Polynomial-time programs from ineffective proofs in feasible analysis

Paulo Oliva

BRICS
University of Århus
Denmark

ASL Annual Meeting, Chicago, Jun 2003
1. Motivation
 • Ineffective principles in analysis (weak König’s Lemma)
 • Feasible analysis

2. The Main Result
 • Algorithm for extracting polynomial-time realizers from proofs (involving WKL) of Π^0_2-theorems in feasible analysis.

3. Sketch of the Proof

4. Related/Future Work
Ineffective principles

- By ineffective principles we mean, e.g.
 1. sequential Heine/Borel covering lemma for \([0, 1]\),
 2. Every continuous function \(f : [0, 1] \rightarrow \mathbb{R}\) attains its infimum and supremum,
 3. Every continuous function \(f : [0, 1] \rightarrow \mathbb{R}\) is uniformly continuous.

- Over a basic system of analysis (\(\text{RCA}_0\)) those principles are equivalent to

 \[\text{WKL} : \text{Every infinite binary tree has an infinite branch}\]

- This principle is normally called binary/weak König’s Lemma.

- \(\text{WKL}\) is ineffective in the sense that it only holds in models which contain non-recursive functions.
WKL in proofs of $\forall \exists$-theorems

- What if WKL is used in the proof of a theorem $\forall x \exists y A_0(x, y)$?
- In 76 Friedman (also Parsons, Mints, Takeuti) defined the subsystem of analysis RCA_0 and showed that RCA_0 is Π^0_2-conservative over PRA, i.e.

 Thm [Friedman]. If $\text{RCA}_0 \vdash \forall x \exists y A_0(x, y)$ then there exists a primitive recursive function f such that $\text{PRA} \vdash A_0(x, fx)$.

- Moreover, he showed that $\text{RCA}_0 + \text{WKL}$ is Π^0_2-conservative over RCA_0. Therefore:

 Thm [Friedman]. If $\text{RCA}_0 + \text{WKL} \vdash \forall x \exists y A_0(x, y)$ then there exists primitive recursive function f such that $\text{PRA} \vdash A_0(x, fx)$.

- Friedman’s proof is ineffective!
On Friedman’s result

- Harrington’77 proved (also non-constructively) \(\Pi^1_1 \)-conservation of WKL over RCA_0.
- First effective version of Friedman’s result was given by Sieg’85 (based on cut-elimination).
- Extension of Friedman’s result to the higher types was given by Kohlenbach’92 (based on functional interpretation).
- Avigad’96 formalized the forcing argument used in Harrington’s proof obtaining an effective version of the \(\Pi^1_1 \)-conservation result (no function extraction procedure, though).
Basic Feasible Analysis I

- Ferreira’94 defined a Basic Theory for Feasible Analysis BTFA
- The Π_2^0-theorems of BTFA have polynomial-time computable realizers.

Thm [Ferreira]. If $\text{BTFA} \vdash \forall x \exists y A_0(x, y)$ then there exists a polynomial-time computable function f such that $\forall x A_0(x, f(x))$ holds.

- Ferreira also showed non-constructively that BTFA and BTFA + WKL have the same Π_1^1-theorems (and consequently Π_2^0-theorems). Hence:

 Thm [Ferreira]. If $\text{BTFA} + \text{WKL} \vdash \forall x \exists y A_0(x, y)$ then there exists a polynomial-time computable function f such that $\forall x A_0(x, f(x))$ holds.
A different basic theory for feasible analysis (based on the language of finite types) can be obtained by taking Cook and Urquhart’s system CPV$^\omega$ extended with quantifier-free choice QF-AC.

The resulting theory can be viewed as an extension of (a version of) BTFA to all finite types.

Thm. If CPV$^\omega + \text{QF-AC} \vdash \forall x \exists y A_0(x, y)$ then there exists effectively a polynomial-time computable function f such that IPV$^\omega \vdash \forall x A_0(x, f(x))$.
Main result (to appear: LICS’03)

Thm. If $\text{CPV}^\omega + \text{QF-AC} + \text{WKL} \vdash \forall x \exists y A_0(x, y)$ then there exists \textit{effectively} a polynomial-time computable function f such that $\forall x A_0(x, fx)$ holds.

- We can also allow “set parameters” in the theorem above, i.e.

Thm. If $\text{CPV}^\omega + \text{QF-AC} + \text{WKL} \vdash \forall x \exists y A_0(x, y, \alpha)$ then there exists \textit{effectively} a polynomial-time computable function \textit{with boolean oracle} f such that $\forall x \forall \alpha : \{0, 1\}^\omega A_0(x, fx\alpha, \alpha)$ holds.

- In order to illustrated the mathematical significance of the system $\text{CPV}^\omega + \text{QF-AC} + \text{WKL}$ we have indicated how to formalize the proof of Heine/Borel covering lemma in it.
1. Cook and Urquhart showed that \(CPV^\omega \) has a functional interpretation, via negative translation, in \(IPV^\omega \).

Thm [CU’93]. \(CPV^\omega \overset{N+f.i.}{\rightarrow} IPV^\omega \).

2. We extend this interpretation to \(CPV^\omega + QF-AC \).

Lem. \(CPV^\omega + QF-AC \overset{N+f.i.}{\rightarrow} IPV^\omega \).

3. And, by adding a new form of binary bar recursion \(B \) to \(IPV^\omega \) we can even interpret \(WKL \).

Thm. \(CPV^\omega + QF-AC + WKL \overset{N+f.i.}{\rightarrow} IPV^\omega + B \).

4. Finally, we show that the functions of \(IPV^\omega + B \) are polynomial-time computable.

Thm. \([IPV^\omega + B]_1 \equiv P\).
Binary Bar Recursion

\[A : \{0, 1\}^\omega \to \mathbb{N} \quad w_n : \{0, 1\}^* \quad \hat{w}_n := w_n \cdot \lambda k.0 \]

- The binary bar recursion we use can be formulated in terms of the following unbounded search:

\[\mathcal{B}(A, (w_n)_{n \in \mathbb{N}}) := \min n \left(|w_n| \neq n \lor |A\hat{w}_n| \leq |w_n| \right) \]

- Why is this functional total?

Lem [KC’96]. For any closed term \(\Psi : \mathbb{N} \to \{0, 1\}^\omega \to \mathbb{N} \) of \(\text{IPV}^\omega \), there exist constants \(c_1 \) and \(c_2 \) such that

\[\forall x : \mathbb{N} \forall \alpha : \{0, 1\}^\omega (|\Psi x \alpha| \leq |x|^{c_1} + c_2) \]

- **Lemma.** For any closed term \(t[x, \alpha] \) in \(\text{IPV}^\omega + \mathcal{B} \) there exists effectively a closed term \(t'[x, \alpha] \) of \(\text{IPV}^\omega \) such that \(t = t' \) for all input \(x \) and 0-1 functions \(\alpha \).
• Howard’81 used a different form of binary bar recursion to realize the functional interpretation of (the negative translation of) WKL.

• Howard’s binary bar recursion, however, seems to be too strong for the feasible context, since it apparently involves an exponential search.

• Sieg’s proof of WKL-elimination (based on cut elimination) was successfully adapted to the feasible setting by Kauffmann’00.

• Our approach directly extracts a polynomial-time computable realizer out of the WKL-proof, rather than eliminating it first.
Future Work

• Investigate whether Kohlenbach’s effective proofs of \(\text{WKL} \) elimination can be translated into the feasible setting, by making a careful treatment of bounded quantifiers.

• Find ineffective proofs of \(\Pi^0_2 \)-theorems which can be formalized in \(\text{CPV}^\omega + \text{QF-AC} + \text{WKL} \), and carry out the extraction of polynomial-time algorithms (cf. analysis of \(\text{WKL} \)-proofs e.g. in approximation theory).

• Compare the quality of the polynomial-time algorithms yielded via the approach based on cut elimination and our approach.