Polynomial-time algorithms from ineffective proofs in feasible analysis

(To appear in LICS'03)

Paulo Oliva

■BRICS University of Århus Denmark

Edinburgh – March 2003

- The Plan -
- 1. Motivation
 - Feasible Analysis
 - Weak König's Lemma
- 2. The Main Result
 - Effective procedure for extracting polynomial-time realizers from proofs (involving Π_1^0 -WKL) of Π_2^0 -theorems in feasible analysis.
- 3. Sketch of the Proof
- 4. Howard's use of (a different form of) binary Bar Recursion
- 5. Future Work

Polynomial-time algorithms from ineffective proofs

- Proof Mining

 Given an arithmetical/analytical theory *T*, we are interested in theorems of the form:

Thm. If $\mathcal{T} \vdash \forall x \exists y A_0(x, y)$ then there exists *effectively* a function *f* in the complexity class **C** such that $\forall x A_0(x, fx)$ holds.

• An example:

Thm. If $PA^{\omega} \vdash \forall x \exists y A_0(x, y)$ then there exists *effectively* a primitive recursive function f (in the sense of Gödel's T) such that $HA^{\omega} \vdash \forall x A_0(x, fx)$.

- Basic Analysis I -

• In 76 Friedman defined the subsystem of analysis RCA₀ and showed that RCA₀ is Π_2^0 -conservative over PRA, i.e.

Thm [Friedman]. If $\mathsf{RCA}_0 \vdash \forall x \exists y A_0(x, y)$ then there exists a primitive recursive function *f* such that $\mathsf{PRA} \vdash A_0(x, fx)$.

• Moreover, he showed that $RCA_0 + WKL$ is Π_2^0 -conservative over RCA_0 . Therefore:

Thm [Friedman]. If $\mathsf{RCA}_0 + \mathsf{WKL} \vdash \forall x \exists y A_0(x, y)$ then there exists primitive recursive function *f* such that $\mathsf{PRA} \vdash A_0(x, fx)$.

• Friedman's proof is ineffective!

- Basic Analysis II -

- The first effective version of Friedman's result was given by Sieg using cut-elimination, Herbrand analysis and a simple form of Howard's majorizability for primitive recursive terms.
- Kohlenbach extended Friedman's result to (among others) the higher types systems E-PA^{\u03c6} + QF-AC^{1,0} and E-PRA^{\u03c6} + QF-AC^{1,0} by means of functional interpretation and majorizability for functionals in all finite types.
- Kohlenbach's result applies to a whole class of analytical principles of which WKL is just a special case.

≣BRIC

Basic Feasible Analysis I

- In 94 Ferreira developed a subsystem of analysis (BTFA Basic Theory for Feasible Analysis) whose provably recursive functionals are polynomial-time computable.
- BTFA contains Σ_1^b -IND, Δ_1^0 -CA and Σ_∞^b -BC.

Thm [Ferreira]. If BTFA $\vdash \forall x \exists y A_0(x, y)$ then there exists a polynomial-time computable function f such that $\forall x A_0(x, fx)$ holds.

• As done by Friedman to RCA_0 , Ferreira then showed that the Π_2^0 -theorems of BTFA + $\forall \Sigma_{\infty}^b$ -WKL are the same as those of BTFA. Therefore:

Thm [Ferreira]. If BTFA + $\forall \Sigma_{\infty}^{b}$ -WKL $\vdash \forall x \exists y A_{0}(x, y)$ then there exists primitive recursive function f such that $\forall x A_{0}(x, fx)$ holds.

• Ferreira's proof is also ineffective!

Basic Feasible Analysis II -

 One can also give a basic theory for feasible analysis based on functionals of higher-type by taking Cook and Urquhart's system CPV^{\u0354} extended with quantifier-free choice QF-AC.

Thm. If $CPV^{\omega} + QF-AC \vdash \forall x \exists y A_0(x, y)$ then there exists *effectively* a polynomial-time computable function *f* such that $IPV^{\omega} \vdash \forall x A_0(x, fx)$.

• The system $CPV^{\omega} + QF-AC$ contains Σ_1^b -IND and proves Δ_1^0 -CA. It does not seem to prove Σ_{∞}^b -BC though.

≣BRIC

Weak König's Lemma

- Weak König's Lemma states the existence of an infinite path in an infinite binary branching tree.
- The mathematical importance of WKL comes from the fact that it is equivalent (over RCA₀) to various analytical principles, e.g.
 - Heine/Borel covering lemma for [0, 1].
 - Every continuous function $f:[0,1] \rightarrow \mathbb{R}$ is uniformly continuous.
 - Every continuous function $f:[0,1] \rightarrow \mathbb{R}$ has an infimum and attains it.
- WKL is non-computational in the sense that there are recursive infinite binary trees which have only non-recursive infinite paths.

BRIC

Main result

Thm. If $CPV^{\omega} + QF-AC + \Pi_1^0$ -WKL $\vdash \forall x \exists y A_0(x, y)$ then there exists *effectively* a polynomial-time computable function *f* such that $\forall x A_0(x, fx)$ holds.

• We can also allow "set parameters" in the theorem above, i.e.

Thm. If $CPV^{\omega} + QF-AC + \Pi_1^0$ -WKL $\vdash \forall x \exists y A_0(x, y, \alpha)$ then there exists *effectively* a polynomial-time computable function *with boolean oracle* f such that $\forall x \forall \alpha : \{0, 1\}^{\omega} A_0(x, fx\alpha, \alpha)$ holds.

• In order to illustrated the mathematical significance of the system $CPV^{\omega} + QF-AC + \Pi_1^0$ -WKL we have indicated how to formalize the proof of Heine/Borel covering lemma in it.

Sketch of the proof –

1. Cook and Urquhart showed that CPV^{ω} has a functional interpretation, via negative translation, in IPV^{ω} .

Thm [CU'93]. $\mathsf{CPV}^{\omega} \xrightarrow{\mathsf{N+f.i.}} \mathsf{IPV}^{\omega}$.

2. We extend this interpretation to $CPV^{\omega} + QF-AC$.

Lem. $CPV^{\omega} + QF-AC \xrightarrow{N+f.i.} IPV^{\omega}$.

3. And, by adding binary bar recursion to IPV^{ω} we can even interpret Π_1^0 -WKL.

Thm. $\mathsf{CPV}^{\omega} + \mathsf{QF-AC} + \Pi_1^0 \text{-}\mathsf{WKL} \xrightarrow{\mathsf{N+f.i.}} \mathsf{IPV}^{\omega} + \mathcal{B}.$

4. Finally, we show that the functions of $IPV^{\omega} + B$ are polynomial-time computable.

Thm. $[IPV^{\omega} + B]_1 \equiv P$.

Polynomial-time algorithms from ineffective proofs

The Functional Interpretation of Π_1^0 -WKL

 Realizing the functional interpretation of (the negative translation of) weak König's lemma involves solving the following problem:

Given a tree *T*, a function $Y : \{0,1\}^{\omega} \to \mathbb{N}$ and a sequence of finite branches $(w_i)_{i \in \mathbb{N}}$, produce *n* and $f : \{0,1\}^{\omega}$ satisfying:

 $|w_n| = n \wedge T(w_n) \to T(\overline{f}(Yf)).$

• Two possible solutions...

Binary Bar Recursion

$$\mathcal{B}(Y, (w_i)_{i \in \mathbb{N}}, n) = \begin{cases} n & \text{if } |Y \hat{w}_n| \le |w_n| \\ & \text{or } |w_n| \ne n \\ & \mathcal{B}(Y, (w_i)_{i \in \mathbb{N}}, n+1) & \text{otherwise,} \end{cases}$$

where $Y : \{0,1\}^{\omega} \to \mathbb{N}$ and $w_i : \mathbb{N}$.

• It can be also formulated in the form of an unbounded search:

 $\min m \ge n \left(|Y\hat{w}_m| \le |w_m| \lor |w_m| \ne m \right)$

• How to justify such recursion?

Lem [KC'96]. For any closed term $t : \mathbb{N} \to \{0, 1\}^{\omega} \to \mathbb{N}$ of IPV^{ω}, there exists constants c_1 and c_2 such that

```
\forall x : \mathbb{N} \forall \alpha : \{0, 1\}^{\omega} (|\Psi x \alpha| \le |x|^{c_1} + c_2)
```

Polynomial-time algorithms from ineffective proofs

Eliminating the Bar Recursion I

- Suppose we have type one term t : N → N in the language of IPV^ω + B, we show how to replace B by limited recursion on notation.
- In fact, for the induction hypothesis we need a stronger condition:

Lem. For any term $t[x, \alpha] : \mathbb{N}$ of $\mathsf{IPV}^{\omega} + \mathcal{B}$, there exists a term $t'[x, \alpha] : \mathbb{N}$ of IPV^{ω} such that

$$\forall x : \mathbb{N} \forall \alpha : \{0, 1\}^{\omega} (t[x, \alpha] = t'[x, \alpha]).$$

Polynomial-time algorithms from ineffective proofs

■BRIC

Eliminating the Bar Recursion II

• Let $\Psi[x]$ and $(w_i)_{i \in \mathbb{N}}[x]$ be fixed terms of $\mathsf{IPV}^{\omega} + \mathcal{B}$. The main step is to show that $\mathcal{B}(\Psi[x], (w_i)_{i \in \mathbb{N}}[x], 0)$, i.e. (omitting [x])

 $\min n \left(|\Psi \hat{w}_n| \le |w_n| \lor |w_n| \ne n \right),$

can be replaced by limited recursion on notation.

- This can be done since $|\Psi x \alpha|$, and hence the search, is bounded by $|x|^{c_1} + c_2$.
- Therefore, given an arbitrary term t[x, α] in IPV^ω + B, we can successively normalize it and replace the innermost occurrence of B by limited recursion on notation.

≣BRIC

Howard's Binary Bar Recursion

 In 81 Howard used a different form of binary bar recursion to realize the functional interpretation of (the negative translation of) WKL.

$$\mathcal{B}^{H}(Y,z) = \begin{cases} 0 & \text{if } Y\hat{z} \le |z| \\ 1 + \max\{\mathcal{B}^{H}(z0), \mathcal{B}^{H}(z1)\} & \text{otherwise.} \end{cases}$$

- This, however, seems too strong for the feasible context, since it apparently involves an exponential search.
- When analyzing the functional interpretation of WKL, Howard does not consider the bounded quantifier ∃s in

 $\forall n \exists s (|s| = n \land T(s)) \to \exists \alpha \forall n T(\overline{\alpha}n).$

Polynomial-time algorithms from ineffective proofs

≣BRI

Thm [Friedman]. RCA₀ + WKL is Π_2^0 -conservative over PRA.

Thm [Kohlenbach'92]. E-PRA $^{\omega}$ + WKL is effectively Π_2^0 -conservative over PRA.

Thm [Ferreira'94]. BTFA + $\forall \Sigma_{\infty}^{b}$ -WKL is Π_{2}^{0} -conservative over Σ_{1}^{b} -NIA.

Thm. If $CPV^{\omega} + QF-AC + \Pi_1^0$ -WKL $\vdash \forall x \exists y A_0(x, y, \alpha)$ then there exists effectively a polynomial-time computable function *f* with boolean oracle such that $\forall x \forall \alpha : \{0, 1\}^{\omega} A_0(x, fx\alpha, \alpha)$ holds.

■BRIC

Future Work -

- Investigate whether effective proofs of WKL elimination for stronger systems (such as Sieg's and Kohlenbach's) can be translated into the feasible setting, by making a careful treatment of bounded quantifiers.
- Find ineffective proofs of Π_2^0 -theorems which can be formalized in CPV^{ω} + QF-AC + Π_1^0 -WKL, and carry out the extraction of polynomial-time algorithms.
- Find effective proofs of WKL elimination for the setting of feasible analysis, and compare the quality of the algorithms yielded via the two different procedures.

≣BRI