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Abstract 
 
Probabilistic fallacies, such as the prosecutor fallacy, have been widely documented. 
Yet these fallacies continue to occur in legal practice. This paper considers how best 
to avoid them, drawing on our experience as expert witnesses/advisors in recent trials. 
Although most fallacies are easily avoided by applying Bayes' Theorem, attempts to 
explain this with lawyers using the normal mathematical approach seem doomed to 
failure. In our experience, for simple arguments it is possible to explain common 
fallacies using purely visual presentation alternatives to the formulaic version of 
Bayes in ways that are fully understandable to lay people. However, as the evidence 
(and dependence between different evidence) becomes more complex, these visual 
approaches become infeasible. We show how Bayesian networks can be used to 
address the more complex arguments in such a way that it is not necessary to expose 
the underlying complex Bayesian computations. We demonstrate this new approach 
in explaining well known fallacies and a new fallacy that arose in a recent major 
murder trial.  
Keywords: legal fallacies, probability, Bayes 
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1 Introduction 
 
The issue of probabilistic reasoning fallacies in legal practice (hereafter referred to 
simply as probabilistic fallacies) is one that has been well documented, being dealt 
with even in populist books such as [44][50] An excellent overview of the most 
common fallacies and some of the more famous (primarily UK-based) cases in which 
they have occurred can be found in [8], with further explanatory material in [33]. 
Other works that deal in general terms with one or more fallacy include 
[17][18][31][32][36][43][56][61][64][71][77][78][83][85][94], while discussions of 
fallacies in the context of reasoning about evidence can be found in 
[6][7][15][32][42][59][70][73]. An extensive account of fallacies affecting dozens of 
US cases is provided in [65] while [39] describes four further relevant US cases. More 
detailed analyses of important individual cases include those of: Sally Clark (covered 
in [41][52][58][75]); O.J Simpson (covered in [46], [95]); Denis John Adams 
(covered in [27] [25]); and Doheny and Adams (covered in [2] [80]). While these 
particular cases have occurred within the last 20 years, the phenomenon is by no 
means new. The Collins case [1], which is the subject of many of the above cited 
studies, took place in 1968 and some well-documented cases date back to the 19th 
century; these include the 1875 Belhaven and Stenton Peerage case (described in 
detail in [23]) and the 1894 Dreyfus case (described in detail in [62]).   
 
For the purposes of this paper an argument refers to any reasoned discussion 
presented as part of, or as commentary about, a legal case. Hence, we are talking 
about probabilistic fallacies occurring in arguments. There are other classes of 
fallacies that have occurred frequently in arguments, such as cognitive fallacies 
(including most notably confirmation bias [13][28][43]), but these are outside the 
scope of this paper. 
 
There is almost unanimity among the authors of the works cited in the first paragraph 
that a basic understanding of Bayesian probability is the key to avoiding probabilistic 
fallacies. Indeed, Bayesian reasoning is explicitly recommended in works such as [12] 
[33] [40] [42] [32] [47] [55][78] [81][82] [86] [99], although there is less of a 
consensus on whether or not experts are needed in court to present the results of all 
but the most basic Bayesian arguments [81][82].  
 
Yet, despite the many publications and other publicity surrounding them, and despite 
the consensus (within the probability and statistics community) on the means of 
understanding and avoiding them, probabilistic fallacies continue to proliferate legal 
arguments. Part of the problem can be attributed to a persistent attitude among some 
members of the legal profession that probability theory has no role to play at all in the 
courtroom; supporters of this viewpoint often point to a highly influential paper by 
Tribe in 1971 [98]. However, Tribe’s arguments have long been systematically 
demolished by the likes of Koehler [63] and Edwards [31], and more recently by 
Tillers and Gottfried [96]; in any case, Tribe’s arguments in no way explain or justify 
the errors that have been made. Informed by our experience as expert witnesses on a 
number of recent high-profile trials (both criminal and civil) we seek to address this 
problem by proposing a different approach to the way fallacies are explained and 
hence avoided. Our approach, which can actually be applied to all types of reasoning 
about evidence, exploits the best aspects of Bayesian methods while avoiding the 
need for non-mathematicians to understand maths formulas.  
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Central to our approach is a recognition that members of the legal profession cannot 
be expected to follow even the simplest instance of Bayes Theorem in its formulaic 
representation. This explains why, even though many lawyers are aware of the 
fallacies, they struggle to understand and avoid them. Instead of continuing the 
struggle to get non-mathematicians to understand mathematics we propose an 
alternative approach and demonstrate how it has already been applied with some 
effect on real cases.  
 
The paper is structured as follows.  
 

• In Section 2 we provide an overview of the most common fallacies within a 
new classification framework that is conceptually simpler than previous 
approaches. We also compare the formulaic and visual versions of Bayes 
theorem in explaining key fallacies like the prosecution fallacy. 

 
• Section 3 identifies why Bayes theorem is not just the means of avoiding 

fallacies but also, paradoxically, the reason for their continued proliferation. 
Specifically, this is where we explain the limitations of using purely formulaic 
explanations. We explain how, in simple cases, alternative visual explanations 
such as event trees enable lay people to fully understand the result of a 
Bayesian calculation without any of the maths or fomulas. In order to extend 
this method to accommodate more complex Bayesian calculations we 
integrate the event tree approach with Bayesian networks, explaining how the 
latter can be used in a way that is totally analogous to using an electronic 
calculator for long division.    

 
• Section 4 brings the various threads of the paper together by showing how our 

proposed approach has been used in practice.  
 
Although the paper addresses the issue of what we might reasonably expect of experts 
and juries in the context of probabilistic reasoning, it does not address this issue in 
any general way (a relevant comprehensive account of this can be found in [11]). 
 
The paper provides a number of original contributions: a classification of fallacies that 
is conceptually simpler than previous approaches; a new fallacy; and most 
importantly a new approach/method of fully exploiting Bayes in legal reasoning. The 
proposal to use Bayesian networks for legal reasoning and evidence evaluation is by 
no means new (see, for example, [10][31][92]), but what is new is our approach to the 
way this kind of reasoning is presented.  
 
 
2 Some probabilistic fallacies  
 
 
2.1 From hypothesis to evidence and back: the transposed conditional  
 
Probabilistic reasoning of legal evidence often boils down to the simple causal 
scenario shown in Figure 1: we start with some hypothesis H (such as the defendant 
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was or was not present at the scene of the crime) and observe some evidence E (such 
as blood type at the scene of the crime does or does not match the defendant’s).  
 

H 
(hypothesis)

E
(evidence)

 
Figure 1 Causal view of evidence 

 
 
The probability of E given H, written P(E|H), is called the conditional probability. 
Knowing this conditional probability enables us to revise our belief about the 
probability of H if we observe E.   
 
Many of the most common fallacies of reasoning arise from a basic misunderstanding 
of conditional probability. An especially common example is to confuse: 
 

the probability of a piece of evidence (E) given a  hypothesis (H) 
with  

the probability of a hypothesis (H) given the evidence (E).  
 
In other words P(E|H) is confused with P(H|E). This is often referred to as the fallacy 
of the transposed conditional [32]. As a classic example, suppose that blood type 
matching the defendant’s is found at the scene of the crime (this is E) and that this 
blood type is found in approximately one in every thousand people.  Then the 
statement: 
 

the probability of this evidence given the defendant is not the source is 1 in 
1000 (i.e.  P(E|H)=1/1000 where we are assuming H is  the statement 
‘defendant is not the source’) 

 
is reasonable.  
 
However, it is a fallacy to conclude that: 
 

the probability the defendant is not the source given this evidence is 1 in 1000  
(i.e. P(H|E)=1/1000) 

 
In this context, the transposed conditional fallacy is sometimes also called the 
prosecutor’s fallacy, because the claim generally exaggerates the prosecutor’s case; it 
suggests that there is an equally small probability that the defendant is not the source 
as there is the probability of observing the match in a random person. 
 
A definitive explanation of the fallacy is provided by Bayes Theorem. However, 
before presenting the Bayes formulation, it is instructive (and important for what 
follows) to consider first an alternative very simple and informal visual explanation. 
 
First suppose (Figure 2) that, in the absence of any other evidence, there are 10,000 
people who could potentially have been the source of the blood (indeed, it is 
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important to note that the failure to take account of the size of the potential source 
population is an instance of another fallacy, called the base-rate fallacy [60]). 
 
Imagine 10,000
people who could 
potentially have
committed the
crime

One of whom
is the actual 
source

But about 10 
out of the other 9,999
people
have the matching
blood type

Actual source

Not source but 
matching type

Non matching 
person

 
Figure 2 The potential source population 
Of course only one is the actual source. But, because of the 1 in 1000 blood match 
probability, about 10 out of the other 9,999 people have the matching blood type.  
 
This means there is a probability of 10/11 (i.e. about 91% chance) that a person with 
the matching blood type is not the source. In other words P(H|E) is 0.91 (very 
likely) and not 1 in a thousand (highly unlikely) as claimed by the prosecution. 
 
In contrast to the above visual explanation of the fallacy, the calculations can be done 
formally with Bayes theorem, which provides a simple formula for updating our prior 
belief about H in the light of observing E. In other words Bayes calculates P(H|E) in 
terms of P(E|H). Specifically:   
 

( | ) ( ) ( | ) ( )( | )
( ) ( | ) ( ) ( | ) ( )

P E H P H P E H P HP H E
P E E H P H E notH P notH

= =
+

 

 
So, using the same assumptions as above with 10,000 potential suspects and no other 
evidence, the prior P(H) is equal to 9,999/10,000. We know that P(E|H)=1/1000. For 
the denominator of the equation we also need to know P(E|not H) and P(not H). Let 
us assume that if the defendant is the source then the blood will certainly match so 
P(E|not H)=1. Also, since P(H)=9,999/10,000 it follows that P(not H)= 1/10,000.  
Substituting these values into Bayes Theorem yields 
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1 9,999
9,9991000 10,000( | ) 0.911 9,999 1 10,9991*

1000 10,000 10,000

P H E
⋅

= = ≈
⋅ +

 

 
While mathematicians and statisticians inevitably prefer the conciseness of the 
formulaic approach it turns out that most lay people simply fail to understand or even 
believe the result when presented in this way. We shall return to this crucial issue in 
Section 3. 
 
2.2 Many fallacies, but a unifying framework 
 
The previous particular example of a transposed conditional fallacy is just one of a 
class of such fallacies that have been observed in arguments. In the context of DNA 
evidence Koehler [65] defined a range of such fallacies by considering the following 
chain of reasoning: 
 
Match report  True Match Source Perpetrator 
 
The direction of reasoning here is not causal (as in Figure 1) but deductive. 
Specifically, a reported match is suggestive of a true match, which in turn is 
suggestive that the defendant is the source. This in turn is suggestive that the 
defendant is the actual perpetrator (i.e. is guilty of the crime).  Of course, it is 
erroneous to consider any parts of this chain of deductions as following automatically. 
Errors in the DNA typing process can result in a reported match where there is no true 
match. A true match can be coincidental if more than one member of the population 
shares the DNA features recorded in the sample; and finally even if the defendant was 
the source he/she may not be the perpetrator since there may be an innocent reason for 
their presence at the crime scene. 
 
Koehler’s analysis and classification of fallacies can be generalised to apply to most 
types of evidence by considering the causal chain of evidence introduced in Figure 3. 
 

A:
Defendant
committed

the 
crime

B:
Evidence from
crime directly

links to 
defendant

C:
Evidence

from defendant
matches evidence

from crime

D:
Test determines

evidence
from defendant

matches evidence
from crime 

 
Figure 3 Causal chain of evidence 

 
We will show that this schema allows us to classify fallacies of reasoning that go 
beyond Koehler’s set. 
  
In this schema we assume that evidence could include such diverse notions as: 
 

• anything revealing a DNA trace (such as semen, saliva, or hair) 
• a footprint 
• a photographic image from the crime scene 



8 

• an eye witness statement (including even a statement from the defendant). 
 
For example, if the defendant committed the crime (A) then the evidence may be a 
CCTV image showing the defendant’s car at the scene (B). The image may be 
sufficient to determine that the defendant’s car is a match for the one in the CCTV 
image (C). Finally, experts may determine from their analyses of the CCTV image 
that it matches the defendant’s car (D).    
 
Koehler’s approach is heavily dependent on the notion ‘frequency of the matching 
traits’, denoted F(traits). This is sometimes also referred to as the ‘random match 
probability’. In our causal framework F(traits) is equivalent to the more formally 
defined  

 
P(C | not B) 

 
i.e  the probability that a person NOT involved in the crime, coincidentally provides 
evidence that matches. 

 
Example: if the CCTV image of the car at the scene of the crime is 
sufficiently clear to reveal the type of the car and 3 of the 7 digits on the 
number plate, then P(C | not B) will be determined by the number of vehicles 
of the same type whose number plates match in those 3 digits. 

 
With this causal framework, we can characterise a range of different common 
fallacies resulting from a misunderstanding of conditional probability, thus extending 
the work of Koehler (using Koehler’s terminology wherever possible). Full details are 
provided in Appendix 1, but the following are especially important examples: 
 

1. ‘Source probability error’: This is where we equate P(C | not B) with P(not B | 
C).  Many authors (see, for example [17][72][83][85]) refer to this particular 
error as the prosecutor fallacy.  

 
2. ‘Ultimate issue error’ This is where we equate P(C | not B) with P(not A | C). 

This too has been referred to as the Prosecutor fallacy [94]: it goes beyond the 
source probability error because it can be thought of as compounding that 
error with the additional incorrect assumption that P(A) is equal to P(B). 

 
3. P(Another Match) Error: This is the fallacy of equating the value P(C | not B) 

with the probability (let us call it q) that at least one innocent member of the 
population has matching evidence. The effect of this fallacy is usually to 
grossly exaggerate the value of the evidence C. For example, Koehler [65] 
cites the case in which DNA evidence was such that P(C | not B) = 
1/705,000,000, but where the expert concluded that the probability that 
another person (other than the defendant) having the matching DNA feature 
must also be equal to 1/705,000,000. In fact, even if the ‘rest of the 
population’ was restricted to, say, 1,000,000, the probability of at least one of 
these people having the matching features is equal to: 

 
1 – (1 – 1/705,000,000)1,000,000  
 

and this number is approximately 1 in 714, not 1 in 705,000,000 as claimed. 
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Where the evidence B is DNA evidence, the match probability P(C | not B) can be 
very low (millions or even billions to one), which means that the impact of this class 
of fallacies can be massive since the implication is that this very low match 
probability is equivalent to the probability of innocence.  
 

 
2.3 Avoiding fallacies using the likelihood ratio (advantages and 
disadvantages) 
 

What is common across all of the fallacies described above and in Appendix 1 is that 
ultimately the true utility of a piece of evidence is presented in a misleading way – the 
utility of the evidence is either exaggerated (such as in the prosecutor fallacy) or 
underestimated (such as in the defendant fallacy). Yet there is a simple probabilistic 
measure of the utility of evidence, called the likelihood ratio.  For any piece of 
evidence E, the likelihood ratio of E is the probability of seeing that evidence if the 
defendant is guilty divided by the probability of seeing that evidence if the defendant 
is not guilty. It follows directly from Bayes Theorem that if the likelihood ratio is 
bigger than 1 then the evidence increases the probability of guilt (with higher values 
leading to higher probability of guilt) while if it is less than 1 it decreases the 
probability of guilt (and the closer it gets to zero the lower the probability of guilt). 
An equivalent form of Bayes Theorem (called the ‘odds’ version of Bayes) tells us 
that the posterior odds of guilt are the prior odds times the likelihood ratio. If the 
likelihood ratio is equal to or close to 1 then E offers no real value at all since it 
neither increases nor decreases the probability of guilt.  

Evett and others have argued [32] that many of the fallacies are easily avoided by 
focusing on the likelihood ratio. Indeed, Evett’s crucial expert testimony in the appeal 
case of R v Barry George [5] (previously convicted of the murder of the TV presenter 
Gill Dando) focused on the fact that the forensic gunpowder evidence that had led to 
the original conviction actually had a likelihood ratio of about 1. This is because both 
P(E | Guilty) and P(E | not Guilty) were approximately equal to 0.01. Yet only P(E | 
not Guilty) had been presented at the original trial (a report of this can be found in 
[9]). 

Another advantage of using the likelihood ratio is that it removes one of the most 
commonly cited objections to Bayes Theorem, namely the obligation to consider a 
prior probability for a hypothesis like ‘guilty’ (i..e. we do not need to consider the 
prior for nodes like A or B in Figure 3). For example, in the prosecutor fallacy 
example above, we know that the probability of seeing that evidence if the defendant 
is not guilty is 1/1000 and the probability of seeing that evidence if the defendant is 
guilty is 1; this means the likelihood ratio is 1000 and hence, irrespective of the ‘prior 
odds’, the odds of guilt have increased by a factor of 1000 as a result of observing this 
evidence. Hence, the use of the likelihood ratio goes a long way toward allaying the 
natural concerns of lawyers who might otherwise instinctively reject a Bayesian 
argument on the grounds that it is intolerable to assume prior probabilities of guilt or 
innocence.  

While we strongly support the use of the likelihood ratio as a means of both avoiding 
fallacies and measuring the utility of evidence, in our experience lawyers and lay 
people often have similar problems understanding the likelihood ratio as they do 
understanding the formulaic presentation of Bayes. As we shall see in the next 
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section, this problem becomes acute in the case of more complex arguments. Also, it 
is important to note that there are situations (such as when important information 
about the underlying population is known) when we genuinely need to incorporate the 
priors.  

 
 

3 The fallacies in practice: why Bayes hinders as much as 
helps 

 

3.1 The fallacies keep happening 
 

The specific rulings on the prosecutor fallacy in the case of R v Deen (see [15]) and R 
v Doheny/Adams (see [3]) should have eliminated its occurrence from the courtroom. 
The same is true of the rulings in relation to the dependent evidence fallacy in the case 
of People vs Collins and Sally Clark. Indeed the Sally Clark case prompted the 
President of the Royal Statistical Society to publish an open letter to the Lord 
Chancellor regarding the use of statistical evidence in court cases [49] (we shall return 
to this letter in Section 3.2). 

Unfortunately these, and the other fallacies described in Appendix 1, continue to 
occur frequently. This is clear from the extensive number of cases cited in the 
references in both Section 1 and Appendix 1. Moroever, it is also important to note 
that one does not need an explicit statement of probability to fall foul of many of the 
fallacies. For example, a statement like: 

 

“the chances of finding this evidence in an innocent man are so small that you 
can safely disregard the possibility that this man is innocent” 

 

is a classic instance of the prosecution fallacy (see [33]). Indeed, based on examples 
such as these and our own experiences as expert witnesses, we believe the reported 
instances are merely the tip of the iceberg.  
For example, although this case has not yet been reported in the literature as such, in 
R v Bellfield 2007 the prosecution opening contained instances of many of the 
fallacies described in Section 2, plus a number of new fallacies (one of which is 
described in Section 4 below). When our report was presented by the defence to the 
prosecutor and judge, it was agreed that none of these fallacies could be repeated in 
the summing-up. Nethertheless, just days later in another murder case (R vs Mark 
Dixie, accused of murdering Sally-Anne Bowman) involving the same prosecuting 
QC a forensic scientist for the prosecution committed a blatant instance of the 
prosecutor fallacy, as reported by several newspapers on 12 Feb 2008: 

"Forensic scientist Julie-Ann Cornelius told the court the chances of DNA 
found on Sally Anne’s body not being from Dixie were a billion to one." 

 

3.2 The problem with Bayesian explanations 
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What makes the persistence of these fallacies perplexing to many statisticians and 
mathematicians is that all of them can be easily exposed using simple applications of 
Bayes Theorem and basic probability theory as shown in Section 2.   
Unfortunately, while simple examples of Bayes Theorem are easy for statisticians and 
for mathematically literate people to understand, the same is not true of the general 
public. Indeed, we believe that for most people – and this includes from our own 
experience highly intelligent barristers, judges and surgeons, any attempt to use 
Bayes theorem to explain a fallacy is completely hopeless. They simply switch-off at 
the sight of a formula and fail to follow the argument.   
 
Moreover, the situation is even more devastating when there are multiple pieces of 
possibly contradictory evidence and interdependencies between them. For example, 
there is a highly acclaimed half-page article by Good [47] that uses Bayes theorem 
with 3 pieces of related evidence to expose a fallacy in the OJ Simpson trial. Yet, 
because of its reliance on the formulaic presentation, this explanation was well 
beyond the understanding of our legal colleagues. Even more significant from a legal 
perspective was the landmark case of R vs Adams (discussed in [25] and [27]). 
Although Donelly [27] highlights the issue of the prosecutor fallacy, this fallacy was 
not an issue in court. The issue of interest in court was the use of Bayesian reasoning 
to combine the different conflicting pieces of evidence shown in Figure 4 (to put this 
in the context of Figure 3 the node “Adams Guilty” corresponds to node A while each 
of the other nodes corresponds to instances of node B). 
 

 
Figure 4 Hypothesis and evidence in the case of R v Adams 
 
An example of part of the Bayesian calculations (using the likelihood ratio) required 
to perform this analysis are shown in Figure 5). While, again, this is simple for 
statisticians familiar with Bayes, arguments like this are well beyond the 
comprehensibility of most judges and barristers, let alone juries. 
 
 



12 

 
Figure 5 Likelihood ratio calculation for Adams case taken from [7]. 

 
Yet, in court, the defence expert (Donelly) presented exactly such calculations, 
assuming a range of different scenarios, from first principles (although Donelly states 
in [27] that this was at the insistence of the defence QC and was not his own choice). 
The exercise was, not surprisingly, less than successful and the appeal judge ruled 
 

“The introduction of Bayes' theorem into a criminal trial plunges the jury 
into inappropriate and unnecessary realms of theory and complexity 
deflecting them from their proper task” 

 
While this statement is something that we are generally sympathetic to, his 
subsequent statement is much more troubling: 
 

“The task of the jury is … to evaluate evidence and reach a conclusion not 
by means of a formula, mathematical or otherwise, but by the joint 
application of their individual common sense and knowledge of the world 
to the evidence before them” 

 
This statement characterises the major challenge we face. At an empirical level, the 
statement is deeply concerning because the extensive literature on fallacies discussed 
in Section 2 and in the Nobel prize-winning work of Kahneman and Tversky [60] 
confirms that lay people cannot be trusted to reach the proper conclusion when there 
is probabilistic evidence. Indeed, experts such as forensic scientists and lawyers, and 
even professional statisticians, cannot be trusted to reach the correct conclusions.  
 
Where we differ from some of the orthodoxy of the statistical community is that we 
believe there should never be any need for statisticians or anybody else to attempt to 
provide complex Bayesian arguments from first principles in court. In some respects 
this puts us at odds with the President of the Royal Statistical Society whose letter 
[49] (the background to which was described above) concluded: 
 

The Society urges you to take steps to ensure that statistical evidence is 
presented only by appropriately qualified statistical experts, as would be the 
case for any other form of expert evidence. 

The problem with such a recommendation is that it fails to address the real concerns 
that resulted from the Adams case, namely that statistical experts are not actually 
qualified to present their results to lawyers or juries in a way that is easily 
understandable. Moreover, although our view is consistent with that of Robertson 
and Vignaux [81][82] in that we agree that Bayesians should not be presenting their 
arguments in court, we do not agree that their solution (to train lawyers and juries to 
do the calculations themselves) is reasonable. Our approach, rather, draws on the 
analogy of the electronic calculator for long division. 
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3.3 Bayes and the long division (calculator) analogy 
 
Consider the following imaginary dialogue in court for a case to determine whether a 
lottery prize company had awarded the correct payout to its winners. The assumption 
is that the total prize money available is the total raised in ticket sales minus 
administrative costs. 
 

Lawyer: How is the prize money for each winning ticket determined? 
Defendant: We divide up the total prize money available equally between 

each winning ticket. 
Lawyer: On the week in question what was the total prize money available? 
Defendant: £5,958, 347.10 
Lawyer: And how many winning tickets were there? 
Defendant: 279, 373 
Lawyer: So how much should have been awarded for each winning ticket? 
Defendant: £21.33 
Lawyer: And how can you justify this figure? 
Defendant: I divided the first figure by the second using an electronic 

calculator and rounded it to the nearest pence.  
 
Imagine if, at this point, instead of simply getting somebody to check the result by 
running the calculation in another calculator, the defendant is asked to provide a first 
principles explanation of all the thousands of circuit level calculations that take place 
in his particular calculator in order to justify the result that was presented. Imagine 
also if the first principles explanation had to take account of the fact that, because the 
result in this case is a recurring decimal, no calculator can give a completely accurate 
result. Not only does that sound unreasonable, but the jury would also surely fail to 
understand such an explanation. This might lead the judge to conclude (perfectly 
reasonably) that  
 

“The introduction of long division into a criminal trial plunges the jury 
into inappropriate and unnecessary realms of theory and complexity 
deflecting them from their proper task”.  

 
 
If, additionally, the judge were to conclude (as in the Adams case) that  
 

The task of the jury is “to evaluate evidence and reach a conclusion not 
by means of a formula, mathematical or otherwise, but by the joint 
application of their individual common sense and knowledge of the world 
to the evidence before them” 

 
then the result presented by the defendant should be disregarded and members of the 
jury should be allowed to use common sense to come up with their own figure for a 
winning ticket. Common sense would inevitably lead jury members to deduce 
different values for the prizes and, based on the known difficulty of performing such 
calculations purely intuitively, these may be very far apart.  
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While the above scenario seems ludicrous we claim it is precisely analogous of the 
expectations when Bayes theorem (rather than long division) has to be used. Our 
proposal is that there should be no more need to present Bayesian arguments from 
first principles than there should be a need to explain the underlying circuit 
calculations that take place in a calculator for the division function.  
 
To justify that the analogy is both meaningful and achievable, consider first what 
characterises the division problem: 
 

1. We can understand and do it from scratch in very simple cases: Although we 
are unable to calculate particular examples of division in our heads or even on 
paper when the numbers are large, most of us can do division when the 
numbers are small 

 
2. Scientists have developed algorithms for doing it in the general case: The 

algorithms for calculating divison in the general case have been tested and 
validated within the community and are described in sufficient detail for them 
to be implemented in a machine.  

 
3. The algorithms don’t need to be understood by lay people: Sufficient experts 

have tested and validated them.   
 

4. There are machines that implement the algorithms to acceptable degrees of 
accuracy. Note that no calculator is perfect. The example of the irrational 
number in the example above confirms that there will always be some long 
division problems that are beyond its capability, and for which we have to 
accept less than perfect accuracy. 

 
5. There are different machines implementing similar algorithms and they all 

give approximately the same result. This means that, over time people have 
come to accept the results without question. 

 
6. Most people are able to enter the basic ‘assumptions’ into the machine and 

press the relevant button to get a ‘correct’ result.  
 
 
If each of these characteristics (of division) can be shown to be satisfied in the case of 
Bayes then in principle we will have the basis for a method of presenting the results of  
Bayesian calculation in court that is analogous to how the results of a long division 
would be presented. 
 
3.4 Does Bayes satisfy the six characteristics of the calculator division 
problem? 
 
We consider each in turn (the most critical and problematic characteristics are the first 
and last): 
 

1. We can understand and do it from scratch in very simple cases. Although we 
are committed Bayesians, we accept (as demonstrated empirically in [19]) that 
most lay people are unable to understand and compute a simple Bayesian 
calculation, such as the one in Section 2. However, as demonstrated by the 
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likes of [20][44], it is the use of abstract probabilities and formulas, rather than 
the underlying concept, that acts as a barrier to understanding. When the 
Bayesian argument is presented visually using concrete frequencies people not 
only generally understand it well [13], but they can construct their own correct 
simple calculations.  

 
To emphasize this point, we have used both the formulaic and visual 
explanations presented in Section 2 to numerous lay people, including lawyers 
and barristers. Whereas they find it hard both to ‘believe’ and reconstruct the 
formulaic explanation, they inevitably understand the visual explanation.  
 
The particular visual explanation presented can actually be regarded as simply 
an animated version of an event tree (also called decision tree or frequency 
tree) [87]. The equivalent event tree is shown in Figure 6. 
 

Possible suspects
10,000

So about 11 
have a positive 
match. 
But only 1 is
the actual 
source. 

Positive Match
1

Test negative
0

Positive Match
∼ 10

Test negative
∼ 9,989

100%

0%

1/1000

999/1000

1/10,000

9,999/10,000 Not the source
9,999

Actual source
1

1/10,000

9,999/10,000 Not the source
9,999

Actual source
1

 
Figure 6 Event/decision tree representationof Bayesian argument 

 
To emphasize the impact of such alternative presentations of Bayes, we were 
recently involved in a medical negligence case where it was necessary to 
quantify the risks of two alternative test pathways. Despite the statistical data 
available, neither side could provide a coherent argument for directly 
comparing the risks of the alternative pathways, until a surgeon (who was 
acting as an expert witness) claimed that Bayes Theorem provided the answer. 
The surgeon’s calculations were presented formulaically but neither the 
lawyers nor the other doctors involved could follow the argument. We were 
called in to check the surgeon’s Bayesian argument and to provide a user-
friendly explanation that could be easily understood by lawyers and doctors 
sufficiently well for them to argue it in court themselves. It was only when we 
presented the argument as a decision tree that everything became clear. Once 
it ‘clicked’ the QC and doctors felt sufficiently comfortable with it to present 
it themselves in court. In this case, our intervention made the difference 
between the statistical evidence on risk being used and not being used. A full 
account of this can be found in [38]. 
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The important point about the visual explanations is not just that they enable 
lay people to do the simple Bayes calculations themselves, but they also 
provide confidence that the underlying Bayesian approach to conditional 
probability and evidence revision makes sense.  
 
Ideally, it would be nice if these easy-to-understand visual versions of 
Bayesian arguments were available in the case of multiple evidence with 
interdependencies. Unfortunately, in such cases these visual methods do not 
scale-up well. But that is even more true of the formulaic approach, as was 
clear from the Adams case above. And it is just as true for the division analogy 
that we have promoted.  
 

2.  Scientists have developed algorithms for doing it in the general case: Think 
of the ‘general’ case as a causal network of related uncertain variables. In the 
simple case there are just two variables in the network as shown in Figure 1. 
But in the general case there may be many such variables as in Figure 4. Such 
networks are called Bayesian networks (BNs) and the general challenge is to 
compute the necessary Bayesian calculations to update probabilities when 
evidence is observed. In fact, no computationally efficient solution for BN 
calculation is known that will work in all cases. However, a dramatic 
breakthrough in the late 1980s changed things. Researchers such as Lauritzen 
and Spiegelhalter [67] and Pearl [76] published algorithms that provided 
efficient calculation for a large class of BN models. The algorithms have 
indeed been tested and validated within the community and are described in 
sufficient detail for them to be implemented in software.  

 
3. The algorithms don’t need to be understood by lay people: The consensus 

among experts is that they have been tested and validated.   
 

4. There are machines that implement the algorithms to acceptable degrees of 
accuracy. In fact there are many commercial and free software tools that 
implement the calculation algorithms and provide visual editors for building 
BNs. See [37] for an extensive review. 

 
5. There are different machines implementing similar algorithms and they all 

give approximately the same result. The algorithms and tools are now 
sufficiently mature that (with certain reasonable assumptions about what is 
allowed in the models) the same model running in a different tool will provide 
the same result. 

 
6. Most people are able to enter the basic ‘assumptions’ into the machine and 

press the relevant button to get a ‘correct’ result.  This criterion that is not as 
clear-cut for BNs as it is for division. For division the basic assumptions are 
really very simple: we only have to decide what the numerator is and what the 
denominator is. For a BN we have to make assumptions about:  

 
• Which variables are dependent on which others (i.e. what is the 

topology of the BN) 
• What are the prior probabilities for each variable; for variables with 

parents this means agreeing the probability of each state conditioned 
on each combination of parent states. 
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We believe that making these assumptions is typically not as onerous as has 
often been argued [37]. In fact, the assumptions are normally already implicit 
somewhere in the case material. Moreover, where there are very different prior 
assumptions (such as the contrast between the prosecution assumptions and 
the defence assumptions) in many cases, the prior assumptions turn out not to 
be very critical since the same broad conclusions follow from a wide-range of 
different assumptions; the technique for using a range of different assumptions 
is called sensitivity analysis (which is easily performed in a BN). For example 
Ward conducted a BN analysis of the Collins evidence [31], and found that, 
despite the fallacies committed at the trial, running the model with a wide 
range of different assumptions always led to a very high probability of guilt. In 
our own work in one case we used the very different ‘priors’ of the claimant 
and the defence and in both cases the result came down firmly in favour of the 
claimant case. Also, one of the benefits of the BN approach is that all the 
assumptions are actually forced into the open. However, we recognise there 
are some challenging issues, which remain open research questions. The most 
important of these is the fact that the BN approach forces us to make 
assumptions that are simply not needed, such as the prior probability of state 
combinations that are impossible in practice, and (in some cases) the prior 
probability of nodes like ‘guilty’ which are not needed when the likelihood 
ratio is used.  

 
It is important to note that the notion of using BNs for legal reasoning is not new, 
although we may be the first to have used them to help lawyers understand the impact 
of key evidence in real trials. As discussed above, Edwards produced an outstanding 
paper on the subject in 1991 [31], while Kadane and Schum [59] used the approach 
retrospectively to analyse the evidence in the Sacco and Vanzetti case. Other 
important contributions have been made by Aitken and colleagues [10] and Taroni et 
al [92] whose book describes the potential for BNs in the context of forensic 
evidence; other work on BNs in the forensic evidence space includes [21][22][24]. 
We specifically used BNs to explain the jury fallacy in [36] and recommended more 
general use of BNs in legal reasoning – an idea taken up by a practicing barrister 
[56][57].  More generally, the idea of graphical, causal type models for reasoning 
about evidence date back as far as 1913 [100].  
 
 
3.5 So how might a complex Bayesian argument be presented in 
court? 
 
We now explain our approach using the Adams case introduced in Section 3.  In 
particular, we use the same assumptions as made by Dawid in his standard Bayesian 
analysis of the problem [25].  In this case the DNA match was the only evidence 
against the defendant. The other two pieces of evidence favoured the defendant – 
failure of the victim to identify Adams and an unchallenged alibi. The DNA match 
probability was anything between 1 in 2 million and 1 in 200 million. We consider 
both extremes starting with the former.  
 
Figure 4 already presented the structure of the BN required for the Bayesian 
argument. However, we propose that any Bayesian argument would NOT begin with 
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the BN model but rather would present either the stick-man or event-tree explanation 
of the impact of a single piece of evidence. In this case we would start therefore by 
explaining the impact of the DNA match. The event tree for this is shown in Figure 7. 
It is slightly more difficult to understand than the event tree of Figure 6 because the 
DNA match probability is so small that the number of positive matches is a fraction of 
a person rather than a set of people (the potential number of suspects was assumed to 
be around 200,000).  
 

Possible suspects
200,000

Positive Match
1

Test negative
0

Positive Match
0.0999995

Test negative
199,998.900005

100%

0%

1/200,000

199,999/200,000

1/200,000

199,999/200,000 Not the source
199,999

Actual source
1

 
Figure 7 Event tree for Adams DNA match evidence 

 
Nevertheless, it can be clearly seen from this analysis that the DNA evidence leads us 
to revise the prior probability that Adams is guilty from 1/200,000 to a posterior of 
1/1.0999995 which is equal to approximately 0.91 or 91%. Alternatively, the change 
in the prior to the posterior odds could also be given in terms of the likelihood ratio.  
 
At this point the lawyer would say something like the following: 
 

“What we have demonstrated to you is how we revise our prior assumption 
when we observe a single piece of evidence. Although we were able to explain 
this to you from scratch, there is a standard calculation engine (accepted and 
validated by the entire mathematical and statistical community) which will do 
this calculation for us without having to go through all the details. In fact, 
when there is more than a single piece of evidence to consider it is too time-
consuming and complex to do the calculations by hand, but the calculation 
engine will do it instantly for us. This is much like relying on a calculator to 
do long division for us. You do not have to worry about the accuracy of the 
results; these are guaranteed. All you have to worry about is whether our 
original assumptions make sense.”  

 
The lawyer could then present the results from a BN tool. To confirm what has 
already been seen the lawyer could show two results. One (Figure 8) the results of 
running the tool with no evidence entered and the second (Figure 9) the results of 
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running the tool with the DNA match entered. The lawyer would emphasize how the 
result in the tool exactly matches the result presented in the event tree.  
 
 

 
Figure 8 Model with prior marginal probabilities 
 
 

 
Figure 9 Result of entering DNA match 
 
Next the lawyer would present the result of additionally entering the ID failure 
evidence (Figure 10). The lawyer would need to explain the P(E|H) assumption 
(Dawid assumed that the probability of ID failure given guilt was 0.1 and the 
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probability of ID failure given innocence was 0.9). The result shows that the 
probability of guilt swings back from 91% to 52%.  
 

 
Figure 10 Identification failure added 
 
 
In the same way the result of adding the alibi evidence is presented (Figure 11). With 
this we can see that the combined effect of the three pieces of evidence is such that 
innocence is now more likely than guilt. 
 

 
Figure 11 Alibi evidence entered 
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Finally, we can rerun the model with the other extreme assumption about the match 
probability of 1 in 200 million. Figure 12 shows the result when all the evidence is 
entered. In this case the probability of guilt is much higher (98%). Of course it would 
be up to the jury to decide not just if the assumptions in the model are reasonable, but 
whether the resulting probability of guilt leaves room for doubt. What the jury would 
certainly NOT have to do is understand the complex calculations that have been 
hidden in this approach but were explicit both in the case itself and also in the 
explanation provided in both [25] and [7]. In this respect the judge’s comments about 
the jury’s task: 
 

“to evaluate evidence and reach a conclusion not by means of a formula, 
mathematical or otherwise, but by the joint application of their individual 
common sense and knowledge of the world to the evidence before them” 

 
does not seem so unreasonable to a Bayesian after all.  
 

 
Figure 12 Effect of all evidence in case of 1 in 200 million match probability 
 
 
We used this method in the medical negligence case discussed in Section 3. Event 
trees were used for the basic argument and also for gaining trust in Bayes. Having 
gained this trust with the lawyers and doctors we were able to present the results of a 
more complex analysis captured in a BN, without the need to justify the underlying 
calculations. Although the more complex analysis was not needed in court, its results 
provided important insights for the legal and medical team. 
 
4 The proposed framework in practice  
 
To bring all the previous strands together we now return to the R v Bellfield case. 
Levi Bellfield was charged with two murders (Amelie deLagrange and Marsha 
Macdonnell) and three attempted murders. A key piece of evidence presented by the 
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prosecution against Bellfield was a single blurred CCTV image of a car at the scene 
of the Marsha Macdonnell murder (the bulk of the evidence was otherwise largely 
circumstantial). The prosecution claimed that this car was Bellfield's car. The 
Prosecution used two vision experts to narrow down the number of potentially 
matching number plates in the image. We were originally brought in to determine if 
the statistical analysis of number plate permutations was correct. In fact, we believed 
that the image evidence had been subject to confirmation bias [28]. We used a BN to 
draw conclusions about the number of potentially matching number plates (and hence 
vehicles) that may not have been eliminated from the investigation. 
 
Following on from the first piece of work the Defence asked us to review the entire 
prosecution opening. Having discussed the well-known legal fallacies with them they 
sensed that the prosecution had introduced a number of such fallacies. Hence, we 
produced a report that analysed the Prosecution Opening statement and identified 
several explicit and implicit instances of probabilistic fallacies that consistently 
exaggerated the impact of the evidence in favour of the prosecution case. These 
fallacies included one instance of the transposed conditional, several instances of 
impossibility of false negatives, several instances of base rate neglect, at least one 
instance of the previous convictions fallacy, and many instances of both the 
dependent evidence fallacy and the coincidences fallacy. We used Bayesian 
reasoning, with examples of simple BNs, to confirm some of the fallacies. The 
informal versions of the arguments in the report were used as a major component of 
the defence case.  
 
We can present an example of the work done in completely general terms, using the 
approach proposed in this paper. This example involves a new fallacy that we have 
called the “Crimewatch” fallacy. Crimewatch is a popular TV programme in which 
the public are invited to provide evidence about unsolved crimes. The fallacy can be 
characterised as follows: 
 

Fact 1: Evidence X was found at the crime scene that is almost certainly linked 
to the crime. 
Fact 2: Evidence X could belong to the defendant 
Fact 3: Despite many public requests (including, e.g, one on Crimewatch) for 
information for an innocent owner of evidence X to come forward  and clear 
themselves, nobody has done so 

 
The fallacy is to conclude from these facts that: 
 

It is therefore highly improbable that evidence X at the crime scene could 
have belonged to anybody other than the defendant. 
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Figure 13: Crimewatch UK Priors 
 
Once again the presentation of the Bayesian argument to explain the fallacy is 
initiated with a visual explanation of the impact of a single piece of evidence. We then 
present a BN (as shown in Figure 13) that captures the whole problem. In this BN we 
start with priors that are very favourable to the prosecution case. Thus, we assume a 
very high probability, 99%, that evidence X was directly linked to the crime. 
 
Looking at the conditional probability table we assume generously that if the owner of 
X was innocent of involvement then there is an 80% chance he/she would come 
forward (the other assumptions in the conditional probability table are not 
controversial).  
 
What we are interested in is how the prior probability of the evidence X being the 
defendant’s changes when we enter the fact that no owner comes forward. The 
prosecution claim is that it becomes almost certain. The key thing to note is that, with 
these priors, there is already a very low probability (0.4%) that the owner comes 
forward. 
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Figure 14 Now we enter the fact 

 
Consequently, when we now enter the fact (Figure 14) we see that the impact on the 
probability that X belongs to the defendant is almost negligible (moving from 50% to 
50.2%).  
 
This demonstrates the Crimewatch fallacy and that the evidence of nobody coming 
forward is effectively worthless despite what the prosecution claims.  
 
In fact, the only scenarios under which the evidence of nobody coming forward has an 
impact are those that contradict the heart of the prosecution claim. For example, let us 
assume (Figure 15) that there is only a 50% probability that the evidence X is directly 
linked to the crime  
 

 
Figure 15 Different priors 
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Then when we enter the fact that nobody comes forward (Figure 16) the impact on 
our belief that X is the defendant’s is quite significant (though still not conclusive) 
moving from 50% to 62.5%.  But, of course, in this case the priors contradict the 
core of the prosecution case. 
 
Note that we could, instead of the BN presentation, have presented an equivalent 
formulaic argument deriving the likelihood ratio of the Crimewatch evidence. This 
would have shown the likelihood ratio to be close to 1, and hence would also have 
shown that the utility of the evidence is worthless. However, as has been stressed 
throughout this paper, the BN presentation proved to be more easily understandable to 
lawyers. 
 

 
Figure 16 Evidence now makes a difference 
 
 
5 Conclusions 
 
Despite fairly extensive publicity and many dozens of papers and even books 
exposing them, probabilistic fallacies continue to proliferate legal reasoning. In this 
paper we have presented a wide range of fallacies (including one new one) and a new 
simple conceptual approach to their classification. While many members of the legal 
profession are aware of the fallacies, they struggle to understand and avoid them. This 
seems to be largely because they cannot follow Bayes Theorem in its formulaic 
representation. Instead of continuing the painful struggle to get non-mathematicians to 
understand mathematics we must recognise that there is an alternative approach that 
seems to work better. 
 
In simple cases equivalent visual representations of Bayes, such as event trees, enable 
lawyers and maybe even jurors to fully understand the result of a Bayesian calculation 
without any of the maths or formulas (websites that promote public understanding of 
probability, such as [35] and [89] are now using such visual techniques extensively). 
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This approach has already been used with considerable effect in real cases. However, 
it does not scale up. As more pieces of evidence and dependencies are added no first 
principles argument that the lawyers can fully understand is ever going to be possible. 
In such cases we have proposed to use Bayesian networks (BNs). This proposal is not 
new; indeed, as long ago as 1991 Edwards [31] provided an outstanding argument for 
the use of BNs in which he said of this technology: 
 

“I assert that we now have a technology that is ready for use, not just by the 
scholars of evidence, but by trial lawyers.” 

 
He predicted such use would become routine within “two to three years”. 
Unfortunately, he was grossly optimistic for two reasons.  
 

1. Even within the community of statisticians interested in legal arguments there 
has been both ignorance of BNs and a reluctance to embrace them; 

2. Acceptance of BNs by members of the legal community requires first an 
understanding and acceptance of Bayes theorem. For reasons explained in this 
paper, there have been often insurmountable barriers to such acceptance. 

 
What is new about our proposal is our strategy for addressing the barriers in 2 
together with the BN approach. 
 
We feel the strategy presented could feasibly work in both pre-trial evidence 
evaluation and in court.  In pre-trial we envisage a scenario where any evidence could 
be evaluated independently to eliminate that which is irrelevant, irrational or even 
irresponsible. This could, for example, radically improve and simplify arguments of 
admissibility of evidence.  
 
During trial, our proposed approach would mean that the jury and lawyers can focus 
on the genuinely relevant uncertain information, namely the prior assumptions.  
 
Crucially, there should be no more need to explain the Bayesian calculations in a 
complex argument than there should be any need to explain the thousands of circuit 
level calculations used by a calculator to compute a long division. Lay people do not 
need to understand how the calculator works in order to accept the results of the 
calculations as being correct to a sufficient level of accuracy. The same must 
eventually apply to the results of calculations from a BN tool.  
 
We have demonstrated practical examples of our approach in real cases. We recognise 
that there are significant technical challenges we need to overcome to make the 
construction of BNs for legal reasoning easier, notably overcoming the constraints of 
existing BN algorithms and tools that force modellers to specify unnecessary prior 
probabilities (the work in [88] may provide solutions to some of these issues). We 
also need to extend this work to more relevant cases and to test our ideas on more 
lawyers. And there is the difficult issue of who, exactly, would be most appropriate 
people to build and use the BN models in pre-trial and during trial. However, the 
greater challenges are cultural. There is clearly a general problem for the statistics 
community about how to get their voices heard within the legal community.  
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Because of this, we believe that in 50 years time professionals of all types involved in 
the legal system will look back in total disbelief that they could have ignored these 
available techniques of reasoning about evidence for so long. 
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7 Appendix 1: A new classification of probabilistic fallacies 
 

Using the causal structure of Figure 3 we can classify a range of fallacies due to a 
misunderstanding of conditional probability: 
 

• Different types of transposed conditional fallacies: 
 

• ‘Source probability error’: This is where we equate P(C | not B) with 
P(not B | C).  Already discussed in main text of the paper.  

 
• ‘Ultimate issue error’ This is where we equate P(C | not B) with P(not A | 

C). Already discussed in main text of the paper. 
 
• Equating P(C | not B) with P(not A | D). This is a different type of ultimate 

issue error in which P(A) is additionally assumed to be equal to P(C). 
 

• Impossibility of false positive: This is the fallacy of assuming P(D|C) = 1, or 
more rarely that P(C|B)=1, or even P(B|A)=1.  

 
• Base rate neglect: This amounts simply to failing to take account of prior 

values such as P(A) and P(B). More generally, the base rate neglect fallacy is 
where the probability of an event is underestimated because the event is not as 
unusual as it seems, or is overestimated because the event is more unusual 
than it seems. This fallacy has been the subject of much research in broader 
contexts than legal reasoning [19][20] [60]. 

 
P(Another Match) Error: This is the fallacy of equating the value P(C | not B) 
with the probability (let us call it q) that at least one innocent member of the 
population has matching evidence. Already discussed in main text of the 
paper. 
 

• Numerical Conversion Error: This involves confusing the value P(C| not B) 
with the expected number of other people who would need to be tested before 
finding a match. This fallacy also exaggerates the value of the evidence C. For 
example, in another case cited by Koehler [65] the value for P(C| not B) was 
equal to 1/23,000,000, but the court was told that we would need to test 
23,000,000 before we could expect to find another match. In fact, the true 
expected value is the smallest value N for which 

 
(1 – 1/23,000,000)N < 0.5 

 
and this value is less than 16,000,000 

 
• Expected values implying uniqueness: This fallacy (see [33]) is essentially to 

assume that if the population size is approximately equal to 1/P(not B|C) then 
the defendant must be the only match. In fact, the Binomial Theorem shows 
that there is a greater than 25% chance that there will be at least two matches 
in a population whose size is 1/P(not B|C). 
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• Defendant fallacy: This occurs when the evidence C is deemed to be 
unimportant because a high prior value for P(not A) (which will be the case 
when, for example, the potential number of suspects is very large) still results 
in a high value of P(not B|C). 

 
• Interrogator’s fallacy [71]: In this the evidence is a straight confession of 

guilt. Unless this is corroborated this means that we are using P(D|A) to inform 
P(A|D). The fallacy is to fail to take account of P(D| not A). If P(D|A) <= P(D| 
not A) then the evidence has no value. 

 
• The defendant’s database fallacy This fallacy (see [33]) is where the value of 

P(not B|C) is based on a different population from that determined by P(B) or 
P(A).  

 
In addition to fallacies that arise from a basic misunderstanding of conditional 
probability (and which, as we have shown, can be couched in the context of Figure 3) 
other fallacies arise from failing to properly combine the impact of multiple pieces of 
evidence. In particular these include: 
 

• The dependent evidence fallacy. This fallacy, sometimes also referred to as 
Double Counting, is where two or more pieces of evidence that are dependent 
are treated as if they were independent, resulting in a statement about their 
joint probability that is lower than it should be. The classic cited example of 
this occurred in the case of Collins [1] and is described detailed in [31]. More 
recently this was a problem in the Sally Clark case, where a claimed  1 in 73 
million probability figure for two SIDS (sudden infant death syndrome) came 
about by treating two dependent pieces of evidence (namely the two separate 
deaths) as if they were independent.  Other important examples include R v 
Splatt (see [23]). A special case of this fallacy is the logically dependent 
evidence fallacy where one piece of evidence is not simply dependent on 
another but actually follows logically from it.  

• The Conjunction Fallacy: This fallacy occurs when an investigator fails to 
take account of the fact that a piece of evidence is made up of more than one 
uncertain event, and as a result assigns it a higher probability than it should 
have. [85] 

• The Coincidence Fallacy. This fallacy (see, for example [69]) occurs when a 
particular observed combination of events is implied to have a very small 
probability – characterised by a statement like “this could surely not have 
happened by chance” or there is “no such thing as coincidences”. In fact, the 
probability of such ‘unlikely’ outcomes is usually grossly underestimated due 
to a basic misunderstanding of the number of different outcomes that are 
possible. 

• The previous convictions fallacy. This fallacy is actually a special case of the 
jury observation fallacy that is explained in detail in [36]. Suppose a jury 
finds a defendant not guilty. After the verdict it is revealed that the defendant 
had a previous conviction for a similar type of crime. Does this increase or 
decrease your belief that the defendant was wrongly aquitted?. The fallacy is 
that belief should increase, whereas it can be shown that (under a range of all 
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reasonable scenarios) the probability the defendant is guilty actually decreases 
when the prior conviction becomes known.  
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