Polynomial-time programs from ineffective proofs in feasible analysis

Paulo Oliva

≣BRICSUniversity of Århus
Denmark

ASL Annual Meeting, Chicago, Jun 2003

The Plan -

- 1. Motivation
 - Ineffective principles in analysis (weak König's Lemma)
 - Feasible analysis
- 2. The Main Result
 - Algorithm for extracting polynomial-time realizers from proofs (involving WKL) of Π_2^0 -theorems in feasible analysis.
- 3. Sketch of the Proof
- 4. Related/Future Work

Ineffective principles -

- By ineffective principles we mean, e.g.
 - (1) sequential Heine/Borel covering lemma for [0, 1],
 - (2) Every continuous function $f:[0,1] \to \mathbb{R}$ attains its infimum and supremum,
 - (3) Every continuous function $f:[0,1] \to \mathbb{R}$ is uniformly continuous.
- Over a basic system of analysis (RCA₀) those principles are equivalent to

WKL: Every infinite binary tree has an infinite branch

- This principle is normally called binary/weak König's Lemma.
- WKL is ineffective in the sense that it only holds in models which contain non-recursive functions.

- WKL in proofs of ∀∃-theorems

- What if WKL is used in the proof of a theorem $\forall x \exists y A_0(x,y)$?
- In 76 Friedman (also Parsons, Mints, Takeuti) defined the subsystem of analysis RCA₀ and showed that RCA₀ is Π₂⁰-conservative over PRA, i.e.

Thm [Friedman]. If $RCA_0 \vdash \forall x \exists y A_0(x, y)$ then there exists a primitive recursive function f such that $PRA \vdash A_0(x, fx)$.

• Moreover, he showed that $RCA_0 + WKL$ is Π_2^0 -conservative over RCA_0 . Therefore:

Thm [Friedman]. If $RCA_0 + WKL \vdash \forall x \exists y A_0(x, y)$ then there exists primitive recursive function f such that $PRA \vdash A_0(x, fx)$.

• Friedman's proof is ineffective!

On Friedman's result

- Harrington'77 proved (also non-constructively) Π_1^1 -conservation of WKL over RCA₀.
- First effective version of Friedman's result was given by Sieg'85 (based on cut-elimination).
- Extension of Friedman's result to the higher types was given by Kohlenbach'92 (based on functional interpretation).
- Avigad'96 formalized the forcing argument used in Harrington's proof obtaining an effective version of the Π_1^1 -conservation result (no function extraction procedure, though).

Basic Feasible Analysis I -

- Ferreira'94 defined a Basic Theory for Feasible Analysis BTFA
- The Π_2^0 -theorems of BTFA have polynomial-time computable realizers.

Thm [Ferreira]. If BTFA $\vdash \forall x \exists y A_0(x, y)$ then there exists a polynomial-time computable function f such that $\forall x A_0(x, fx)$ holds.

• Ferreira also showed non-constructively that BTFA and BTFA + WKL have the same Π_1^1 -theorems (and consequently Π_2^0 -theorems). Hence:

Thm [Ferreira]. If BTFA + WKL $\vdash \forall x \exists y A_0(x, y)$ then there exists a polynomial-time computable function f such that $\forall x A_0(x, fx)$ holds.

Basic Feasible Analysis II -

- A different basic theory for feasible analysis (based on the language of finite types) can be obtained by taking Cook and Urquhart's system CPV^ω extended with quantifier-free choice QF-AC.
- The resulting theory can be viewed as an extension of (a version of) BTFA to all finite types.

Thm. If $CPV^{\omega} + QF-AC \vdash \forall x \exists y A_0(x, y)$ then there exists effectively a polynomial-time computable function f such that $IPV^{\omega} \vdash \forall x A_0(x, fx)$.

Main result (to appear: LICS'03) -

Thm. If $\mathsf{CPV}^\omega + \mathsf{QF-AC} + \mathsf{WKL} \vdash \forall x \exists y A_0(x,y)$ then there exists *effectively* a polynomial-time computable function f such that $\forall x A_0(x,fx)$ holds.

• We can also allow "set parameters" in the theorem above, i.e.

Thm. If $\mathsf{CPV}^\omega + \mathsf{QF-AC} + \mathsf{WKL} \vdash \forall x \exists y A_0(x,y,\alpha)$ then there exists *effectively* a polynomial-time computable function *with* boolean oracle f such that $\forall x \forall \alpha : \{0,1\}^\omega A_0(x,fx\alpha,\alpha)$ holds.

• In order to illustrated the mathematical significance of the system $\mathsf{CPV}^\omega + \mathsf{QF-AC} + \mathsf{WKL}$ we have indicated how to formalize the proof of Heine/Borel covering lemma in it.

Sketch of the proof -

1. Cook and Urquhart showed that CPV^{ω} has a functional interpretation, via negative translation, in IPV^{ω} .

Thm [CU'93].
$$CPV^{\omega} \stackrel{N+f.i.}{\longrightarrow} IPV^{\omega}$$
.

2. We extend this interpretation to $CPV^{\omega} + QF-AC$.

Lem.
$$CPV^{\omega} + QF-AC \xrightarrow{N+f.i.} IPV^{\omega}$$
.

3. And, by adding a new form of binary bar recursion \mathcal{B} to IPV $^{\omega}$ we can even interpret WKL.

Thm.
$$CPV^{\omega} + QF-AC + WKL \xrightarrow{N+f.i.} IPV^{\omega} + \mathcal{B}.$$

4. Finally, we show that the functions of $IPV^{\omega} + \mathcal{B}$ are polynomial-time computable.

Thm.
$$[\mathsf{IPV}^{\omega} + \mathcal{B}]_1 \equiv \mathbf{P}$$
.

Binary Bar Recursion

$$A: \{0,1\}^{\omega} \to \mathbb{N}$$
 $w_n: \{0,1\}^*$ $\hat{w}_n := w_n * \lambda k.0$

• The binary bar recursion we use can be formulated in terms of the following unbounded search:

$$\mathcal{B}(A, (w_n)_{n \in \mathbb{N}}) := \min n \left(|w_n| \neq n \lor |A\hat{w}_n| \le |w_n| \right)$$

Why is this functional total?

Lem [KC'96]. For any closed term $\Psi : \mathbb{N} \to \{0,1\}^{\omega} \to \mathbb{N}$ of IPV $^{\omega}$, there exist constants c_1 and c_2 such that

$$\forall x : \mathbb{N} \forall \alpha : \{0,1\}^{\omega} (|\Psi x \alpha| \le |x|^{c_1} + c_2)$$

• **Lemma**. For any closed term $t[x, \alpha]$ in $IPV^{\omega} + \mathcal{B}$ there exists effectively a closed term $t'[x, \alpha]$ of IPV^{ω} such that t = t' for all input x and 0-1 functions α .

Related Work -

- Howard'81 used a different form of binary bar recursion to realize the functional interpretation of (the negative translation of) WKL.
- Howard's binary bar recursion, however, seems to be too strong for the feasible context, since it apparently involves an exponential search.
- Sieg's proof of WKL-elimination (based on cut elimination) was successfully adapted to the feasible setting by Kauffmann'00.
- Our approach directly extracts a polynomial-time computable realizer out of the WKL-proof, rather than eliminating it first.

Future Work -

- Investigate whether Kohlenbach's effective proofs of WKL elimination can be translated into the feasible setting, by making a careful treatment of bounded quantifiers.
- Find ineffective proofs of Π_2^0 -theorems which can be formalized in $\mathsf{CPV}^\omega + \mathsf{QF-AC} + \mathsf{WKL}$, and carry out the extraction of polynomial-time algorithms (cf. analysis of WKL-proofs e.g. in approximation theory).
- Compare the quality of the polynomial-time algorithms yielded via the approach based on cut elimination and our approach.