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Hannah Fry’s “Hello World” and the Example of Algorithm Bias 

Norman Fenton, 16 March 2019 

 

1 Introduction 
“Hello World” (Fry, 2018) is an excellent book by Hannah Fry that provides lay explanations 

about both the potential and threats of AI and machine learning algorithms in the modern 

world. It is filled with many excellent examples, and one that is especially important is in 

Chapter 3 (“Justice”) about the use of algorithms in the criminal justice system. After 

highlighting concerns about an algorithm called COMPAS (Northpointe, 2015) that is used to 

determine the risk of people reoffending, Hannah provides a simple theoretical example of 

an algorithm to determine the risk of a person being a murderer. The example demonstrates 

the extremely important point that there is an inevitable trade-off between ‘accuracy’ and 

‘fairness’ when it comes to algorithms that make decisions about people; essentially that you 

can have algorithms that are accurate or fair but not both. In the example the algorithm is 

‘unfair’ to men because they are more likely to be wrongly identified as high risk. 

However, while the overall thrust and conclusions of the example are correct the need to 

keep any detailed maths out of the book might leave careful readers confused about whether 

the example really demonstrates the stated conclusions. I feel it is important to get the 

details right because the issue of algorithmic fairness is of increasing importance for the 

future of AI, yet is widely misunderstood. For example (Fenton et al., 2018a) highlights 

fallacies relating to widespread criticism of the COMPAS algorithm (Northpointe, 2015) that 

Hannah uses to motivate her example.  

In this short report I will present the example as described by Hannah in Section 2. In 

Section 3 I will explain what is missing from the example, namely any explicit calculation of 

the false positive rates of the algorithm and I will also explain the danger of making a 

mistake called the fallacy of the transposed conditional. In Section 4 I will show how 

Bayes theorem (and some other assumptions) are needed to compute the false positive 

rates for men and women. Finally, in Section 5 I will show why and how a causal model of 

the problem (namely a Bayesian network model) makes everything much clearer.  

2 The example 
The example is stated as follows, with the two pictures referred to shown here in Figure 1.  

“Imagine stopping people in the streets and using an algorithm to predict whether 

each person will go on to commit homicide. Now, since the vast majority of murders 
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are committed by men (in fact, worldwide 96% of murderers are male), if the 

murderer-finding algorithm is to make accurate predictions it will necessarily identify 

more men than women as high risk. Let’s assume our murder detection algorithm 

has a prediction rate of 75% that is to say three quarters of the people the algorithm 

labels as high risk are indeed Darth Vaders.  

Eventually after stopping enough strangers you have 100 people flagged by the 

algorithm as potential murderers. To match the perpetrator statistics, 96 of those 100 

will necessarily be male, 4 will be female. There is a picture below to illustrate. The 

men are represented by dark circles, the women shown as light grey circles.  

Now since the algorithm predicts correctly for both men and women at the same rate 

of 75%, one quarters of the females, and one quarter of the males will really be Luke 

Skywalkers: people who are incorrectly identified as high risk, when they don’t 

actually pose a danger. 

Once you run the numbers, as you can see from the second image here, more 

innocent men than innocent women will be incorrectly accused just by virtue of the 

fact that men commit more murder than women. 

Hannah concludes:  

“The outcome is biased because reality is biased. More men commit homicides, so 

more men will be falsely accused of having the potential to murder. Unless the 

fraction of people who commit crimes is the same in every group of defendants, it is 

mathematically impossible to create a test which is equally accurate at prediction 

across the board and makes false positive and false negative mistakes at the same 

rate for every group of defendants”. 

 

Figure 1 Hannah's example with a key assumption highlighted 
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3 What is missing from the example 
The key thing missing from the example and its explanation is that it provides no indication 

about the thing we are ultimately most interested in, namely the false positive rates. 

Specifically: 

The false positive rate is the probability the algorithm will wrongly identify a 

non-murderer as high risk.  

In particular, we want to know the separate false positive rates for men and women, as the 

key implication is that the former is higher than the latter. 

To determine these rates, we need to make a number of assumptions that are either missing 

from the example or are only implicit, and only then can we apply Bayes theorem to get the 

result we need. First let’s introduce some notation. 

Let M be the assertion “Person is a murderer”, and 𝑀 its negation (i.e. “Person is a 

non-murderer”) 

Let X be the assertion “Algorithm reports positive (high risk)”, and  𝑋 its negation (i.e. 

“Algorithm reports negative”) 

What we are told is that the probability of M given X is equal to 75%. We write this as the 

probability statement. 

𝑃(𝑀|𝑋) = 0.75 

It follows that  

𝑃(𝑀|𝑋) = 0.25 

(since these two probabilities must sum to 1). This is the reasoning used in the example to 

explain why, out of 100 people who the algorithm rates as high risk, 75 will be murderers and 

25 non-murderers. 

But what we are most interested in are the following probabilities: 

𝑃(𝑋|𝑀) (this is the true positive rate for the algorithm; the false negative rate is one 

minus this, i.e. 𝑃(𝑋|𝑀) = 1 − 𝑃(𝑋|𝑀)) 

𝑃(𝑋|𝑀) (this is the false positive rate for the algorithm; the true negative rate is one 

minus this, i.e. 𝑃(𝑋|𝑀) = 1 − 𝑃(𝑋|𝑀)) 

Moreover, we want to break these down into error rates for males and females. 

One of the most common mistakes people use when reasoning about probability is the so-

called transposed conditional fallacy. This is to assume that the probability of a statement 

like A given B is always the same as the probability of B given A and that we could therefore 

deduce from above that: 
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𝑃(𝑋|𝑀) = 𝑃(𝑀|𝑋) = 0.75 

𝑃(𝑋|𝑀) = 𝑃(𝑀|𝑋) = 0.25 

In fact, it turns out that, while the first equality (the true positive rate)  does hold in this 

example (once we introduce some reasonable assumptions) the second (the false positive 

rate) certainly does not.  

In general, the correct relationship between two transposed conditional probabilities is 

provided by Bayes’ theorem, which for the false positive, asserts: 

𝑃(𝑋|𝑀) =
𝑃(𝑀|𝑋) × 𝑃(𝑋)

𝑃(𝑀)
 

The reason, why in this case, P(X | M)=P(M | X)  is because it is reasonable to assume that 

P(X)=P(M). This is because in the example Hannah asserts that the algorithm “preserves the 

perpetrator statistics”. This means that, in addition to the fact that it preserves the 96% male 

proportion in its positive outcomes, we can also assume that, whatever the overall 

population proportion of murderers, P(M), the proportion of positive outcomes produced by 

the algorithm, P(X), will be the same. For example, if P(M) is, say, 1 in 1,000 then P(X) will 

also be equal to 1 in 1000. So, in this special case the ‘transposed conditionals’ are equal 

and we can conclude that the true positive rate is 75%. Moreover, since we also know that 

P(X|M) is the same for men and women, we can also conclude that the true positive rates for 

both men and women are 75%. This also means the false negative rates for men and 

women are both equal to 25%. 

However, things are very different for the false positive rate which, by Bayes, is 

computed as: 

𝑃(𝑋|𝑀) =
𝑃(𝑀|𝑋) × 𝑃(𝑋)

𝑃(𝑀)
 

Let us assume, as above that P(M) = P(X) =1 in 1,000. Then: 

𝑃(𝑋|𝑀) =
0.25 × 0.001

0.9999
≈ 0.00025 

So, the overall false positive rate is very low, about 1 in 4,000. This means that for every 

100,000 people about 25 would be falsely rated as high risk by the algorithm. Note that this 

key information was missing from Hannah’s example. But that is the overall false positive 

rate for all people. We next turn to the separate false positive rates for men and women. 

4 Calculating the false positive rates for men and women 
To calculate the different false positive rates for men and women we need to know the 

respective non-murderer probabilities for men and women as well as the probabilities of 

these given X. Let us denote: 

a. men who are murderers 

b. men who are non-murderers 

c. women who are murderers 

d. women who are non-murderers 



5 
 

Assuming that there are an equal number of men and women in the population, then for 

every 100,000 people there will be 100 murderers of whom 96 are men and 4 are women. 

Hence: 

• P(a) = 96/100,000 = 0.00096 

• P(b) = 499,904/100,000 = 0.49904 

• P(c) = 4/100,000 = 0.00004 

• P(d) = 49996/10,000 = 0.49996 

To compute P(b | X) we note the following from the example: 

𝑃(𝑎|𝑋) + 𝑃(𝑏|𝑋) = 0.96  

(since we are told that 96% of people who the algorithm says are high risk are men). 

But we also know that  

𝑃(𝑎|𝑋)

𝑃(𝑎|𝑋) + 𝑃(𝑏|𝑋)
= 0.75 

(since we are told that 75% of men who the algorithm says are high risk are murderers). 

From these two equations we compute that: 

P(a | X) = 0.24 

P(b | X) = 0.72 

So, noting that b represents the non-murderer males, we can now compute the false positive 

rate for men:  

𝑃(𝑋|𝑏) =
𝑃(𝑏|𝑋) × 𝑃(𝑋)

𝑃(𝑏)
=

0.24 × 0.001

0.49904
= 0.000480923 

That is a rate of less than 1 in 2000. It means that for every 100,000 men about 48 would be 

falsely determined as high risk by the algorithm. 

Similarly, for women we note that  

𝑃(𝑐|𝑋) + 𝑃(𝑑|𝑋) = 0.04  

and 

𝑃(𝑐|𝑋)

𝑃(𝑐|𝑋) + 𝑃(𝑑|𝑋)
= 0.75 

 

From these two equations we compute that: 

P(c | X) = 0.03 

P(d | X) = 0.01 
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So, noting that d represents the non-murderer females, we can now compute the false 

positive rate for women:  

𝑃(𝑋|𝑑) =
𝑃(𝑑|𝑋) × 𝑃(𝑋)

𝑃(𝑑)
=

0.01 × 0.001

0.49996
= 0.0000200016 

That is a rate of less than 1 in 50,000. It means that for every 100,000 women about 2 would 

be falsely rated as high risk by the algorithm. 

In summary we have computed the exact false positive rates for men and women and have 

confirmed that the algorithm is indeed ‘biased’ against men in the sense that the false 

positive rates for men are higher than for women. This is, indeed an inevitable outcome of 

the requirement for the algorithm to be ‘accurate’ in the sense that was described.  

 

5 A causal model of the problem 
As suggested convincingly by Pearl (Pearl et al., 2018) these types of problems become 

much clearer to analyse once we construct a causal model that makes explicit the underlying 

variables and their relationships. The appropriate causal model is shown in Figure 2.  

 

Figure 2 Model with all probability parameters shown 

The model is an example of a Bayesian network because we have added the necessary 

tables showing the conditional probability values associated with each variable. The table 

values for the variable “Algorithm says high risk” simply use the results of the computations 

in Sections 3 and 4. The table values for the variable “Murderer” uses Bayes theorem (since 

we know P(Sex | Murderer), P(Murderer) and P(Sex) we can compute and P(Murderer | 

Sex)).  With these table values we can run the model using a Bayesian network tool (Agena 

Ltd, 2019) and check the results as shown in Figure 3. Note that all of the required 

assumptions are preserved.  
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a) Model in its prior state (no observations). Note 
that both the murderer rate and the probability the 
algorithm says high risk are 1 in 1000 

c) Confirming that 96% of murderers are males 
and that the true positive rate is 75% 

 
 

c) When we observe algorithm given a positive 
result we see that there is 96% chance it will be a 
male and there is a 75% chance the person really 
is a murderer. 

d) When the algorithm is known to provide a false 
positive there is a 96% chance the person is a 
male. 

 
 

e) Probability algorithm gives false positive for 
men 

f) Probability algorithm gives false positive for 
women 

 

Figure 3 Running the model with different observations 

More details on how to build and run causal Bayesian network models can be found in 

(Fenton et al., 2018b). 
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