Correlation coefficient and p-values: what they are and why you need to be
very wary of them

(From Chapter 1 of “Risk Assessment and Decision Analysis with Bayesian
Networks”, by Norman Fenton and Martin Neil, CRC Press, 2012)

The correlation coefficient is a number between —1 and 1 that determines whether
two paired sets of data (such as those for height and intelligence of a group of
people) are related. The closer to 1 the more ‘confident’ we are of a positive linear
correlation and the closer to —1 the more confident we are of a negative linear
correlation (which happens when, for example one set of numbers tends to decrease
when the other set increases as you might expect if you plotted a person’s age
against the number of toys they possess).

When the correlation coefficient is close to zero there is no evidence of any
relationship.

Confidence in a relationship is formally determined not just by the correlation
coefficient but also by the number of pairs in your data. If there are very few pairs
then the coefficient needs to be very close to 1 or —1 for it to be deemed ‘statistically
significant’, but if there are many pairs then a coefficient closer to 0 can still be
considered ‘*highly significant'.

The standard method that statisticians use to measure the ‘significance’ of their
empirical analyses is the p-value. Suppose we are trying to determine if the
relationship between height and intelligence of people is significant; then we start
with the ‘null hypothesis’ which, in this case is the statement ‘*height and intelligence
of people are unrelated’. The p-value is a number between 0 and 1 representing the
probability that this data would have arisen if the null hypothesis were true. In
medical trials the null hypothesis is typically of the form that ‘the use of drug X to
treat disease Y is no better than not using any drug’.

The calculation of the p-value is based on a number of assumptions that are beyond
the scope of this discussion, but people who need p-values can simply look them up
in standard statistical tables (they are also computed automatically in Excel when
you run Excel’s regression tool). The tables (or Excel) will tell you, for example, that
if there are 100 pairs of data whose correlation coefficient is 0.254, then the p-value
is 0.01. This means that there is a 1 in 100 chance that we would have seen these
observations if the variables were unrelated.

A low p-value (such as 0.01) is taken as evidence that the null hypothesis can be
‘rejected’. Statisticians say that a p-value of 0.01 is *highly significant’ or say that ‘the
data is significant at the 0.01 level’

A competent researcher investigating a hypothesized relationship will set a p-value
in advance of the empirical study. Typically, values of either 0.01 or 0.05 are used. If
the data from the study results in a p-value of less than that specified in advance, the
researcher will claim that their study is significant and it enables them to reject the
null hypothesis and conclude that a relationship really exists.



In their book The Cult of Statistical Significance Ziliak and McCloskey expose a
number of serious problems in the way p-values have been used across many
disciplines. Above all, their main arguments can be summarised as:

e Statistical significance (i.e. the p-value) is arbitrarily set and generally has no
bearing on what we are really interested in, namely impact or magnitude of
the effect of one or more variables on another.

e By focusing on a null hypothesis all that we are ever considering are
existential questions, the answers to which are normally not interesting. So,
for example, we might produce a very low p-value and conclude that road
deaths and temperature are not unrelated. But the p-value tells us nothing
about what we are really interested in, namely the nature and size of the
relationship.

e Statisticians often wrongly assume that the p-value (which remember is
chance of observing the data if the null hypothesis is true) is equivalent to the
chance that the null hypothesis is true given the data. So, for example, if they
see a low p-value of say 0.01 they might conclude that there is a 1 in a 100
chance of no relationship (which is the same as a 99% chance that there is a
relationship). This is, in fact, demonstrably false (we will show this in Chapter
5); it is an example of one of the most pernicious and fundamental fallacies of
probability theory that permeates many walks of life (called the fallacy of the
transposed conditional).

¢ In those many studies (notably medical trials) where the null hypothesis is one
of ‘no change’ for some treatment or drug, the hypothesis comes down to
determining whether the arithmetic mean of a set of data (from those
individuals taking the treatment/drug) is equal to zero (supposedly
representing status quo). In such cases, we have the paradox that, as we
substantially increase the sample size, we will inevitably find that the mean of
the sample, although approximately close to and converging to zero, will be
significantly different from zero, even when the treatment genuinely has no
effect (this is covered in Chapter 10 on hypothesis testing and is known as
Meehl’'s conjecture).

e The choice of what constitutes a valid p-value is arbitrary. Is 0.04 radically
different from 0.05? A treatment or putative improvement that yields a p-value
that just misses the 0.05 target may be completely rejected and one that
meets the target may be adopted.

Ziliak and McCloskey cite hundreds of examples of studies (all published in highly
respected scientific journals) that contain flawed analyses or conclusions arising
from the above misunderstandings. They give the following powerful hypothetical
example of a fundamental weakness of using p-values:

Suppose we are interested in new drugs for reducing weight in humans. Two
candidate drugs (called Precision and Oomph respectively) are considered.
Neither has shown any side-effects and their cost is the same. For each drug
we conduct a study to test the null hypothesis ‘taking the drug leads to no
weight loss’. The results are:

e For drug Precision the mean weight loss is 5 Ibs and every one of the
100 subjects in the study loses between 4.5 |b and 5.5 Ib.



e For drug Oomph the mean weight loss is 20 lbs and every one of the
100 subjects in the study loses between 10 |b and 30 Ib.

Since the objective of weight loss drugs is to lose as much weight as possible,
any rational, intuitive review of these results would lead us to recommend
drug Oomph over Precision. Yet the p-value test provides the opposite
recommendation. For drug Precision the p-value is much lower (i.e. more
significant) than the p-value for drug Oomph. This is because p-values
inevitably ‘reward’ low variance more than magnitude of impact.



