# Polynomial-time programs from ineffective proofs in feasible analysis

Paulo Oliva

LICS, Ottawa, Jun 2003

The Plan -

#### 1. Motivation

- Ineffective principles in analysis (weak König's Lemma)
- Feasible analysis
- 2. The Main Result
  - Algorithm for extracting polynomial-time realizers from proofs (involving WKL) of  $\Pi_2^0$ -theorems in feasible analysis.
- 3. Sketch of the Proof
- 4. Related/Future Work

Polynomial-time programs from ineffective proofs

### Ineffective principles -

- By ineffective principles we mean, e.g.
  - (1) Heine/Borel covering lemma for [0, 1],
  - (2) Every continuous function  $f : [0, 1] \rightarrow \mathbb{R}$  attains its infimum and supremum,
  - (3) Every continuous function  $f : [0, 1] \rightarrow \mathbb{R}$  is uniformly continuous.
- Over a basic system of analysis (RCA<sub>0</sub>) those principles are equivalent to

WKL : Every infinite binary tree has an infinite branch

- This principle is normally called binary/weak König's Lemma.
- WKL is ineffective in the sense that it only holds in models which contain non-recursive functions.

# - WKL in proofs of ∀∃-theorems

- What if WKL is used in the proof of a theorem  $\forall x \exists y A_0(x, y)$ ?
- In 76 Friedman defined the subsystem of analysis RCA<sub>0</sub> and showed that RCA<sub>0</sub> is  $\Pi_2^0$ -conservative over PRA, i.e.

Thm [Friedman]. If  $\mathsf{RCA}_0 \vdash \forall x \exists y A_0(x, y)$  then there exists a primitive recursive function f such that  $\mathsf{PRA} \vdash A_0(x, fx)$ .

• Moreover, he showed that  $RCA_0 + WKL$  is  $\Pi_2^0$ -conservative over  $RCA_0$ . Therefore:

Thm [Friedman]. If  $\mathsf{RCA}_0 + \mathsf{WKL} \vdash \forall x \exists y A_0(x, y)$  then there exists primitive recursive function f such that  $\mathsf{PRA} \vdash A_0(x, fx)$ .

• Friedman's proof is ineffective!

# - On Friedman's result -

- Harrington'77 proved (also non-constructively)  $\Pi_1^1$ -conservation of WKL over RCA<sub>0</sub>.
- First effective version of Friedman's result was given by Sieg'85 (based on cut-elimination).
- Extension of Friedman's result to the higher types was given by Kohlenbach'92 (based on functional interpretation).
- Avigad'96 formalized the forcing argument used in Harrington's proof obtaining an effective version of the Π<sup>1</sup><sub>1</sub>-conservation result (no function extraction procedure, though)

### **Basic Feasible Analysis I -**

- Ferreira'94 defined a Basic Theory for Feasible Analysis BTFA
- The  $\Pi_2^0$ -theorems of BTFA have polynomial-time computable realizers.

Thm [Ferreira]. If BTFA  $\vdash \forall x \exists y A_0(x, y)$  then there exists a polynomial-time computable function f such that  $\forall x A_0(x, fx)$  holds.

• Ferreira also showed non-constructively that BTFA and BTFA + WKL have the same  $\Pi_2^0$ -theorems. Hence:

Thm [Ferreira]. If BTFA + WKL  $\vdash \forall x \exists y A_0(x, y)$  then there exists a polynomial-time computable function f such that  $\forall x A_0(x, fx)$  holds.

#### **Basic Feasible Analysis II -**

- A different basic theory for feasible analysis (based on the language of finite types) can be obtained by taking Cook and Urquhart's system CPV<sup>ω</sup> extended with quantifier-free choice QF-AC.
- The resulting theory can be viewed as an extension of (a version of) BTFA to all finite types.

Thm. If  $CPV^{\omega} + QF-AC \vdash \forall x \exists y A_0(x, y)$  then there exists *effectively* a polynomial-time computable function *f* such that  $IPV^{\omega} \vdash \forall x A_0(x, fx)$ .

Main result -

Thm. If  $CPV^{\omega} + QF-AC + WKL \vdash \forall x \exists y A_0(x, y)$  then there exists *effectively* a polynomial-time computable function *f* such that  $\forall x A_0(x, fx)$  holds.

• We can also allow "set parameters" in the theorem above, i.e.

Thm. If  $CPV^{\omega} + QF-AC + WKL \vdash \forall x \exists y A_0(x, y, \alpha)$  then there exists *effectively* a polynomial-time computable function *with boolean oracle f* such that  $\forall x \forall \alpha : \{0, 1\}^{\omega} A_0(x, fx\alpha, \alpha)$  holds.

 In order to illustrated the mathematical significance of the system CPV<sup>\u03c6</sup> + QF-AC + WKL we have indicated how to formalize the proof of Heine/Borel covering lemma in it.

# Sketch of the proof -

1. Cook and Urquhart showed that  $CPV^{\omega}$  has a functional interpretation, via negative translation, in  $IPV^{\omega}$ .

```
Thm [CU'93]. \mathsf{CPV}^{\omega} \xrightarrow{\mathsf{N+f.i.}} \mathsf{IPV}^{\omega}.
```

2. We extend this interpretation to  $CPV^{\omega} + QF-AC$ .

Lem.  $CPV^{\omega} + QF-AC \xrightarrow{N+f.i.} IPV^{\omega}$ .

3. And, by adding a new form of binary bar recursion  $\mathcal{B}$  to IPV<sup> $\omega$ </sup> we can even interpret WKL.

**Thm.**  $CPV^{\omega} + QF-AC + WKL \xrightarrow{N+f.i.} IPV^{\omega} + \mathcal{B}.$ 

4. Finally, we show that the functions of  $IPV^{\omega} + B$  are polynomial-time computable.

Thm.  $[IPV^{\omega} + B]_1 \equiv P$ .

#### **The Functional Interpretation of WKL**

 $\hat{w}_n := w_n * 0000 \dots \qquad \overline{\alpha} k := \alpha(0)\alpha(1)\dots\alpha(k-1)$ 

**Problem:** Given a binary tree *T*, a function  $A : \{0, 1\}^{\omega} \to \mathbb{N}$ and a sequence of finite branches  $(w_i)_{i \in \mathbb{N}}$ , produce *n* and  $\alpha : \{0, 1\}^{\omega}$  satisfying:

 $|w_n| = n \wedge T(w_n) \to T(\overline{\alpha}(A\alpha)).$ 

• Two possible solutions:



Polynomial-time programs from ineffective proofs

# **Binary Bar Recursion**

$$\mathcal{B}(A, (w_i)_{i \in \mathbb{N}}, n) = \begin{cases} n & \text{if } |A\hat{w}_n| \leq |w_n \\ & \text{or } |w_n| \neq n \\ \mathcal{B}(A, (w_i)_{i \in \mathbb{N}}, n+1) & \text{otherwise}, \end{cases}$$

where  $A: \{0,1\}^{\omega} \to \mathbb{N}$  and  $w_i: \{0,1\}^*$ .

• It can be also formulated in the form of an unbounded search:

 $\min m \ge n \left( |A\hat{w}_m| \le |w_m| \lor |w_m| \ne m \right)$ 

• How to justify such recursion?

Lem [KC'96]. For any closed term  $\Psi : \mathbb{N} \to \{0, 1\}^{\omega} \to \mathbb{N}$  of IPV<sup> $\omega$ </sup>, there exist constants  $c_1$  and  $c_2$  such that

 $\forall x : \mathbb{N} \forall \alpha : \{0, 1\}^{\omega} (|\Psi x \alpha| \le |x|^{c_1} + c_2)$ 

# Eliminating the Bar Recursion I

- Suppose we have type one term t : N → N in the language of IPV<sup>ω</sup> + B, we show how to replace B by limited recursion on notation.
- In fact, for the induction hypothesis we need a stronger condition:

Lem. For any term  $t[x, \alpha] : \mathbb{N}$  of  $\mathsf{IPV}^{\omega} + \mathcal{B}$ , there exists a term  $t'[x, \alpha] : \mathbb{N}$  of  $\mathsf{IPV}^{\omega}$  such that

$$\forall x : \mathbb{N} \forall \alpha : \{0, 1\}^{\omega} (t[x, \alpha] = t'[x, \alpha]).$$

# **Eliminating the Bar Recursion II**

Let Ψ[x, α] and (w<sub>i</sub>)<sub>i∈N</sub>[x, α] be fixed terms of IPV<sup>ω</sup> + B. The main step is to show that B(Ψ[x, α], (w<sub>i</sub>)<sub>i∈N</sub>[x, α], 0), i.e. (omitting [x, α])

```
\min n \left( |\Psi \hat{w}_n| \le |w_n| \lor |w_n| \ne n \right),
```

can be replaced by limited recursion on notation.

- This can be done since  $|\Psi x \alpha|$ , and hence the search, is bounded by  $|x|^{c_1} + c_2$ .
- Therefore, given an arbitrary term t[x, α] in IPV<sup>ω</sup> + B, we can successively normalize it and replace the innermost occurrence of B by limited recursion on notation.

# Related Work -

- Howard'81 used a different form of binary bar recursion to realize the functional interpretation of (the negative translation of) WKL.
- Howard's binary bar recursion, however, seems to be too strong for the feasible context, since it apparently involves an exponential search.
- Sieg's proof of WKL-elimination (based on cut elimination) was successfully adapted to the feasible setting by Kauffmann'00.
- Our approach directly extracts a polynomial-time computable realizer out of the WKL-proof, rather than eliminating it first.

# Future Work -

- Investigate whether Kohlenbach's effective proofs of WKL elimination can be translated into the feasible setting, by making a careful treatment of bounded quantifiers.
- Find ineffective proofs of Π<sup>0</sup><sub>2</sub>-theorems which can be formalized in CPV<sup>ω</sup> + QF-AC + WKL, and carry out the extraction of polynomial-time algorithms (cf. analysis of WKL-proofs e.g. in approximation theory).
- Compare the quality of the polynomial-time algorithms yielded via the approach based on cut elimination and our approach.