC|A|(~y0,~y1)
→ |A|~x~y0

∧ |A|~x~y1

where

C|A|(~y0, ~y1) :≡

{

~y0 if ¬|A|~x~y0

~y1 otherwise
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Generalised interpretation and MP

Markov Principle

¬∀xP(x) → ∃x¬P(x)

Interpreted by Dialectica (under decidability condition)

a weaker (but more natural) MP

¬∀xP(x) → ∃s¬∀x∈s P(x)

is interpreted by Diller-Nahm
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Other functional interpretations

1978. Stein’s family of functional interpretations
Relate modified realizability and Diller-Nahm’s

1992. Monotone functional interpretation (Kohlenbach)
Proof mining

2005. Bounded functional interpretation (Ferrreira & O.)
Conservation results in feasible analysis
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Other functional interpretations

1978. Stein’s family of functional interpretations
Relate modified realizability and Diller-Nahm’s

1992. Monotone functional interpretation (Kohlenbach)
Proof mining

2005. Bounded functional interpretation (Ferrreira & O.)
Conservation results in feasible analysis

Parametrised functional interpretation

|A → B|
~f ,~g
~x ,~w :≡ ∀~y ⊏ ~g~x ~w |A|~x~y → |B|

~f~x
~w
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Functional interpretations and proof mining

Semi-classical proofs
Markov principle
Independence of premise

Analytical proofs
(intuitionistic) axiom of choice

(∀ → ∀)-theorem
Unique approximation
∧1

i=0||xi − c|| = dist → x0 = x1

Convex
||1/2(x0 + x1)|| = 1 → x0 = x1

Function
x0 = x1 → f (x0) = f (x1)
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Future work

Compare functional interpretations

Does the use of different functional interpretations lead to
(considerably) different programs?

Functional interpretation of linear logic

Semantics for linear logic?

Functional interpretation as tool of logic, not arithmetic

Applications to mathematics and CS
Arithmetic?
Linearity, complexity?


	Introduction
	Herbrand Theorem
	Functional Interpretations
	Conclusion

