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Purpose of the talk

Role of contraction in the computational analysis of proofs
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equivalently
rA,...,AEB

rA-B

@ with classical logic (Herbrand’s theorem)
@ without classical logic (Functional interpretations)
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On Herbrand theorem

@ Contraction @ Stability
A, ...,AFB M ——A
NA-B rcA

F dxA ~= F ——dxA
= Yx-AFL
= VX-A, ..., VX-AFL
<= -A(tg), ..., ~A(th) FL
& FA(t) V... VA(t)
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When talking about the fact that LL has the existence property,
despite identifying A with (A+)*, he writes:

“This exceptional behaviour of ‘nill’ (the linear negation) comes
from the fact that A negates a single action of type A, whereas
usual negation only negates some (unspecified) iteration of A,
what usually leads to a Herbrand disjunction of unspecified
length”
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Girard on contraction

When talking about the fact that LL has the existence property,
despite identifying A with (A+)*, he writes:

“This exceptional behaviour of ‘nill’ (the linear negation) comes
from the fact that A negates a single action of type A, whereas
usual negation only negates some (unspecified) iteration of A,
what usually leads to a Herbrand disjunction of unspecified
length”

Linear logic does not deal with contractions, simply avoids it!



Herbrand Theorem

Herbrand theorem : Example

Theorem (A)
In(P(n) — P(n+1))




Herbrand Theorem

Herbrand theorem : Example

Theorem (A)
In(P(n) — P(n+1))

Assume ¥n(P(n) A =P(n + 1)), then we have both
@ P(0)A=P(1)
@ P(1)A-P(2)
which implies L. Hence 3n(P(n) — P(n + 1)). O




Herbrand Theorem

Herbrand theorem : Example

Theorem (A)

In(P(n) — P(n+1))

Assume ¥n(P(n) A =P(n + 1)), then we have both
@ P(0)A=P(1)
@ P(1)A-P(2)
which implies L. Hence 3n(P(n) — P(n + 1)). O

Theorem (A™)
(P(0) — P(1)) v (P(1) — P(2))
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Intuitionistic version

Theorem (B)
=vn(P(n) A =P(n + 1))

Assume ¥n(P(n) A =P(n + 1)), then we have both
@ P(0)A—P(1)
@ P(1)A—P(2)
which implies L. O

Theorem (B™)
—((P(0) A =P (1)) A (P(1) A =P(2)))
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Proof analysis

@ Classically

IXA(X) = Altg)V...VA(t)

@ Intuitionistically

—|VXA(X) — —|(A(t0) VANIRVAN A(tn))

VXA(x) =B = (A(to) A...ANA(th)) — B
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Direct interpretation

|AX = X is a witness for A, or X realizes A

AABXY = |AFAIBY
AVBYD = |AX vy [BY
A—Bff = WX(AF —|B¥)
VAR = vz(A2)[?)

FzAZ)[}2 = |A@Z)F
AVpB = ifbthen Aelse B

|A — AAAPMCX e AX.(X,X) withesses A — AA A
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Functional Interpretations

Non-linear negation

AL AN...NA—1)
some set of consequences of A is inconsistent

@ Made precise via the notion of counter-example:

Witness for A —_1 consists of a (unspecified but finite)
collection of counter-examples for A
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° ﬁ\A@: =y is a counter-example to the witness X
A—BILY = vyegx|AX — B[
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Generalised interpretation

X is a witness for A

o WIA|
o —|A

<X <Xy

y is a counter-example to the witness X

@ (Diller-Nahm’74)
fg _ S %
A =B = WegRwWAR — |BIX

@ (Dialectica’58)
A—BLS = A, — Bl

— — —

If |A| decidable then vy egxw|A|X equivalent to |A|

X
g

[

X
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Generalised interpretation

@ (Diller-Nahm’74)
W € {Yo. Vu AL — AL A A
@ (Dialectica’58)
X X X
‘A‘C\A\(Vo,yl) - ‘A‘Vo A ‘A‘Vl

where

ooy [ Yo f ﬁ|’°‘|)z
C = — y
a1 (Yo, ¥1) { V1 otherwise
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Generalised interpretation and MP

@ Markov Principle
—VXP(x) — Ix=P(x)

Interpreted by Dialectica (under decidability condition)

@ a weaker (but more natural) MP
—VXP(x) — 3s-Vx esP(x)

is interpreted by Diller-Nahm
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1978. Stein’s family of functional interpretations
@ Relate modified realizability and Diller-Nahm’s

1992. Monotone functional interpretation (Kohlenbach)
@ Proof mining

2005. Bounded functional interpretation (Ferrreira & O.)
@ Conservation results in feasible analysis



Functional Interpretations

Other functional interpretations

1978. Stein’s family of functional interpretations
@ Relate modified realizability and Diller-Nahm’s

1992. Monotone functional interpretation (Kohlenbach)
@ Proof mining

2005. Bounded functional interpretation (Ferrreira & O.)
@ Conservation results in feasible analysis

Parametrised functional interpretation

o |A—BIS, := vy © GRwIAK — B
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Functional interpretations and proof mining

@ Semi-classical proofs

@ Markov principle
@ Independence of premise

@ Analytical proofs
@ (intuitionistic) axiom of choice

@ (V — V)-theorem
@ Unigue approximation
ALol|xi — ¢|| = dist — xg = X1
@ Convex
11/2(%0 + X1)|| = 1 — X0 = X1
@ Function
Xo = X1 — f(Xo) = f(Xl)
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Conclusion

Future work

@ Compare functional interpretations

Does the use of different functional interpretations lead to
(considerably) different programs?

@ Functional interpretation of linear logic
Semantics for linear logic?

@ Functional interpretation as tool of logic, not arithmetic

@ Applications to mathematics and CS
@ Arithmetic?
@ Linearity, complexity?
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