On modified bar recursion

Paulo Oliva

BACC, Lisbon, June 2002

The Plan -

1. Bar recursion:

- Spector's bar recursion, (SBR)
- Kohlenbach's bar recursion, (KBR)
- Modified bar recursion. (MBR)
- 2. Previous results concerning MBR
 - \mathcal{M} (majorizable functionals) satisfies MBR.
 - MBR is not S1-S9 computable in the total functionals.
 - MBR defines SBR.
- 3. New results:
 - The functional Γ (Gandy/Hyland)
 - A 'weak' form of modified bar recursion

Spector's bar recursion

Spector's extension of Gödel's T consists of adding new functional symbols SBR_{ρ,τ} to the language, and the axiom schema

$$\mathsf{SBR}_{\rho,\tau}(Y,G,H,s) \stackrel{\tau}{=} \begin{cases} G(s) & Y(s*\mathbf{0}) \stackrel{\mathbb{N}}{<} |s| \\ H(s,\lambda x^{\rho}.\mathsf{SBR}(s*x)) & \text{otherwise.} \end{cases}$$

Thm[Spector'62] From a proof

 $\mathbf{P}\mathbf{A}^{\omega} + \mathbf{A}\mathbf{C}_0 \vdash \forall x^{\sigma} \exists y^{\rho} \ A_{qf}(x, y),$

one can extract a closed term $t^{\sigma \rightarrow \rho}$ (of HA^{ω} + SBR) such that

 $\mathbf{HA}^{\omega} + \mathbf{SBR} \vdash A_{qf}(x, tx).$

• Bezem'86 showed that \mathcal{M} (the type structure of strongly majorizable functionals) is a model of SBR.

Kohlenbach's bar recursion

In Kohlenbach'90 the following bar recursive functional is defined:

$$\mathsf{KBR}_{\rho,\tau}(Y,G,H,s) \stackrel{\tau}{=} \begin{cases} G(s) & Y(s*\mathbf{0}) \stackrel{\mathbb{N}}{=} Y(s*\mathbf{1}) \\ H(s,\lambda x^{\rho}.\mathsf{KBR}(s*x)) & \text{otherwise.} \end{cases}$$

- KBR defines SBR primitive recursively.
- The functional KBR is not majorizable, i.e. \mathcal{M} is not a model of KBR. Hence, KBR is not primitive recursively definable in SBR.
- KBR is primitive recursively definable in SBR plus

 $\mu(Y, \alpha^{\mathbb{N}^{\omega}}, k) :\equiv \min n \ge k \ [Y(\overline{\alpha}n * \mathbf{0}) = Y(\overline{\alpha}n * \mathbf{1})].$

Modified bar recursion

The model of strongly majorizable functionals -

Thm[BO'02] \mathcal{M} is a model of modified bar recursion.

- We need two steps:
 - 1. There exists a functional

 $\Phi \in \mathcal{M}_{\rho^{\omega} \to \mathbb{N}} \times \mathcal{M}_{\rho^* \times (\rho \to \mathbb{N}) \to \rho^{\omega}} \times \mathcal{M}_{\rho^*} \to \mathcal{M}_{\mathbb{N}}$ satisfying the equation MBR.

2. There exists a functional Φ^* majorizing Φ , then $\Phi \in \mathcal{M}_{(\rho^{\omega} \to \mathbb{N}) \times (\rho^* \times (\rho \to \mathbb{N}) \to \rho^{\omega}) \times \rho^* \to \mathbb{N}}$

Fan functional

- A continuous functional Y : N^ω → N on the Cantor subspace ({0,1}^ω) is uniformly continuous.
- A fan functional Φ : ({0,1}^ω → ℕ) → ℕ on input
 Y : {0,1}^ω → ℕ should produce a point of uniform continuity n, i.e.

 $\forall \alpha, \beta \in \{0, 1\}^{\omega} \ (\overline{\alpha}n = \overline{\beta}n \to Y(\alpha) = Y(\beta))$

Thm[Tait] No fan functional is S1-S9 computable over C (the model of total continuous functionals).

[Berger] However, the minimal fan functional is S1-S9 computable over \hat{C} (the model of partial continuous functionals).

Defining the fan functional

• Using MBR one defines

$$\begin{split} \Phi(s,v) \stackrel{\mathbb{N}^{\omega}}{=} s @ [\text{if } Y(\Phi(s*0,v)) \neq v \text{ then } \Phi(s*0,v) \\ & \text{else } \Phi(s*1,v)] \end{split}$$

• Using KBR (and the functional $\Phi)$ one defines

 $\Psi_Y(s) = \begin{cases} 0 & \text{if } Y(\hat{s}) \stackrel{\mathbb{N}}{=} Y(\Phi(s, v)) \\ 1 + \max\{\Psi_Y(s * 0), \Psi_Y(s * 1)\} & \text{otherwise,} \end{cases}$

where $\hat{s} = s * \mathbf{0}$ and $v = Y(s * \mathbf{0})$.

- λY.Ψ_Y(⟨ ⟩) is a fan functional. Therefore, MBR is not S1-S9 computable in C.
- Moreover, since Spector's bar recursion is S1-S9 computable in C we can conclude:

Thm[BO'02] **SBR** does not define (primitive recursively) modified bar recursion.

Fan functional (cont.)

- FAN (the minimal fan functional) is primitive recursively definable in MBR + KBR.
- Note that:
 - FAN is not S1-S9 computable in C and it is not majorizable.
 - MBR is not S1-S9 computable in C but it is majorizable.
 - KBR is S1-S9 computable in C but it is not majorizable.

Lemma[BO'02] Modified bar recursion can also be used to define (primitive recursively) the following search functional

 $\tilde{\mu}(Y, \alpha^{\rho^{\omega}}, k) :\equiv \min n \ge k \ [Y(\overline{\alpha}n * \mathbf{0}) < n].$

Lemma[BO'02] SBR_{ρ ,N} is primitive recursively definable in $\tilde{\mu} + MBR_{\rho}$ (= MBR_{ρ})

Lemma[BO'02] SBR_{ho,τ} is primitive recursively definable in SBR_{ho',\mathbb{N}}, where if $\tau = \tau_1 \to \ldots \to \tau_n \to \mathbb{N}$ then $\rho' = \rho \times \tau_1 \times \ldots \times \tau_n$.

Thm[BO'02] SBR is primitive recursively definable in MBR.

Modified bar recursion

The functional Γ

- The functional Γ [Gandy/Hyland] is defined as follows $\Gamma(Y, s) \stackrel{\mathbb{N}}{=} Y(s * 0 * \lambda n^{\mathbb{N}} \cdot \Gamma(Y, s * (n + 1))).$
- The functional Γ has a recursive associate but is not S1-S9 computable in the model C of total continuous functionals (even in the fan functional).

Theorem. The functional Γ is primitive recursively equivalent to MBR₀.

Corollary. MBR₀ is not S1-S9 computable in the model C of total continuous functionals, not even in the fan functional.

Weak modified bar recursion

 As shown in [BO'02] only a weak form of modified bar recursion is necessary for realizing (the negative translation of) countable and dependent choice, namely

 $\mathsf{wMBR}(Y,H,s) \stackrel{\mathbb{N}}{=} Y(s * \lambda k. \underbrace{H(s, \lambda x^{\rho}.\mathsf{wMBR}(Y,H,s*x))}).$

Theorem. wMBR_{ρ} defines MBR_{ρ} primitive recursively for $\rho > 0$.

 It is still open whether wMBR₀ also defines MBR₀ primitive recursively.

Modified bar recursion