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1 Introduction 
 
 
While the laws of probability are rarely disputed, the question of how we should interpret 
probability judgments is less straightforward. Broadly, there are two ways to conceive of 
probability – either as an objective feature of the world, or as a subjective measure of our 
uncertainty 1. Both notions have their place in science, but it is the latter subjective notion (the 
Bayesian approach) that is crucial in legal reasoning. This is because we are usually concerned 
with events that must have either already happened or not happened, and which (from an 
objective viewpoint) have redundant probabilities of either one or zero.  OJ Simpson either did 
or did not murder his ex-wife but, with the possible exception of OJ Simpson himself, nobody 
knows for certain which; thus, we aim to gather evidence to reduce our uncertainty about what 
actually happened. Probability theory is just as able to capture our uncertainty about whether 
an event did or did not happen in the past as it can capture uncertainty about an event that may 
or may not happen in the future. Unfortunately, a failure to understand this point about the 
nature of uncertainty lies at the heart of one of the most persistent objections among some 
members of the legal profession to the use of probability theory (especially Bayesian 
probability) –namely that “there is no such thing as probability”.  This is normally expressed 
informally such as in the following (these are based on actual words we have heard used on 
many occasions by legal professionals): 
 

“Look the guy either committed the crime or he didn’t. If he did it then the probability 
is one and if he didn’t then the probability is 0. There is nothing in between so, there is 
no such thing as probability other than 0 or 1.” 

 
Indeed, it was essentially this argument used in a 2013 UK Appeal Court case ruling 2 
(discussed in 3) to reject the use of Bayes (in a civil dispute about the cause of a fire). 
Specifically, Point 37 of the ruling asserted (about the use of Bayes and probabilities):  
 

I would reject that approach. It is not only over-formulaic but it is intrinsically unsound. 
The chances of something happening in the future may be expressed in terms of 
percentage. Epidemiological evidence may enable doctors to say that on average 
smokers increase their risk of lung cancer by X%. But you cannot properly say that 
there is a 25 per cent chance that something has happened ... Either it has or it has not.  

 
The ‘no such thing as probability’ objection is also closely tied to the general objection to  
the notion of subjective probability on the grounds that it should not be used in legal contexts, 
because it depends on the vagaries of someone’s personal opinion. But probabilities are always 

                                                 
1 Gillies 2000, 807. 
2 Nulty & Ors v Milton Keynes Borough Council EWCA Civ 15 (24 January 2013). 
3 Spiegelhalter 2013. 
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‘personal’ to some extent because different people will generally have different relevant 
information (i.e. evidence) available to them about an event (whether it already happened or 
may happen in the future). Your view of the probability that OJ Simpson murdered his ex-wife 
will be based on incomplete information about what happened and so will certainly be different 
to that of OJ Simpson himself who has the most information, or the lawyers and jurors on the 
case (who all have different levels of relevant information).  But, crucially, subjective and 
personal does not mean arbitrary; the same rules of probability apply to both objective and 
subjective notions. For example, if you believe that the probability that someone committed a 
crime is p, then on pain of inconsistency you should believe that the probability that they did 
not commit the crime is 1-p. Moreover, subjective probabilities should be updated in a rational 
way via Bayes’ rule. So, whatever your starting point (your prior beliefs), the Bayesian 
framework tells you how you should update these in light of new evidence (to give your 
posterior beliefs). It ensures that your posterior beliefs are rationally derived from your prior 
beliefs, in the same way that formal logic tells you what conclusions are deductively implied 
by your premises.  
 
Both the ‘no such thing as probability’ objection and the objection to subjective probability 
have long been proven to be irrational because with either objection you will be open to a Dutch 
book (see for example 4): this means you can be made to lose money irrespective of the 
outcomes of the events bet upon; also, obeying the laws of probability minimizes your overall 
inaccuracy. 
 
A number of other commonly repeated objections to probability and Bayes in the law were 
raised in the highly influential paper 5, which was written as a criticism of the prosecutor’s 
presentation in 6.  Tribe’s objections especially pertinent for Bayes 7 were: 
 

• That an accurate and/or non-overpowering prior cannot be devised.  
• That in using statistical evidence to formulate priors jurors might use it twice in 

reaching a posterior 
• That not all evidence can be considered or valued in probabilistic terms.  
• That no probability value can ever be reconciled with “Beyond A Reasonable Doubt” 
• That due to the complexity of cases and non-sequential nature of evidence presentation, 

any application of Bayes would be too cumbersome for a jury to use effectively and 
efficiently. 

• That probabilistic reasoning is not compatible with the law, for policy reasons. In 
particular, that jurors are asked to formulate an opinion of the defendant’s guilt during 
the prosecutor’s case, which violates the obligation to keep an open mind until all 
evidence is in. 

 

                                                 
4  Fenton & Neil 2018; Pettigrew 2020. 
5  Tribe 1971. 
6 People v Collins, 438 P 2d 33 (68 Cal 2d 319 1968) . 
7 Berger 2014; Fienberg & Finkelstein 1996. 
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However, most of these concerns have long been systematically demolished in 8 and more 
recently in 9. Although we revisit some of these objections in this chapter, our focus is on those 
objections that are most cited even once the Bayesian framework is accepted as a rational 
procedure for updating our subjective probabilities. Specifically, we will deal with three 
common objections, all of which can at least in part be addressed by using Bayesian networks 
10: (1) that failing to constrain personal priors means no reasonable consensus posterior can 
ever be reached. (2) that Bayes - as encapsulated by the likelihood ratio – leads to multiple 
problems (including legal paradoxes);    (3) that Bayes is too complex to be used in court or in 
legal arguments. 
 
The chapter is structured as follows: we first review (section 2) the historical perspective for 
objections to Bayes. In Section 3 we provide necessary definitions of Bayes and the likelihood 
ratio. In Section 4 we address the above objections to Bayes, and explain why, despite the 
rebuttals to the objections, the use of Bayes has been extremely limited. Section 5 points the 
way forward. 
 
 
 

2 Historical perspective 
 
The reluctance to accept Bayes in the law is just the latest manifestation of a long-time 
historical reticence to accept any statistical analysis as valid evidence. Sadly, there is good 
reason for this reticence. When, in 1894, a statistical analysis was used in the Dreyfus case it 
turned out to be fundamentally flawed 11. Not until 1968 was there another well-documented 
case, 12 in which statistical analysis played a key role. In that case another flawed statistical 
argument further set back the cause of statistics in court. The Collins case was characterised by 
two errors:  
 

1) It underestimated the probability that some evidence would be observed if the 
defendants were innocent by failing to consider dependence between components of 
the evidence; and  

2) It implied that the low probability from the calculation in 1) was synonymous with 
innocence (the so-called ‘prosecutors’ fallacy). 

   
Since then the same errors (either in combination or individually) have occurred in well 
reported cases such as R v Sally Clark 13, R v Barry George 14, Lucia de Berk 15. Although 
original ‘bad statistics’ used in each case (presented by forensic or medical expert witnesses 
without statistical training) was exposed through ‘good statistics’ on appeal, it is the ‘bad 
statistics’ which leaves an indelible stain. Yet, the role of legal professionals (who allow expert 
witnesses to commit the same well-known statistical errors repeatedly) is rarely questioned.  

                                                 
8 Edwards 1991; Koehler 1992. 
9 Berger 2014; Tillers & Gottfried 2007. 
10 Fenton & Neil 2018. 
11  Kaye 2007. 
12 People v. Collins, 438 P. 2d 33 (68 Cal. 2d 319 1968)  (n 6). 
13 Forrest 2003; Hill 2005. 
14 Fenton et al 2014. 
15 Meester et al 2007. 
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Hence, although the last 40 years has seen considerable growth in the use of statistics in legal 
proceedings, its use in the courtroom has been mostly restricted to a small class of cases where 
classical statistical methods of hypothesis testing using p-values and confidence intervals are 
used for probabilistic inference. Yet, even this type of statistical reasoning has severe 
limitations as discussed extensively in 16, including specifically in the context of legal and 
forensic evidence 17. In particular: 
 

• The use of p-values can also lead to the prosecutor’s fallacy since a p-value (which says 
something about the probability of observing the evidence given a hypothesis) is often 
wrongly interpreted as being the same as the probability of the hypothesis given the 
evidence 18. 

• Confidence intervals are almost invariably misinterpreted since their proper definition 
is both complex and counter-intuitive (indeed it is not properly understood even by 
many trained statisticians) 19. 

 
The poor experience – and difficulties in interpretation - with classical statistics means that 
there is also strong resistance to any alternative approaches. This resistance extends to the 
Bayesian approach, despite the fact that it is especially well suited for a broad range of legal 
reasoning 20. 
 
Although the natural resistance within the legal profession to a new statistical approach is one 
reason why Bayes has, to date, made only minimal impact, it is certainly not the only reason.  
Many previous papers have discussed the social, legal and logical impediments to the use of 
Bayes in legal proceedings 21 and in more general policy decision making 22.  
 

3 Basics of Bayes for legal reasoning 
 
The following terminology and assumptions will be used: 
 

• A hypothesis is a statement (typically Boolean) whose truth value we seek to determine, 
but is generally unknown - and which may never be known with certainty.  Examples 
include: 

o “Defendant is innocent of the crime charged” (this is an example of an offense 
level hypothesis also called the ultimate hypothesis, since in many criminal 
cases it is ultimately the only hypothesis we are really interested in)  

o “Defendant was the source of DNA found at the crime scene” (this is an 
example of what is often referred to as a source level hypothesis 23) 

• The alternative hypothesis is a statement which is the negation of a hypothesis.   
• A piece of evidence is a statement that, if true, lends support to one or more hypotheses.  

 

                                                 
16 Royal Statistical Society 2015; Ziliak & McCloskey  2008. 
17  Finkelstein 2009; Vosk & Emery 2014.  
18 Gastwirth 2000. 
19 Fenton & Neil 2018. 
20 Fienberg & Finkelstein 1996. 
21 Faigman & Baglioni 1988; Fienberg 2011; Tillers & Green 1988; Tribe 1971. 
22 Fienberg & Finkelstein 1996. 
23 Cook et al 1998. 
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The relationship between a hypothesis H and a piece of evidence E can be represented 
graphically as in the example in Figure 1 where we assume that: 
 

• The evidence E is a DNA trace found at the scene of the crime (for simplicity we assume 
the crime was committed on an island with 10,000 people who therefore represent the 
entire set of possible suspects)  
 

• The defendant was arrested and some of his DNA was sampled and analysed  
  

 
Figure 1 Causal view of evidence, with prior probabilities shown in tables. This is a very simple example of 
a Bayesian Network (BN)  
 
 
The direction of the causal structure makes sense here because H being true (resp. false) can 
cause E to be true (resp. false), while E cannot ‘cause’ H. However, inference can go in both 
directions. If we observe E to be true (resp. false) then our belief in H being true (resp. false) 
increases. It is this latter type of inference that is central to all legal reasoning since, informally, 
lawyers and jurors normally use the following widely accepted procedure for reasoning about 
evidence:  
 

• Start with some (unconditional) prior assumption about the ultimate hypothesis H (for 
example, the ‘innocent until proven guilty’ assumption equates to a belief that “the 
defendant is no more likely to be guilty than any other member of the relevant 
population”).  

• Update our prior belief about H once we observe evidence E. This updating takes 
account of the likelihood of the evidence. 

 
This informal reasoning is a perfect match for Bayesian inference where the prior assumption 
about H and the likelihood of the evidence E are captured formally by the probability tables 
shown in Figure 1. Specifically, these are the tables for the prior probability of H, written  P(H), 
and the conditional probability of E given H, which we write as P(E | H). Bayes’ theorem 
provides the formula for updating our prior belief about H in the light of observing E to arrive 
at a posterior belief about H which we write as P(H | E). In other words Bayes calculates P(H 
| E) in terms of P(H)  and P(E | H). Specifically:   
 

 

𝑃𝑃(𝐻𝐻|𝐸𝐸) =
𝑃𝑃(𝐸𝐸|𝐻𝐻)𝑃𝑃(𝐻𝐻)

𝑃𝑃(𝐸𝐸)
=

𝑃𝑃(𝐸𝐸|𝐻𝐻)𝑃𝑃(𝐻𝐻)
𝑃𝑃(𝐸𝐸|𝐻𝐻)𝑃𝑃(𝐻𝐻) + 𝑃𝑃(𝐸𝐸|𝑛𝑛𝑛𝑛𝑛𝑛 𝐻𝐻)𝑃𝑃(𝑛𝑛𝑛𝑛𝑛𝑛 𝐻𝐻)
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The first table (the probability table for H) captures our knowledge that the defendant is one of 
10,000 people who could have been the source of the DNA. The second table (the probability 
table for E | H) captures the assumptions that: 
 

• The probability of correctly matching a DNA trace is one (so there is no chance of a 
false negative DNA match). This probability P(E | H) is called the prosecution 
likelihood for the evidence E. 

• The probability of a match in a person who did not leave their DNA at the scene (the 
‘random DNA match probability’) is 1 in 1,000. This probability P(E | not H) is called 
the defence likelihood for the evidence E. 

 
With these assumptions, it follows from Bayes’ theorem that, in our example, the posterior 
belief in H after observing the evidence E being true is about 9%, i.e. our belief in the defendant 
being the source of the DNA at the crime scene moves from a prior of 1 in a 10,000 to a 
posterior of 9%.  Alternatively, our belief in the defendant not being the source of the DNA 
moves from a prior of 99.99% to a posterior of 91%. 
 
Note that the posterior probability of the defendant not being the source of the DNA is very 
different from the random match probability of 1 in 1,000. The incorrect assumption that the 
two probabilities P(not H | E) and P(E | not H) are the same characterises what is known as the 
prosecutor’s fallacy (or error of transposed conditional). A prosecutor might state, for example, 
that “the probability the defendant was not the source of this evidence is one in a thousand”, 
when actually it is 91%. This fallacy of probabilistic reasoning has affected numerous cases 24, 
but can always be avoided by a basic understanding of Bayes’ Theorem. A closely related error 
of probabilistic reasoning is the defendant’s fallacy, whereby the defence argues that since 
P(not H | E) is still low after taking into account the prior and the evidence, the evidence should 
be ignored. 
 
Unfortunately, people without statistical training find Bayes’ theorem both difficult to 
understand and counter-intuitive 25.  Legal professionals are also concerned that the use of 
Bayes requires us to assign prior probabilities. In fact, an equivalent formulation of Bayes 
(called the ‘odds’ version of Bayes) enables us to interpret the value of evidence E without 
having to consider the prior probability of H. Specifically, this version of Bayes’ tells us that 
the posterior odds of H are the prior odds of H times the likelihood ratio:   

 
𝑃𝑃(𝐻𝐻|𝐸𝐸)

𝑃𝑃(𝑛𝑛𝑛𝑛𝑛𝑛 𝐻𝐻|𝐸𝐸)
=

𝑃𝑃(𝐻𝐻)
𝑃𝑃(𝑛𝑛𝑛𝑛𝑛𝑛 𝐻𝐻)

×
𝑃𝑃(𝐸𝐸|𝐻𝐻)

𝑃𝑃(𝐸𝐸| 𝑛𝑛𝑛𝑛𝑛𝑛 𝐻𝐻)
 

 
where the likelihood ratio (LR) is simply the prosecution likelihood of E divided by the defence 
likelihood of E, i.e.   
 

( | )
( | not )
P E H

P E H
 

 
In the example in Figure 1 the prosecution likelihood for the DNA match evidence is 1, while 
the defence likelihood is 1/1,000. So the LR is 1,000. This means that, whatever the prior odds 
were in favour of the prosecution hypothesis, the posterior odds must increase by a factor of 
                                                 
24 Balding & Donnelly 1994; Fenton & Neil 2011. 
25 Casscells & Graboys 1978; Cosmides & Tooby 1996. 
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1,000 as a result of seeing the evidence.  In general, if the LR is bigger than 1 then the evidence 
results in an increased posterior probability of H (with higher values leading to the posterior 
probability getting closer to 1), while if it is less than 1 it results in a decreased posterior 
probability of H (and the closer it gets to zero the closer the posterior probability gets to zero).  
If the LR is equal to 1 then E offers no value since it leaves the posterior probability is 
unchanged.  
 
The LR is therefore an important and meaningful measure of the probative value of evidence. 
In our example the fact that the DNA match evidence had a LR of 1000 meant the evidence 
was highly probative in favour of the prosecution. But as impressive as that sounds, whether 
or not it is sufficient to convince you of which hypothesis is true still depends entirely on the 
prior P(H). If P(H) is, say 0.5 (so the prior odds are evens 1:1), then a LR of 1000 results in 
posterior odds of 1000 to 1 in favour of H. That may be sufficient to convince a jury that H is 
true. But if P(H) is very low - as in our example  (9999  to 1 against) - then the same LR of 
1000 results in posterior odds that still strongly favour the defence hypothesis by 10 to 1.  
 
It is important to note that the properties of the LR (as a meaningful measure of probative value 
of evidence) depend both on Bayes’ theorem and the assumption that the defence hypothesis 
is the negation of the prosecution hypothesis (i.e. the hypotheses must be mutually exclusive). 
Unfortunately, in practice there is much misunderstanding of LR lawyers, and even forensic 
experts and statisticians. An indication of the extent of the confusion can be found in one of 
the many responses by the latter community to the RvT judgement26. Specifically, in the 
otherwise excellent position statement is the extraordinary point 9 that asserts: 
 

“It is regrettable that the judgment confuses the Bayesian approach with the use of 
Bayes' Theorem. The Bayesian approach does not necessarily involve the use of 
Bayes' Theorem.” 

 
By the “Bayesian approach” the authors are specifically referring to the use of the LR, thereby 
implying that the use of the LR is appropriate, while the use of Bayes’ Theorem may not be. 
 
Notwithstanding these misunderstandings (and other problems with the LR that we discuss in 
Section 4) the fact that it does determine the probative value of evidence and can be calculated 
without reference to the prior probability of H, has meant that it has become a potentially 
powerful application of Bayesian reasoning in the law. Indeed, its use is a core recommendation 
in Guidelines such as 27. Forcing expert witnesses to consider both the prosecution and defence 
likelihood of their evidence – instead of just one or the other –also avoids most common cases 
of the prosecutor’s fallacy.  
 
While Bayes’ Theorem provides a natural match to intuitive legal reasoning in the case of a 
single hypothesis H and a single piece of evidence E, practical legal arguments normally 
involve multiple hypotheses and pieces of evidence with complex causal dependencies. For 
example, even the simplest case of DNA evidence strictly speaking involves three unknown 
hypotheses and two pieces of evidence with the causal links shown in Figure 2 28 once we take 
account of the possibility of different types of DNA collection and testing errors 29. 
.  
                                                 
26 Aitken and many other signatories, 2011 . 
27 ENFSI, ‘Guideline for Evaluative Reporting in Forensic Science’; Puch-Solis et al 2012. 
28 Dawid & Mortera 1998; Fenton, Neil & Hsu 2014. 
29 Koehler 1993; Thompson, Taroni & Aitken 2003. 
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Figure 2 Bayesian network for DNA match evidence. Each node has states true or false 

 
Moreover, there are further crucial hypotheses not shown in Figure 2 (a full version of the 
model is provided in 30 supplementary material) such as: “Defendant was at the scene of the 
crime” and the ultimate hypothesis “Defendant committed the crime”. These are only omitted 
here because, whereas the law might accept a statistical or forensic expert reasoning 
probabilistically about the source of the forensic evidence, it is presupposed that any 
probabilistic reasoning about the ultimate hypothesis is the province of the trier of fact, i.e., the 
judge and/or the jury.   
 
With or without the additional hypotheses, Figure 2 is an example of a Bayesian Network (BN). 
As in the simple case of Figure 1, to perform the correct Bayesian inference once we observe 
evidence we need to know the prior probabilities of the nodes without parents and the 
conditional prior probabilities of the nodes with parents. Assuming that it is possible to obtain 
suitable estimates of these prior probabilities, the bad news is that, even with a small number 
of nodes, the calculations necessary for performing correct probabilistic inference are far too 
complex to be done manually. Moreover, until the late 1980’s there were no known efficient 
computer algorithms for doing the calculations. This is the reason why, until relatively recently, 
only rather trivial Bayesian arguments with over simplistic assumptions could realistically be 
used in legal reasoning.   
 
However, algorithmic breakthroughs in the late 1980s made it possible to perform correct 
probabilistic inference efficiently for a wide class of Bayesian networks and tools 31. These 
algorithms have subsequently been incorporated into widely available graphical toolsets that 
enable users without any statistical knowledge to build and run BN models 32.  Moreover, 
further algorithmic breakthroughs have enabled us to model an even broader class of BNs, 
namely those including numeric nodes with arbitrary statistical distributions 33. These 
breakthroughs are potentially crucial for modelling legal arguments. Yet, despite widely 
documented examples of their use for legal arguments  34 BNs have been largely ignored. 
                                                 
30  Fenton, Neil & Berger 2016. 
31  Pearl 1988. 
32 Agena Ltd, ‘AgenaRisk’ <http://www.agenarisk.com>. 
33 Neil, Tailor & Marquez 2007. 
34 Fenton & Neil 2018; Biedermann & Taroni 2006; Dawid, Mortera & Vicard 2007. 
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Moreover, even many experts who propose the Bayesian approach for legal reasoning continue 
to oversimplify their underlying legal arguments in order to ensure the computations can be 
carried out manually. This is an unnecessary and debilitating constraint on the use of Bayes.   
 
 

4 Addressing relevant objections 
 

4.1 Problem of unconstrained priors 
 
The problem of how we attain priors that are not arbitrary and potentially biased is well covered 
in the chapter by Dahlman and Kolflaath in this volume. Here we focus on how to avoid the 
problem of wildly different priors: consider, for example, the extremes whereby one juror 
assumes that the prior probability a defendant is guilty is ½ while another assumes it is 1/(7 
billion) (i.e. one over the world population). Then, whereas a minimal amount of evidence 
supporting the prosecution hypothesis would lead to a sufficiently high posterior probability of 
guilt for the first juror, even enormous amounts of evidence would not be sufficient for the 
second juror.  The novel opportunity prior approach 35  can – in many real-world cases – 
address this problem.  
 
When the police suspect someone of a crime, one of the first questions they ask is where the 
suspect was at the time of the crime. This question is very diagnostic: if the suspect can show 
he was elsewhere, then he is ruled out. If, however, the police can show the suspect was at the 
crime scene, then he is ruled into a relatively small set of possible perpetrators. 
 
Establishing opportunity is thus critical at the investigate phase. But the same logic applies at 
later stages of the legal process, in particular when the suspect is charged with the crime, and 
we must evaluate the strength of evidence against him. Information about the suspect’s 
whereabouts in relation to the crime scene provides a starting point for building a case, before 
other evidence is presented. A key point, frequently neglected in formal analyses of evidence, 
is that case-specific information allows us to assess the probative value of opportunity 
evidence.  
 
Consider an idealised case first. Suppose we know that only five people were in a room when 
an item of jewellery was stolen from a small boutique. Before considering any other 
information, the only rational (and fair) judgment is to assign each person a probability of 1/5 
of committing the theft. More generally, for n people in the room, each is assigned a probability 
of 1/n. Note this doesn’t mean that we think each person has an equal propensity to commit the 
crime; but just that given our current state of knowledge we should assign an equal probability 
to each potential perpetrator; anything else would be illogical and unfair.   
 

                                                 
35 Fenton et al 2019; Lagnado 2021. 
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The ease of estimating n depends on what is known about the location and time of the crime. 
For a crime committed at a solitary place and during a brief time window, we can safely assume 
there was only a small number of possible perpetrators. By contrast, a crime in a busy high 
street will include a far larger number of people. Often it will be possible to get a rough estimate 
or establish reasonable upper bounds for n. A crucial point here is that we are estimating the 
number of people who were actually at the crime scene at the critical time, not the number of 
people who could have been there. Thus, even if we don’t know who the other people are (and 
might never discover this), we can still assign our suspect, who was definitely at the crime 
scene, a probability of 1/n. In other words, even if many individuals could have been one of 
the other n -1 at the crime scene, our suspect has probability 1/n regardless.  
 
This analysis does not simply see opportunity as a necessary condition for guilt. Instead it can 
set a reasonable (and fair) initial probability – informed by the spatiotemporal circumstances 
of the case, but before considering other evidence.  In cases where the suspect’s presence at the 
crime scene is uncontested, this is a major advantage because we can set the prior at 1/n. For 
example, in a murder case where a man was accused of killing his wife, the fact that he was 
definitely with her when she was violently killed, and it was established that at most only three 
other people were in the vicinity, justifies an initial probability of about 1/4 based on this 
opportunity information.36    
 
In many cases, however, the suspect denies being at the crime scene at the time of the crime. 
To apply our analysis to these contexts we introduce the notion of the extended crime scene, 
which is based on the closest proven location and time for the suspect from which he could still 
have got to the crime scene to commit the crime. This can include a location before or after the 
crime was committed. For example, it might be accepted that the suspect was at a location two 
miles from the crime scene, one hour after the crime took place. We use this location and time 
to generate the extended crime scene, which will cover all people who were in the area at most 
two miles from the crime and at most one hour after the crime. This gives us the number of 
possible perpetrators N, which includes the suspect. Based on this extended crime scene we 
assign a probability for the suspect committing the crime of n/N (as there are n people at the 
crime scene). 
 
Estimating the number of people in the extended crime scene can be difficult, especially if the 
agreed locations and times are distant from the crime scene.  But in many cases (including most 
of those considered in this book) we can set reasonable upper limits on N, and thus reasonable 
lower bounds on the prior probability of the suspect being at the crime scene. Moreover, we 
can accommodate uncertainty in these estimates by using distributions rather than point values 
for n and N.  
 
 
In sum, the opportunity prior helps us incorporate crucial information about the spatiotemporal 
location of the suspect in relation to the crime scene – something that detectives do intuitively. 

                                                 
36 Fenton et al 2020. 
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The analysis quantifies the value of this information, rather than simply concluding that the 
suspect ‘might’ have been at crime scene. It also shows us how to combine opportunity with 
other evidence in the case. There is plenty of scope to debate the numbers, and sometimes 
priors will be extremely low. But some inferential edge, however small, is better than none. 
Moreover, this approach also helps avoids the common objection of ‘double-counting’ 
statistical information about priors discussed in Section 1. 
 

4.2 Objections to Bayes caused by misunderstandings and misuse of the 
likelihood ratio method 

  
Alongside the prior probabilities the other main component in the Bayesian framework is the 
probabilistic evaluation of evidence. In simple cases (such as the two node BN in Figure 1) we 
showed in Section 3 that the strength of evidence is captured by the likelihood ratio (LR), and 
this is the basis for the main approach to evaluating evidence. But there are several challenges 
to this approach. For example, some commentators reject the probabilistic approach wholesale, 
claiming that the use of the LR to evaluate evidence leads to legal paradoxes 37 . However, in 
38 it was shown that these paradoxes are simply the result of a flawed approach to the use of 
the LR - most typically because it forces multiple different related hypotheses and pieces of 
evidence into a 2-node BN model rather than one which separates out the different hypotheses 
and evidence.   In this section we identify the key problems with the LR approach which 
compromises the use of Bayes and describe how these problems are avoided. 
 
 

4.2.1 The notion that the LR can only be used for ‘statistically valid’ evidence 
 
A 2010 UK Court of Appeal Ruling - known as RvT  39 - dealt the use of Bayes and the LR a  
devastating blow. The ruling quashed a murder conviction in which the prosecution had relied 
heavily on footwear matching evidence presented using Bayes and the LR. What certainly 
contributed to the ruling was the poorly presented evidence by the footwear expert; in 
particular, he did not make clear that likelihood ratios for different aspects of the evidence were 
multiplied together to arrive at a composite likelihood ratio. However,  the ruling asserted: 
 

“We are satisfied that in the area of footwear evidence, no attempt can realistically be 
made in the generality of cases to use a formula to calculate the probabilities. The 
practice has no sound basis”. 
 
“It is quite clear that outside the field of DNA (and possibly other areas where there is 
a firm statistical base) this court has made it clear that Bayes’ theorem and likelihood 
ratios should not be used” 

 

                                                 
37 Park et al 2010. 
38 de Zoete et al 2019. 
39 R v T, EWCA Crim 2439, Case No 2007/03644/D2 (2010). 
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Numerous articles have criticised the ruling 40. In fact, the judge’s assertions essentially repeat 
the fundamental fallacy addressed in Section 1, which assumes that if probabilities are in any 
way subjective, then it is impossible to make rational and consistent conclusions from them. 
But, as explained in 41, the idea that the statistics associated with DNA match evidence is 
somehow purely objective, while the statistics associated with footwear match evidence is 
purely subjective is a myth. All probabilities based on statistical data rely on multiple subjective 
assumptions about the interpretation and source of the data. Unfortunately, the ruling is having 
a devastating impact on the way some forensic evidence is presented with experts deliberately 
concealing or obfuscating their calculations. 
 
 
 
 

4.2.2 LR models are inevitably over-simplified  
 
The simplest and most common use of the LR – involving a single piece of forensic trace 
evidence for a single source level hypothesis – can actually be very complex as already 
explained in Section 2 (where Figure 2, rather than Figure 1 is the correct model). Even if we 
completely ignore much of the context (including issues of reliability of trace sample 
collection/storage and potential testing errors) the LR may still be difficult or even impossible 
to elicit because somehow we have to factor in to the hypothesis Hd (defendant is not the source 
of the DNA trace) every person other than the defendant who could have been the source 
(potentially every other person in the world) 42. For example, P(E | Hr)  is much higher than 
P(E | Hu) where Hr is the hypothesis “a close relative of the defendant is the source of the 
trace” and Hu is the hypothesis “a totally unrelated person is the source” 
 
This means that, in reality, Hd is made up of multiple hypotheses that are difficult to articulate 
and quantify. The standard pragmatic solution (which has been widely criticised 43) is to 
assume that Hd represents a ‘random person unrelated to the defendant’. But not only does this 
raise concerns about the homogeneity of the population used for the random match 
probabilities, it also requires separate assumptions about the extent to which relatives can be 
ruled out as suspects.  
 
It is not just the hypotheses that may need to be ‘decomposed’. In practice, even an apparently 
‘single’ piece of evidence E actually comprises multiple separate pieces of evidence, and it is 
only when the likelihoods of these separate pieces of evidence are considered that correct 
conclusions about probative value of the evidence can be made.  
 

Example 1: Consider the evidence E: “tiny matching DNA trace found”. Suppose that 
the DNA trace has a profile with a random match probability of 1/100 (such relatively 
‘high’ match probabilities are common in low-template samples). Assuming Hp and Hd 
are the prosecution and defence hypotheses respectively, it would be typical to assume 
that  

P(E | Hp) = 1  

                                                 
40 Aitken et al 2011; Berger et al 2011; Morrison 2012; Nordgaard, Hedell & Ansell 2012; Redmayne et al 
2011; Robertson, Vignaux & Berger 2011; Sjerps & Berger 2012. 
41 Fenton et al  2020. 
42 Balding & Steele 2015; Nordgaard, Hedell and Ansell 2012. 
43 Balding & Steele 2015. 
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and that  
P(E | Hd) = 1/100  

leading to a LR of 100, thus indicating quite strong support for the prosecution 
hypothesis. However, the evidence E actually comprises two separate pieces of 
evidence: 
 

• E1: tiny DNA trace found 
• E2: DNA trace found matches defendant 

 
In particular, this makes clear the relevance of finding only a tiny trace of DNA when 
larger amounts would be expected to have been left by the person who committed the 
crime. So, actually P(E | Hp) will be much smaller than 1, because we would expect 
substantial amounts of DNA to be found, rather than just a tiny trace. To elicit all the 
necessary individual likelihood values, and to carry out the correct Bayesian 
calculations needed for the overall LR in situations such as this, we again need to turn 
to BNs as shown in  Figure 5. 

 

 
 

 

 

(i) Original representation  (ii) Correct representation 

Figure 3 Modelling complex evidence in a BN 

 
The oversimplistic model fails to capture the relevance of the fact that the trace was 
tiny. If the defendant were guilty it is expected that the investigator would have found 
significant traces of DNA. The significance of the tiny trace is properly captured by 
separating out E1 in the second model. A reasonable conditional probability table for 
E1 is shown in Table 2.  
 
Table 1 Conditional probability table for E1 

 
The conditional probability table for E2 shown in Table 3 uses the same RMP 
information as was used in the oversimplified model. 
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Table 2 Conditional probability table for E2 

 
Calculating the overall LR manually in this case is much more complex, so we go 
directly to the result of running the model in a BN tool with E2 set as true (and the prior 
odds of guilt set at 50:50 again). This is shown in Figure 15. The LR is just the 
probability of guilty divided by the probability of not guilty, which is 0.2. So the 
evidence supports the defence hypothesis rather than the prosecution.  

 

 
Figure 4 Posterior odds in correct model 

 
This example also indicates the importance of taking account of absence of evidence. 
 

We note that a frequent objection against Bayesianism is that it is practically impossible to 
consider all of the probabilistic dependencies between pieces of evidence in a case.44 We 
accept that a Bayesian Network does not capture the whole complexity and, like all 
reasoning, Bayesian reasoning makes some simplifications. But the advantage of the 
Bayesian approach is that it is much more nuanced and rigorous than the alternatives 
proposed such as relative plausibility.45      

  
 
 

4.3 Bayes is too complex for lawyers and juries to understand 
 

                                                 
44 See Allen & Pardo in this volume. 
45 Ibid. 
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This is essentially the argument that was used in the case of 46. This was a rape case (discussed 
in detail in 47) in which the only prosecution evidence was that the defendant’s DNA matched 
that of a swab sample taken from the victim. The defence evidence included an alibi and the 
fact that the defendant did not match the victim’s description of her attacker. At trial the 
prosecution had emphasised the very low random match probability (1 in 200 million) of the 
DNA evidence. The defence argued that if statistical evidence was to be used in connection 
with the DNA evidence, it should also be used in combination with the defence evidence and 
that Bayes Theorem was the only rational method for doing this. The defence called a Bayesian 
expert (Prof Peter Donnelly) who explained how, with Bayes, the posterior probability of guilt 
was much lower when the defence evidence was incorporated. The appeal rested on whether 
the judge misdirected the jury as to the evidence in relation to the use of Bayes and left the jury 
unguided as to how that theorem could be used in properly assessing the statistical and non-
statistical evidence in the case. The Appeal was successful and a retrial was ordered, although 
the Court was scathing in its criticism of the way Bayes was presented, stating:  
 

“The introduction of Bayes' theorem into a criminal trial plunges the jury into 
inappropriate and unnecessary realms of theory and complexity deflecting them from 
their proper task.   
 
The task of the jury is … to evaluate evidence and reach a conclusion not by means of 
a formula, mathematical or otherwise, but by the joint application of their individual 
common sense and knowledge of the world to the evidence before them” 

 
At the retrial it was agreed by both sides that the Bayesian argument should be presented in 
such a way that the jury could perform the calculations themselves (a mistake in our view). 
The jury were given a detailed questionnaire to complete to enable them to produce their own 
prior likelihoods, and calculators to perform the necessary Bayesian calculations from first 
principles. Adams was, however, again convicted. A second appeal was launched and was also 
unsuccessful, with the Court not only scathing about the use of Bayes in the case but essentially 
ruling against its future use. 

 
The ruling against the use of Bayes in R v Adams is especially damaging because it rules 
against the very use where Bayes has the greatest potential to simplify and clarify complex 
legal arguments. The fact that the complex presentation of Bayes in the case was (rightly) 
considered to be its death knell is especially regrettable given that in 1996 the tools for avoiding 
this complexity were already widely available.  
 
The idea that different pieces of (possibly competing) evidence about a hypothesis H are 
combined to update our belief in H is central to all legal proceedings. Yet, although Bayes is 
the perfect formalism for this type of reasoning, it is difficult to find any well reported examples 
of the successful use of Bayes in combining diverse evidence in a real case. While the 
spectacular failure in the above Adams case has not helped, a major reason for this is to do with 
the lack of awareness of tools for building and running BN models that enable us to do Bayesian 
inference for legal arguments involving diverse related evidence.  
 
Despite the multiple publications applying BNs to legal arguments, even many Bayesian 
statisticians are either unaware of these breakthroughs or are reluctant to use the available 
                                                 
46 R v Adams [1996] 2 Cr App R 467, [1996] Crim LR 898, CA and R v Adams [1998] 1 Cr App R 377. 
47 Donnelly 2005. 
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technology. Yet, if one tries to use Bayes theorem ‘manually’ to represent a legal argument one 
of the following results is inevitable: 
 

1. To ensure the calculations can be easily computed manually, the argument is made so 
simple that it no longer becomes an adequate representation of the legal problem. 

2. A non-trivial model is developed and the Bayesian calculations are written out and 
explained from first principles and the net result is to totally bemuse legal professionals 
and jurors. This was, of course, the problem in R v Adams. In 48 we show other 
examples where statisticians provide unnecessarily complex arguments).  

 
The manual approach is also not scalable since it would otherwise mean having to explain and 
compute one of the BN inference algorithms, which even professional mathematicians find 
daunting. 
 

5 Conclusions and the way forward 
 
 
That fallacies of probabilistic reasoning (such as the prosecutor’s fallacy) continue to be made 
in legal proceedings is a sad indictment of the lack of impact made by statisticians in general 
(and Bayesians in particular) on legal practitioners. This is despite the fact that the issue has 
been extensively documented by multiple authors including 49 and has even been dealt with in 
populist books such as 50. There is almost unanimity among the authors of these works that a 
basic understanding of Bayesian probability is the key to avoiding probabilistic fallacies. 
Indeed, Bayesian reasoning is explicitly recommended in works such as 51 , although there is 
less of a consensus on whether or not experts are needed in court to present the results of all 
but the most basic Bayesian arguments 52. 
  
We argue that the way forward is to use BNs to present probabilistic legal arguments since this 
approach avoids much of the confusion surrounding both the over-simplistic LR and more 
complex models represented formulaically and computed manually.  Unfortunately, it is 
precisely because BNs are assumed by legal professionals to be ‘part of those same problems’ 
that they have made little impact. Yet, ultimately, any use of probability – even if it is based 
on frequentist statistics – relies on a range of subjective assumptions. The objection to using 
subjective priors may also be calmed by the fact that it may be sufficient to consider a range of 
probabilities, rather than a single value for a prior. BNs are especially suited to this since it is 
easy to change the priors and do sensitivity analysis 53  . 
 
A basic strategy for presenting BNs to legal professionals is described in detail in 54 and is 
based on the calculator analogy. This affirms that since we now have efficient and easy-to-use 
                                                 
48 Fenton, Neil & Berger 2016. 
49 Kaye 2001; Anderson, Schum & Twining 2005; Edwards 1991; Evett 1995; Fenton & Neil 2000; Jowett 
2001; Balding & Donnelly 1994; Koehler 1993; Redmayne ; Thompson & Schumann 1987; Freckelton & Selby 
2005; Murphy 2003. 
50 Gigerenzer 2002; Haigh 2003. 
51 Dahlman 2020; Evett 1995; Finkelstein & Levin  2001; Good 2001; Redmayne; Saks & Thompson 2003; 
Robertson & Vignaux 1995. 
52 Robertson & Vignaux. 
53 Fenton & Neil 2018. 
54 Fenton & Neil 2011. 
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BN tools there should be no more need to explain the Bayesian calculations in a complex 
argument than there should be any need to explain the thousands of circuit level calculations 
used by a regular calculator to compute a long division.  
 
Only the simplest Bayesian legal argument (a single hypothesis and a single piece of evidence) 
can be easily computed manually; inevitably we need to model much richer arguments 
involving multiple pieces of possibly linked evidence. While humans must be responsible for 
determining the prior probabilities (and the causal links) for such arguments, it is simply wrong 
to assume that humans must also be responsible for understanding and calculating the revised 
probabilities that result from observing evidence.  The Bayesian calculations quickly become 
impossible to do manually, but any BN tool enables us to do these calculations instantly. 
 
The results from a BN tool can be presented using a range of assumptions including different 
priors. What the legal professionals (and perhaps even jurors if presented in court) should never 
have to think about is how to perform the Bayesian inference calculations. They do, of course, 
have to consider the prior assumptions needed for any BN model.  But these are precisely what 
have to be considered in weighing up any legal argument. The BN simply makes this all explicit 
rather than hidden, which is another clear benefit of the approach. 
 
We recognise that there are significant technical challenges to overcome to make the 
construction of BNs for legal reasoning easier, but the lack of a systematic, repeatable method 
for modelling legal arguments as BNs has been addressed by using common idioms and an 
approach for building complex arguments from these.  
 
Proper use of Bayesian reasoning has the potential to improve the efficiency, transparency and 
fairness of criminal and civil justice systems. It can help experts formulate accurate and 
informative opinions; help courts determine admissibility of evidence; help identify which 
cases should be pursued; and help lawyers to explain, and jurors to evaluate, the weight of 
evidence during a trial. It can also help identify errors and unjustified assumptions entailed in 
expert opinions.  
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