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Abstract

The simultaneously transmitting and reflecting reconfigurable intelligent surface (STAR-RIS) is

capable of providing full-space coverage of smart radio environments. This work investigates STAR-

RIS aided downlink non-orthogonal multiple access (NOMA) multi-cell networks, where the energy

of incident signals at STAR-RISs is split into two portions for transmitting and reflecting. We first

propose a fitting method to model the distribution of composite small-scale fading power as the tractable

Gamma distribution. Then, a unified analytical framework based on stochastic geometry is provided to

capture the random locations of RIS-RISs, base stations (BSs), and user equipments (UEs). Based on this

framework, we derive the coverage probability and ergodic rate of both the typical UE and the connected

UE. In particular, we obtain closed-form expressions of the coverage probability in interference-limited

scenarios. We also deduce theoretical expressions in conventional RIS aided networks for comparison.

The analytical results show that there exist optimal energy splitting coefficients of STAR-RISs to

simultaneously maximize the system coverage and ergodic rate. The numerical results demonstrate

that: 1) STAR-RISs are able to meet different demands of UEs located at different sides; 2) in low

RIS density regions, STAR-RISs outperform conventional RISs while in dense regions the conclusion

is opposite.
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Index Terms

Multi-cell networks, non-orthogonal multiple access, reconfigurable intelligent surface, simultaneous

transmission and reflection, stochastic geometry

I. INTRODUCTION

Requirements for high data rates and heterogeneous services in future sixth-generation (6G)

wireless networks bring challenges to system designs [1]–[3]. The smart radio environment

(SRE) is envisioned to be a promising solution [3], [4]. Equipped with several low-cost recon-

figurable elements and a smart controller, a reconfigurable intelligent surface (RIS) is capable

of intelligently altering the phase of signals [3], [5], [6], hence the propagation of which is

controllable and the SRE can be realized. However, the main issue of conventional reflecting-

only RISs in existing works is that user equipment (UE) can only receive reflected signals from

base stations (BSs) located at the same side of the assisted RIS, which degrades the coverage

performance especially for those blocked UEs. Thanks to the recent development of metasurfaces,

the concept of simultaneous transmitting and reflecting RISs (STAR-RISs) has been proposed,

where incident signals can not only be reflected within the same half-space in front of the

RIS, but can be refracted to the other half-space [7]–[9]. Thus, STAR-RISs are able to provide

full-space coverage of SRE.

As stated in [7], there are three practical operating protocols for STAR-RISs, namely energy

splitting (ES), mode switching (MS), and time switching. In ES and MS protocols, since the

incident signal is split into two portions by the STAR-RIS, a multiple access scheme is required

to distinguish these two parts for successful demodulation at UEs located at different sides of the

STAR-RIS. Compared with orthogonal multiple access (OMA), non-orthogonal multiple access

(NOMA) has been considered to be a competent technique due to its ability for the spectral

efficiency enhancement and UE fairness guarantee [10]–[12]. The key idea of the NOMA scheme

is to serve multiple UEs in the same resource block (RB) by employing superposition coding

and successive interference cancellation (SIC) at transmitters and receivers, respectively. On the

other hand, the deployment of STAR-RISs is beneficial to NOMA systems. For NOMA UEs with

weak channel conditions, STAR-RISs are able to create stronger transmission links. Moreover,

since STAR-RISs have the capability of adjusting channel gains of different NOMA UEs, they

can offer flexible decoding orders according to the priority of UEs.
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A. Related Works

For RIS aided networks, initial research contributions have paid attention to the performance

analysis in single-cell systems. In these works, the channel modeling for RIS assisted com-

munications are firstly investigated as it plays an important role when theoretically evaluating

the enhancements and limitations of RISs. The authors in [13] derived the far-field path loss

expression based on physical optics techniques and pointed out that the path loss value is

correlated to the product of two distances of the cascaded link. In [14], the authors obtained

free-space path loss in both near-field and far-field cases. Experimental measurements were also

carried out to validate the accuracy of the analysis results. Considering the small-scale fading,

most existing works utilized approximations to characterize the composite channel gain, where

RISs are regarded as integrated antennas [15]–[18]. The authors in [15] and [16] assumed that

the number of RIS elements is sufficiently large, and hence the central limit theorem (CLT)

was applied to approximate the distribution of the channel gain. After that, the system capacity

and the spatial throughput were derived in [15] and [16], respectively. For arbitrary number

of elements, the authors in [17] and [18] employed the convolution theorem to evaluate the

asymptotic outage probability in STAR-RIS aided networks. A curve fitting method was also

proposed in [18]. Different from the above works, the authors in [19] derived the exact coverage

probability using Gil-Pelaez inversion, where Nakagami-m fading was considered.

Recently, the system performance of RIS aided multi-cell networks has been evaluated. In [20],

the authors employed a RIS at the edge of two cells to mitigate severe co-channel interference.

The authors in [21] considered a multi-cell multiple-input single-output network, where transmit

and reflective beamforming vectors were jointly optimized to maximize the minimum weighted

signal-to-interference-plus-noise ratio (SINR) at UEs. For large-scale deployment scenarios,

system optimizations were investigated in [22] and [23]. In [22], the optimal association solution

among BS, RIS, and UE was obtained for maximizing the utility of the considered system. In

[23], the authors focused on the capacity improvement in a cell-free structure. These works

optimized the system parameters in particular setups with fixed BSs and RISs. To characterize

the randomness property of large-scale networks, stochastic geometry is an efficient tool, which

has been widely utilized to evaluate the average performance of multi-cell networks with largely

deployed RISs [24]–[26]. However, in this scenario, channel models proposed in single-cell setup
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have to be further simplified to tractable formats. A recent work [24] considered double-Rayleigh

fading and approximated the composite channel gain as the Gamma distribution. Besides, based

on a tractable linear RIS model proposed in [27], the authors in [25] and [26] analyzed the

coverage probability and rate performance.

Motivated by the benefits including high spectral efficiency and the flexible SIC order from the

integration of RISs and NOMA, recent research efforts have been devoted to RIS-enabled NOMA

systems. System optimizations were considered in [28]–[31]. The authors in [28] maximized the

area of the cell coverage by optimizing RIS placement. In [29], the authors proposed a joint

design to maximized the achievable system sum rate. Multiple parameters including beamforming

vectors and power allocation coefficients were jointly optimized for the total transmit power

minimization in [30] and [31]. By leveraging stochastic geometry, the spatial effects of large-scale

RIS deployment were evaluated in both single-cell networks [32] and multi-cell networks [25],

[26]. Additionally, the authors in [33] investigated the performance enhancement of coordinated

multipoint transmissions in a two-cell setup. However, all these works adopted conventional

reflecting-only RISs, and the research on STAR-RIS aided NOMA networks is scarce. In STAR-

RIS enhanced NOMA transmissions, optimization problems focused on sum rate maximization

[34] and optimality gap minimization [35] were considered. For theoretical analysis, a recent

work [18] first evaluated three STAR-RIS operating protocols in a NOMA single-cell network.

B. Motivations and Contributions

As we have discussed previously, NOMA schemes are able to enhance the spectral efficiency

for STAR-RISs aided networks, while STAR-RISs have the potential to offer full-space coverage

as well as decoding flexibility for NOMA systems. Although some initial works have validated

the enhancement of STAR-RISs, most of them focused on specific small-scale fading environ-

ments, and the theoretical analysis in large-scale deployment scenarios has not been considered

yet. One of the main difficulties is to characterize the composite RIS aided channel as a tractable

expression. In the prior work [18], the authors utilized the curve fitting tool in Matlab to fit

the STAR-RIS aided Rician fading channel under a single-cell setup. In this work, we first

theoretically provide a tractable and accurate expression to characterize the composite channel

model with general small-scale fading. In order to shed light on the performance improvement

brought by STAR-RISs in multi-cell networks, a stochastic geometry-based analytical framework
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for a general case is then developed. The main contributions are summarized as follows:

• We derive a general expression to characterize the distribution of the small-scale fading

power of the composite channel including multiple independent RIS-based channels. By

exploiting the CLT and the method of moment, the channel power gain (CPG) can be

approximated by the Gamma distribution, whose parameters are only related to the mean

value and the variance of the considered small-scale fading model. Additionally, a simple

asymptotic expression is obtained for the case with a large number of RIS elements N .

Due to the channel hardening effect, the asymptotic value of CPG for the STAR-RIS aided

link is a constant when N →∞.

• Considering downlink transmissions, we develop an analytical framework for the STAR-RIS

aided NOMA multi-cell networks based on stochastic geometry, where the distributions of

BSs, STAR-RISs, and UEs are independent homogeneous Poisson point processes (PPPs).

In this framework, STAR-RISs are employed to assist the blocked typical UE and connected

UE in NOMA UE pair to communicate with their BS. By limiting the locations of BSs within

the same half-space of the typical UE, this framework can be applied in the conventional

RIS aided networks.

• Focusing on the ES protocol, we evaluate the coverage performance and ergodic rate for

this STAR-RIS aided networks. Using a novel analytical method, we derive the theoretical

expressions of these two metrics for both the typical UE and the connected UE. In particular,

the interference-limited case is considered as a special case, where we obtain closed-form

expressions for the coverage probability. We also provide expressions in conventional RIS

aided networks for comparison. Besides, the impact of the energy splitting coefficients is

investigated. The analytical results demonstrate that the system performance can be improved

by adjusting the energy splitting coefficients.

• The numerical results validate our theoretical analysis and illustrate that: 1) the NOMA

scheme significantly enhances the ergodic sum rate as well as the coverage performance

for the connected UE in NOMA systems; 2) when RIS density is low, STAR-RISs with

appropriate energy splitting coefficients outperform conventional RISs, while the conclusion

is opposite when the density becomes high; 3) STAR-RISs bring flexibility to NOMA

systems by reconfigurable energy splitting coefficients.
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C. Organizations

The rest of this paper is organized as follows. In Section II, we introduce the system model

of the STAR-RIS aided NOMA multi-cell networks that we consider. In Section III, we provide

a fitting method to characterize the small-scale fading for general cases. In section IV, we derive

the analytical expressions of the coverage probability. In Section V, we derive the analytical

expressions of the ergodic rate. Section VI presents numerical results. Finally, we draw the

conclusions in Section VII.

II. SYSTEM MODEL

A. Network Model

In this paper, STAR-RIS aided downlink NOMA multi-cell networks are considered. The

locations of BSs, STAR-RISs, and UEs obey three independent homogeneous PPPs ΦB, ΦR,

and ΦU in R
2 with density λB, λR, and λU . Both BSs and UEs are equipped with a single

antenna. The transmit power of BSs is PB. We assume that all direct links between BSs and

UEs are blocked. Therefore, The communication between BSs and UEs is assisted by STAR-

RISs. The STAR-RIS consists of N reflecting elements, all of which are able to simultaneously

transmit and reflect signals.

To improve the spectral efficiency, two NOMA UEs are grouped in each orthogonal RB in

this work. We define a UE randomly selected from ΦU as the typical UE ut and set the location

of the typical UE as the origin of the considered plane. Without loss of generality, we assume

that the other one of the paired UEs uc has been connected to the tagged BS through the same

assisted STAR-RIS as the typical UE in the previous UE association process, which joints the

same RB of the typical UE to form the typical NOMA pair. The connected UE and the typical

UE are assumed to locate at the different side of the STAR-RIS, hence the desired signal is split

by the STAR-RIS, transmitting and reflecting to the paired UEs respectively.

B. Channel Model

Since all direct BS-UE links are blocked, the desired signal is transmitted/reflected by a

assisted STAR-RIS. The detailed descriptions of the STAR-RIS aided link is provided in the

following.
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Fig. 1. Illustration of the considered STAR-RIS aided networks: the left two subfigures show the assistant STAR-RIS transmitting

and reflecting signals for the typical UE, respectively; the right subfigure depicts the network topology of the STAR-RIS aided

networks.

We use uε to denote any UE in the typical NOMA pair, where the subscript ε ∈ {t, c}
presenting the type of UE. Since STAR-RISs are regarded as integrated antennas in this work,

there are N communication channels between the BS i and the UE uε. Incident signals at STAR-

RISs are split into two parts for transmitting and reflecting, respectively. We denote Θχ =√
βχdiag

(
ejθχ,1 , ejθχ,2 , ..., ejθχ,N

)
as the transmissive/reflctive-coefficient matrix of the STAR-

RIS, where the notation χ represents the transmission mode for the signal, i.e., χ = T and χ = R

represent transmitting and reflecting signals, respectively. In particular, j =
√−1, θχ,n ∈ [0, 2π)

with n ∈ {1, 2, ..., N}, βχ ∈ [0, 1] is the energy splitting coefficient. As the STAR-RISs are

passive and the other energy consumption is assumed to be negligible, we have βT + βR = 1.

In this work, βχ on all elements are assumed to be the same. This setting only needs low-

complexity hardware and the DOCOMO’s smart glass model is such a STAR-RIS prototype.

In practice, βχ of this prototype can be tuned by adjusting the distance between substrates

[36]. We also denote the small-scale fading vectors of the BS-RIS link and the RIS-UE link

as HBR = [hBR,1, hBR,2, ..., hBR,N ] ∈ C
N×1 and HRU = [hRU,1, hRU,2, ..., hRU,N ] ∈ C

N×1,

respectively. The overall channel gain from the BS i to the UE uε assisted by the STAR-RIS
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k ∈ ΦR can be expressed as

H
(k)
ε,i =

√
Cr

(
r
(k)
i d

(k)
ε

)−αr

(HRU)
H ΘχHBR, (1)

where L
(k)
ε,i = Cr

(
r
(k)
i d

(k)
ε

)−αr

is the path loss of the STAR-RIS aided link. The Cr is the

intercept. The αr is the path loss exponent. r
(k)
i denotes the distance between the BS and the

assisted STAR-RIS. d
(k)
ε represents the distance between the STAR-RIS and the UE uε.

C. UE Association and Channel Power Gain Characterization

For the typical UE ut, the closest association criterion [37] is employed. Specifically, the

typical UE associates to its nearest STAR-RIS and the STAR-RIS chooses the nearest BS as the

serving BS. The probability density function (PDF) of the serving distance can be given by

fRU(x) = 2πλRx exp(−πλRx
2), (2)

fBR(x) = 2πλBx exp(−πλBx
2). (3)

Let hε denote the equivalent overall small-scale fading for the STAR-RIS aided composite

channel of the UE uε, whose power is given by

|hε|2 �
∣∣∣(HRU)

H Θ̃χHBR

∣∣∣2 , (4)

where Θ̃χ = Θχ/
√
βχ = diag

(
ejθχ,1 , ejθχ,2 , ..., ejθχ,N

)
is the normalized phase-shifting matrix

of the STAR-RIS. According to [16], the channel phase ∠ (hBR,nhRU,n) can be obtained from

the channel estimation. To achieve the maximum received power at the receiver, the STAR-RIS

reconfigures the phase shifts θχ,n = −∠ (hBR,nhRU,n) so that signals from all channels are of

the same phase at the UE. As a result, we have

|hε|2 =
(
|(HRU)|H |HBR|

)2

=

(
N∑

n=1

|hBR,nhRU,n|
)2

. (5)

The overall CPG for the typical UE can be expressed as |H(k)
t,i |2 = βχL

(k)
t,i |ht|2.

The connected UE is served by the same STAR-RIS as the typical UE but located at the other

side, and the distance between the assisted STAR-RIS and the connected UE is fixed. Thus,

d
(k)
c = dc is a constant. Similarly, the overall CPG for the connected UE is hence given by

|H(k)
c,i |2 = (1− βχ)L

(k)
c,i |hc|2.
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D. SINR Analysis

We assume that the connected UE is the primary UE and is more sensitive to the latency.

To guarantee the communication quality of the connected UE, more power is allocated to the

connected UE in this NOMA group while the SIC is always processed at the typical UE.

Considering power domain NOMA, let at and ac denote the power allocation coefficients for

the typical UE and the connected UE, respectively. Thus, we have at < ac and at + ac = 1.

The typical UE first decodes the information of the connected UE in the typical NOMA group

with the following SINR

γt→c =
acPBβχL

(k)
t,i |hr|2

atPBβχL
(k)
t,i |hr|2 + It + n0

2
, (6)

with

It =
∑

m∈ΦTB\i
PBβTL

(k)
t,m|hr|2 +

∑
m∈ΦRB\i

PBβRL
(k)
t,m|hr|2, (7)

where n0
2 is the additive white Gaussian noise (AWGN) power and It is the interference from

the serving STAR-RIS k. The It consists of two portions: interference transmitted and reflected

by the assisted STAR-RIS k. We use ΦR
B to denote BSs located at the same side of the STAR-RIS

k as the typical UE, and hence the typical UE only receives reflected signals from these BSs.

Similarly, we use ΦR
B to represent the BS sets of transmitting. For tractability, we only consider

the impact of STAR-RIS k and ignore the interference from the other STAR-RISs. Therefore,

the performance obtained in this work can be regarded as a upper bound.

After the SIC process, the decoding SINR at the typical UE can be expressed as

γt =
atPBβχL

(k)
t,i |ht|2

It + n0
2

. (8)

For the connected UE, the signal can be decoded by treating the message transmitted to the

typical UE as interference. Therefore, the decoding SINR at the connected UE is as follows

γc =
acPB(1− βχ)L

(k)
c,i |hc|2

atPB(1− βχ)L
(k)
c,i |hc|2 + Ic + n0

2
, (9)

with

Ic =
∑

m∈ΦTB\i
PBβRL

(k)
c,m|hc|2 +

∑
m∈ΦRB\i

PBβTL
(k)
c,m|hc|2, (10)

where Ic is the interference for the connected UE.

We focus on the performance of both the typical UE and the connected UE in this work.
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III. FITTING THE COMPOSITE SMALL-SCALE FADING POWER

For the STAR-RIS aided link, multiple elements of STAR-RISs introduce the composite

channel, the accurate power of which can be intractable for performance analysis in large-scale

deployment multi-cell scenarios. In this section, we first provide a tractable fitting method to

characterize the distribution of the composite CPG for a general fading case. Some typical cases

are then investigated and the fitting results are validated at last.

A. General Small-Scale Fading Model

We begin by considering a general expression of hε,n = hBR,nhRU,n. We use μr and σr
2

to denote the mean and variance of hε,n, respectively. Then we can provide the approximated

distribution of the composite small-scale fading CPG in the following lemma.

Lemma 1. The distribution of the overall small-scale fading CPG of the STAR-RIS aided link

can be approximated by a Gamma distribution

|hε|2 ∼ Γ

(
Mr

2

Vr

,
Vr

Mr

)
, (11)

where Mr = μr
2N2 + σr

2N and Vr = 4μr
2σr

2N3 + 2σr
4N2.

Proof: Noticed that the small-scale fading for N different channels are independently and

identically distributed, the CLT can be employed. Therefore, the distribution of the composite

channel gain obeys Gaussian distribution

|hε| ∼ N
(
Nμr, Nσr

2
)
. (12)

For simplicity, we denote μN = Nμr and σN
2 = Nσr

2. Thus, the power of this equivalent

small-scale fading |hε|2 obeys noncentral chi-square distribution with the mean E[|hε|2] = μN
2+

σN
2. Considering the fourth order moment of hr is E[|hε|4] = μN

4 + 6μN
2σN

2 + 3σN
4, the

variance can be calculated by var[|hε|2] = E[|hε|4]− (E[|hε|2])2. Using the method of moments,

the distribution of |hε|2 can be approximated by a Gamma distribution Γ(kr, θr) with the shape

parameter and the scale parameter expressed as follows

kr = (E[|hr|2])2/var[|hr|2], (13)

θr = var[|hr|2]/E[|hr|2]. (14)
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After some algebraic manipulations, this lemma is proved.

When the number of STAR-RIS elements is large, we can obtain the following corollary.

Corollary 1. When N is sufficiently large, the Gamma distribution can be rewritten as

|hε|2 ∼ Γ

(
μr

2

4σr
2
N, 4σr

2N

)
. (15)

Proof: According to Lemma 1, we can calculate that Mr
2

Vr
= μr

2

4σr
2N + o(1) and Vr

Mr
=

4σr
2N + o(1). Then (15) is obtained.

Remark 1. It can be found from Corollary 1 that both the shape and scale parameters are

in proportion to the number of STAR-RIS elements. Furthermore, let us recall the property of

the Gamma distribution, by which Γ
(

μr
2

4σr
2N, 4σr

2N
)
= μr

2N2Γ
(

μr
2N

4σr
2 ,

4σr
2

μr
2N

)
. As N →∞, we

have

|hε|2
E[|hε|2] ∼ Γ

(
μr

2N

4σr
2
,
4σr

2

μr
2N

)
→ 1, (16)

which shows the channel hardening effect of the STAR-RIS aided link. Therefore, with the increase

of N , the CPG asymptotically approaches a deterministic value.

B. Case Studies

In this subsection, we pay our attention on some typical small-scale fading models. When the

parameters of the particular distribution are predefined, we can easily derive the fitted Gamma

distribution. For the cases N is large, simple asymptotic expressions can be obtained based

on Corollary 1. The results are concluded in table I. Detailed discussions between channel

parameters and analytical fitting results are as follows.

1) Rayleigh Channel: The channel gain of the Rayleigh channel obeys the Rayleigh distri-

bution with the scale parameter δ1 > 0. We can find that the shape parameter kr of the fitted

Gamma distribution is unrelated to Rayleigh parameter δ1.

2) Nakagami-m Channel: In this case, the channel gain obeys the Nakagami distribution with

the shape parameter m2 ≥ 1
2

and the scale parameter Ω2 > 0. The result shows that kr is related

to m2 but not related to Ω2.
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TABLE I

TYPICAL SMALL-SCALE FADING MODELS

Models
Channel

Parameters
μr σr

2 Gamma Distributions (N is large)

Rayleigh

Channel
δ1 > 0 δ1

√
π
2

4−π
2

δ1
2 kr =

π
4(4−π)

N , θr = 2(4− π)δ1
2N

Nakagami-m

Channel
m2 ≥ 1

2
, Ω2 > 0

Γ(m2+
1
2
)

Γ(m2)

(
Ω2
m2

) 1
2

Ω2 −
Ω2
m2

(
Γ(m2+

1
2
)

Γ(m2)

)2
kr =

Γ(m2+
1
2
)2

4(m2Γ(m2)2−Γ(m2+
1
2
)2)

N ,

θr = 4Ω2N − 4Ω2
m2

(
Γ(m2+

1
2
)

Γ(m2)

)2
N

Rician

Channel

K3 > 0, δ3 > 0,

c3 > 0

δ3
√

π
2

√
1

K3+1
+

c3
√

K3
K3+1

4−π
2

δ3
2

K3+1

kr =
πδ3

2+4δ3c3

√
πK3

2
+2K3c3

2

4(4−π)δ32 N ,

θr =
2(4−π)δ3

2

K3+1
N

Weibull

Channel
k4 > 0, λ4 > 0 λ4Γ(1 +

1
k4
)

λ4
2
(
Γ(1 + 2

k4
)−

Γ(1 + 1
k4
)2
) kr =

Γ(1+ 1
k4
)2

Γ(1+ 2
k4
)−Γ(1+ 1

k4
)2

N
4

, θr =

4λ4
2
(
Γ(1 + 2

k4
)− Γ(1 + 1

k4
)2
)
N

Double-

Rayleigh

Channel

δ5 > 0, δ6 > 0 πδ5δ6
2

4(1− π2

16
)δ5

2δ6
2

kr =
π2

64(1−π2/16)
N ,

θr = (16− π2)δ5
2δ6

2N

3) Rician Channel: The deployment of RISs is expected to provide LoS transmission links,

whose small-scale fading can be characterized by Rician fading model. According to [8], the

channel gain of the Rician channel shown as follows consists of two portions

hε,n =

√
K3

K3 + 1
hLoS
ε,n +

√
1

K3 + 1
hNLoS
ε,n , (17)

where K3 is the Rician fading factor. hLoS
ε,n = c3 is the deterministic LoS component. hNLoS

ε,n is the

random NLoS component modeled as Rayleigh fading with the scale parameter δ3 > 0. There-

fore, the Rician channel considers impacts of both LoS transmissions and NLoS transmissions.

4) Weibull Channel: For the Weibull channel, the channel gain obeys the Weibull distribution

with the shape parameter k4 > 0 and the scale parameter λ4 > 0. It can be found that kr is only

related to the shape parameter k4.

5) Double-Rayleigh Channel: In RIS-enabled communications, the cascaded channel is intro-

duced. In fact, the small-scale fading correlates to channel conditions of two parts of the cascaded

RIS aided link, although small-scale fading models have been simplified in some works. Let us

consider the double-Rayleigh channel as a example, which is the product of two independent

Rayleigh channels. Similar to the result of Rayleigh channel, kr is unrelated to any Rayleigh

parameter δ5 or δ6.
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Fig. 2. CDF versus the value of |hε|2 with different small-scale fading models: (a) the number of STAR-RIS elements N = 4;

(b) the number of STAR-RIS elements N = 64.

C. Fitting Accuracy

To validate the accuracy of the proposed fitting method, we plot the cumulative distribution

function (CDF) of |hε|2 in Fig. 2. Five different small-scale fading models as we discussed

in section III-B are considered. In Fig. 2, we use lines to present the Monte Carlo simulation

results and marks to depict the analytical fitting results. The simulation parameters are set as:

δ1 = δ3 = δ5 = δ6 =
√

1
2
, m2 = k4 = 4, Ω2 = K3 = c3 = λ4 = 1 [8], [16], [19].

We can observe that the fitted Gamma distributions shown in Lemma 1 and Corollary 1

become more accurate with a larger number of STAR-RIS elements. This can be attributable to

the application of CLT. For both cases N = 4 and N = 64, the analytical results provided in

Lemma 1 fits the numerical results well, while the results in Corollary 1 should be applied in

large N cases.

IV. COVERAGE PROBABILITY

In this section, we derive the general expressions of the coverage probability for the typical

UE and the connected UE. For comparison, the results in conventional RIS aided networks are

also obtained.

Based on the previous analysis in Section III, the composite small-scale fading power of the

STAR-RIS aided link can be fitted by Gamma distribution Γ(kr, θr). Different from the power

distribution of the Nakagami-m fading channel in conventional networks, Γ(kr, θr) is a general
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Gamma distribution and the value of kr might be very large. Therefore, Alzer’s inequality [38]

employed in most existing works is no longer efficient in our scenarios. Although the Gil-Pelaez

theorem is available for arbitrary distributions [39], an extra fold of integral is introduced, which

brings challenges to obtain insights from the complex analytical expressions. Sparked by above

reasons, we provide a novel analytical method in this work.

Before deriving the performance expressions, let us introduce some preliminary definitions.

Definition 1. For a non-negative integer m, we use ξm(a, b, c; x) to describe the following

expression related to the Gauss hypergeometric function

ξm(a, b, c; x) �
(a)m(−2/b)m(−c)m

(1− 2/b)m
2F1

(
a,−2

b
; 1− 2

b
;−cx

)
, (18)

where (x)m is the Pochhammer’s symbol. If m = 0, (x)0 = 1; otherwise, (x)m = x(x+1) · · · (x+
m− 1).

Definition 2. We define k̄s as the nearest positive integer of kr, which satisfies

k̄s = argmin
x

|x− kr|, x ∈ N
+. (19)

A. Laplace Transform of Interference

Since the Laplace transform of the interference is the essential part of the coverage probabilty,

we derive these expressions first.

The typical UE suffers the interference It that consists of two portions: 1) transmissive

interference from the BSs located at the back of the serving STAR-RIS; and 2) reflective

interference from the BSs which are in front of the serving STAR-RIS. This Laplace transform

is presented in the following lemma.

Lemma 2. In STAR-RIS aided networks, the Laplace transform of the interference for the typical

UE can be derived as

LIt(s) = exp

(
−1
2
πλBrt

2 (ξ0 (kr, αr, βTηt; s)− 1)

)

× exp

(
−1
2
πλBrt

2 (ξ0 (kr, αr, βRηt; s)− 1)

)
, (20)

where ηt = θrPBL
(k)
t,i .
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Proof: See Appendix A.

For the connected UE, the interference Ic is also from the STAR-RIS aided link. In the

following proposition, we provide the Laplace transform of Ic.

Proposition 1. The Laplace transform of the interference for the connected UE can be given by

LIc(s) = exp

(
−1
2
πλBrt

2 (ξ0 (kr, αr, βTηc; s)− 1)

)

× exp

(
−1
2
πλBrt

2 (ξ0 (kr, αr, βRηc; s)− 1)

)
, (21)

where ηc = θrPBL
(k)
c,i .

For fair comparison, we employ one reflecting-only RIS and one transmitting-only RIS at the

same location as the assisted STAR-RIS. Both of these two conventional RISs have N/2 elements.

We denote the small-scale fading CPG of the conventional RIS aided link as Γ (kr,con, θr,con). In

this case, both the typical UE and the connected UE suffer the interference Iε,con only from half

of the space.

Lemma 3. In conventional RIS aided networks, the Laplace transform of the interference for

the UE uε (ε ∈ {t, c}) can be derived as

LIcon(s) = exp

(
−1
2
πλBrt

2 (ξ0 (kr,con, αr, ηε,con; s)− 1)

)
, (22)

where ηt,con = θr,conPBL
(k)
ε,i .

Proof: The proof is similar to Lemma 2 and hence we skip it here.

B. Coverage Performance for the Typical UE

In this work, the coverage probability for the typical UE is defined as the probability that the

typical UE can successfully transmit signals with a targeted SINR τt. The typical UE only decodes

its own message after a successful SIC process. The coverage probability can be expressed as

Pt = P(γt→c > τc, γt > τt), (23)

where τc is the target SINR for the connected UE.

Page 54 of 71

IEEE Transactions on Communications

Under review for possible publication in

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



16

Considering the signal transmission mode at the serving STAR-RIS for the typical UE is

χ ∈ {T,R}, the conditional coverage probabilty of the typical UE can be rewritten as

Pt,STAR,χ|d(k)t,i
= P

(
|hr|2 > τ ∗t

It + n0
2

βχPBL
(k)
t,i

)
, (24)

where τ ∗t = max
(

τc
ac−τcat ,

τt
at

)
.

Utilizing the scaling feature of the Gamma distribution, we have 1
θr
|hr|2 ∼ Γ(kr, 1). However,

kr is not an integer in most cases. For tractability, we introduce k̄r defined in Definition 2 to

deduce the analytical coverage expressions.

Theorem 1. In STAR-RIS aided networks, the coverage probability for the typical UE is derived

as

Pt,STAR =

∫ ∞

0

∫ ∞

0

πλBr1fRU(r2)
k̄r−1∑
m=0

(−1)meV (0)
T (1,1)

m!
Bm

(
V

(1)
T (1, 1), ..., V

(m)
T (1, 1)

)
dr1dr2

+

∫ ∞

0

∫ ∞

0

πλBr1fRU(r2)
k̄r−1∑
m=0

(−1)meV (0)
R (1,1)

m!
Bm

(
V

(1)
R (1, 1), ..., V

(m)
R (1, 1)

)
dr1dr2, (25)

with

V (m)
χ (z, x) =−Δ

(m)
t,χ −

1

2
πr1

2λBξm (kr, αr, zDTχ; x)− 1

2
πr1

2λBξm (kr, αr, zDRχ; x) , (26)

where Bm (x1, ..., xm) is the mth complete Bell polynomial. DTχ =
τ∗t βT
βχ

, DRχ =
τ∗t βR
βχ

, and

st,χ =
τ∗t (r1r2)αr

θrβχPBCr
. Δ(0)

t,χ = st,χn0
2x, Δ(1)

t,χ = st,χn0
2, and Δ

(m)
t,χ = 0 when m ≥ 2.

Proof: See Appendix B.

In STAR-RIS aided communications, the operating parameters make difference to the system

performance. Thus, the following corollary provides the optimal energy splitting coefficient in

terms of coverage performance.

Corollary 2. When βT = βR =
1
2
, the maximum coverage probability of the typical UE is

Pmax
t,STAR

=

∫ ∞

0

∫ ∞

0

2πλBr1fRU(r2)
k̄r−1∑
m=0

(−1)meṼ (0)(1,1)

m!
Bm

(
Ṽ (1)(1, 1), ..., Ṽ (m)(1, 1)

)
dr1dr2, (27)

where Ṽ (m)(z, x) = −Δ(m)
t,max−πr12λBξm (kr, αr, zτ

∗
t ; x), st,max =

2τ∗t (r1r2)αr

θrPBCr
, Δ(0)

t,max = st,maxn0
2x,

Δ
(1)
t,max = st,maxn0

2, and Δ
(m)
t,max = 0 when m ≥ 2.
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Proof: See Appendix C.

Remark 2. The results obtained in Corollary 2 can be explained that βT = βR =
1
2

guarantees

the typical UE to receive the strongest signal from its serving BS instead of other BSs under

random scenarios. When the assisted mode for the typical UE is predefined, STAR-RISs have the

capability of controlling the received signal power by adjusting the energy splitting coefficient

and hence are able to meet various QoS requirements of UEs at different sides.

Proposition 2. In conventional RIS aided networks, the coverage probability for the typical UE

is derived as

Pt,con =∫ ∞

0

∫ ∞

0

2πλBr1fRU(r2)

k̄r,con−1∑
m=0

(−1)meV (0)
con(1,1)

m!
Bm

(
V (1)
con(1, 1), ..., V

(m)
con (1, 1)

)
dr1dr2, (28)

with

V (m)
con (x) =−Δ

(m)
t,con −

1

2
πr1

2λBξm (kr,con, αr, τ
∗
t ; x) , (29)

where st,con =
τ∗t (r1r2)αr

θr,conPBCr
, Δ(0)

con = st,conn0
2x, Δ(1)

t,con = st,conn0
2, and Δ

(m)
t,con = 0 when m ≥ 2.

Proof: Since it is of the same probability for the typical UE to associate to a reflecting-only

RIS or a transmitting-only RIS, we only need to derive the coverage probability when the typical

associates to the reflecting-only RIS and then double the result. In this case, the PDF of the

serving distance between the BS and the assistant RIS is

f ref
BR (x) =πλbx exp

(
−1
2
λbx

2

)
. (30)

Then, using the similar proof in Theorem 1 and (22), this theorem can be proved.

Now let us consider the interference-limited case as a special case. In this case, the noise is

negligible compared to the interference, i.e. Ir � n0
2, so we focus on the SIR coverage. We

can obtain closed-form expressions for the coverage probability of the typical UE shown as the

following corollaries.

Corollary 3. When Ir � n0
2, the coverage probability of the typical UE in STAR-RIS aided
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networks can be expressed in a closed form as follows

Pt,STAR =
k̄r−1∑
m=0

(−1)m
m!

m∑
l=1

(−1)ll!(
V

(0)
SIR,T(1, 1)

)l+1
Bm,l

(
V

(1)
SIR,T(1, 1), ..., V

(m−l+1)
SIR,T (1, 1)

)

+
k̄r−1∑
m=0

(−1)m
m!

m∑
l=1

(−1)ll!(
V

(0)
SIR,R(1, 1)

)l+1
Bm,l

(
V

(1)
SIR,R(1, 1), ..., V

(m−l+1)
SIR,R (1, 1)

)
, (31)

where V
(m)
SIR,χ(z, x) = ξm (kr, αr, zDTχ; x) + ξm (kr, αr, zDRχ; x).

Proof: Since the operators of integral and differentiation are interchangeable, we can cal-

culate the second-order derivative of the conditional coverage probability for χ ∈ {T,R}

Pt,STAR,χ =
k̄r−1∑
m=0

(−1)m
m!

[
∂m

∂xm

2

ξ0 (kr, αr, DTχ; x) + ξ0 (kr, αr, DRχ; x)

]
x=1

. (32)

Then we recall Faà di Bruno’s formula as we have stated in the proof of Theorem 1, this

corollary is proved.

Remark 3. It can be observed from (31) that the coverage probability is unrelated to the scale

parameter θr in the interference limited scenario. In this case, we only need to calculate the

shape parameter kr when evaluating the Gamma distribution of the small-scale fading CPG.

The value of kr for some typical small-scale fading models has been discussed in Section III-B.

Corollary 4. When Ir � n0
2, the coverage probability of the typical UE in conventional RIS

aided networks can be expressed in a closed form as follows

Pt,con = 2

k̄r,con−1∑
m=0

(−1)m
m!

m∑
l=1

(−1)ll!(
V

(0)
SIR,con(1, 1)

)l+1
Bm,l

(
V

(1)
SIR,con(1, 1), ..., V

(m−l+1)
SIR,con (1, 1)

)
, (33)

where V
(m)
SIR,con(z, x) = ξm (kr,con, αr, zτ

∗
t ; x).

Proof: The poof is similar to Corollary 3.

C. Coverage Performance for the Connected UE

The connected UE decodes its own message by treating the typical UE as noise, so the

coverage probability is

Pc = P(γc > τc). (34)
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Based on (9), the coverage probability of the connected UE can be rewritten as

Pc|d(k)c,i
= P

(
|hc|2 > τ ∗c

Ic + n0
2

PBL
(k)
c,i

)
, (35)

where τ ∗c =
τc

ac−atτc .

Similar to the typical UE, the connected UE associates to the BS assisted by the STAR-RIS.

We can easily obtain the exact analytical expression shown in the following theorem.

Theorem 2. In STAR-RIS aided networks, the coverage probability for the connected UE can

be given by

Pc,STAR =

∫ ∞

0

πλBr1

k̄r−1∑
m=0

(−1)meΛ(0)T (1,1)

m!
Bm

(
Λ

(1)
T (1, 1), ...,Λ

(m)
T (1, 1)

)
dr1

+

∫ ∞

0

πλBr1

k̄r−1∑
m=0

(−1)meΛ(0)R (1,1)

m!
Bm

(
Λ

(1)
R (1, 1), ...,Λ

(m)
R (1, 1)

)
dr1, (36)

with

Λ(m)
χ (z, x) =−Δ(m)

c,χ −
1

2
πr1

2λBξm (kr, αr, zDTχ; x)− 1

2
πr1

2λBξm (kr, αr, zDRχ; x) , (37)

where sc,χ =
τ∗c (r1dc)αr

θrβχPBCr
. Δ(0)

c,χ = sc,χn0
2x, Δ(1)

c,χ = sc,χn0
2 and Δ

(m)
c,χ = 0 when m ≥ 2.

Proof: Utilizing the fact that d
(k)
c = dc is a constant and the proof in Theorem 1, this

theorem can be proved.

Corollary 5. When βT = βR =
1
2
, the maximum coverage probability of the connected UE is

Pmax
c,STAR =

∫ ∞

0

2πλBr1

k̄r−1∑
m=0

(−1)meΛ̃(0)(1,1)
m!

Bm

(
Λ̃(1)(1, 1), ..., Λ̃(m)(1, 1)

)
dr1, (38)

where Λ̃(m)(z, x) = −Δ(m)
c,max−πr12λBξm (kr, αr, zτ

∗
c ; x), sc,max =

2τ∗c (r1dc)αr

θrPBCr
, Δ(0)

c,max = sc,maxn0
2x,

Δ
(1)
c,max = sc,maxn0

2, and Δ
(m)
c,max = 0 when m ≥ 2.

Proof: The proof is as same as Corollary 2.

Remark 4. When βT = βR =
1
2

both the typical UE and the connected UE achieve the maximum

coverage probability. This illustrates that considering random deployed networks, the average

system coverage can be optimized by adjusting the energy splitting coefficient of STAR-RISs.

We also obtain the coverage probability in conventional RIS aided networks showing as

follows.
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Proposition 3. In conventional RIS aided networks, the coverage probability for the connected

UE is derived as

Pc,con =

∫ ∞

0

2πλBr1

k̄r,con−1∑
m=0

(−1)meΛ(0)con(1,1)

m!
Bm

(
Λ(1)

con(1, 1), ...,Λ
(m)
con (1, 1)

)
dr1, (39)

with

Λ(m)
con (z, x) =−Δ(m)

c,con −
1

2
πr1

2λBξm (kr,con, αr, zτ
∗
c ; x) , (40)

where sc,con =
τ∗c (r1dc)αr

θr,conPBCr
, Δ(0)

c,con = sc,conn0
2x, Δ(1)

c,con = sc,conn0
2, and Δ

(m)
c,con = 0 when m ≥ 2.

V. ERGODIC RATE

Rather than calculating the coverage probability with a predefined threshold, the ergodic rate

of the STAR-RIS aided NOMA networks is determined by random channel conditions of UEs.

Hence the ergodic rate can be an important metric to characterize the system performance. In this

section, we evaluate the ergodic rates for both the typical UE and the connected UE. Besides,

the results in conventional RIS aided networks are also obtained.

A. Ergodic Rate for the Typical UE

According to our assumption, the SIC procedure always occurs at the typical UE. If the typical

UE fails to processes the SIC, it can never decode its own message hence its ergodic rate is

zero. Therefore, the ergodic rate of the typical UE can be expressed as

Rt = E [log2 (1 + γt) , γt→c > τc] . (41)

Based on the expressions of the coverage probability, we can obtain the exact ergodic rate in

two kinds of RIS aided networks in Theorem 3 and Proposition 4.

Theorem 3. In STAR-RIS aided networks, the ergodic rate for the typical UE is derived as

Rt,STAR =
1

ln 2

∫ ∞

atτ∗c

F̄t,STAR(z)

1 + z
dz + log2(1 + atτ

∗
c )F̄t,STAR(atτ

∗
c ), (42)

where F̄t,STAR(z) is given by

F̄t,STAR(z) =

∫ ∞

0

∫ ∞

0

πλBr1fRU(r2)
k̄r−1∑
m=0

(−1)meV (0)
T (z,1)

m!
Bm

(
V

(1)
T (z, 1), ..., V

(m)
T (z, 1)

)
dr1dr2

+

∫ ∞

0

∫ ∞

0

πλBr1fRU(r2)
k̄r−1∑
m=0

(−1)meV (0)
R (z,1)

m!
Bm

(
V

(1)
R (z, 1), ..., V

(m)
R (z, 1)

)
dr1dr2. (43)
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Proof: See Appendix D.

We also investigate the impact of the energy splitting coefficient on the ergodic rate in the

following corollary.

Corollary 6. When βT = βR =
1
2
, the maximum ergodic rate of the typical UE is

Rmax
t,STAR =

1

ln 2

∫ ∞

atτ∗c

F̄max
t,STAR(z)

1 + z
dz + log2(1 + atτ

∗
c )F̄

max
t,STAR(atτ

∗
c ), (44)

where F̄max
t,STAR(z) is expressed as

F̄max
t,STAR(z) =

∫ ∞

0

∫ ∞

0

2πλBr1fRU(r2)
k̄r−1∑
m=0

(−1)meṼ (0)(z,1)

m!
Bm

(
Ṽ (1)(z, 1), ..., Ṽ (m)(z, 1)

)
dr1dr2.

(45)

Proof: We denote β = βT = 1 − βR. Following the similar procedure of the proof in

Corollary 2, we can calculate ∂
∂β
Rmax

t,STAR and find that ∂
∂β
Rmax

t,STAR = 0 when β = 1
2
. Then the

maximum ergodic rate is obtained.

Proposition 4. In conventional RIS aided networks, the ergodic rate for the typical UE is

Rt,con =
1

ln 2

∫ ∞

atτ∗c

F̄t,con(z)

1 + z
dz + log2(1 + atτ

∗
c )F̄t,con(atτ

∗
c ), (46)

where F̄t,con(z) is expressed as

F̄t,con(z) =

∫ ∞

0

∫ ∞

0

2πλBr1fRU(r2)

k̄t,con−1∑
m=0

(−1)meV (0)
con(z,1)

m!
Bm

(
V (1)
con(z, 1), ..., V

(m)
con (z, 1)

)
dr1dr2.

(47)

B. Ergodic Rate for the Connected UE

For the connected UE, the ergodic rate can be expressed as

Rc = E [log2 (1 + γc)] . (48)

We first provide the exact expression of the ergodic rate in STAR-RIS aided networks.

Theorem 4. In STAR-RIS aided networks, the ergodic rate for the connected UE is derived as

Rc,STAR =
1

ln 2

∫ ac
at

0

F̄c,STAR(z)

1 + z
dz, (49)
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where F̄c,STAR(z) is given by

F̄c,STAR(z) =

∫ ∞

0

πλBr1

k̄r−1∑
m=0

(−1)meΛ(0)T (z,1)

m!
Bm

(
Λ

(1)
T (z, 1), ...,Λ

(m)
T (z, 1)

)
dr1

+

∫ ∞

0

πλBr1

k̄r−1∑
m=0

(−1)meΛ(0)R (z,1)

m!
Bm

(
Λ

(1)
R (z, 1), ...,Λ

(m)
R (z, 1)

)
dr1, (50)

Proof: The complementary cumulative distribution function (CCDF) of the decoding SINR

for the connected UE is denoted as F̄c,STAR(z), which can be expressed as

F̄ (z) = P

(
(ac − atz)|hc|2 > (Ic + n0

2) z

PBCrL
(k)
c,i

)
. (51)

Note that for the case z ≥ ac
at

, F̄c(z) = 0 always holds. For the case z < ac
at

, we can obtain (49)

by using the similar proof in Theorem 3.

Similarly, we obtain the optimal ergodic rate for the connected UE as in prior analysis.

Corollary 7. When βT = βR =
1
2
, the maximum ergodic rate of the connected UE is

Rmax
c,STAR =

1

ln 2

∫ ∞

atτ∗c

F̄max
c,STAR(z)

1 + z
dz, (52)

where F̄max
c,STAR(z) is

F̄max
c,STAR(z) =

∫ ∞

0

2πλBr1

k̄r−1∑
m=0

(−1)meΛ̃(0)(z,1)
m!

Bm

(
Λ̃(1)(z, 1), ..., Λ̃(m)(z, 1)

)
dr1. (53)

Remark 5. Similar to the results in coverage probability, when βT = βR = 1
2
, the ergodic

rate of both the typical UE and the connected UE is maximized. Thus, the appropriate energy

splitting coefficient of STAR-RISs also helps to improve the achievable ergodic rate in random

deployed networks.

Proposition 5. In conventional RIS aided networks, the ergodic rate for the connected UE is

Rc,con =
1

ln 2

∫ ac
at

0

F̄c,con(z)

1 + z
dz, (54)

with

F̄c,con(z) =

∫ ∞

0

2πλBr1

k̄t,con−1∑
m=0

(−1)meΛ(0)con(z,1)

m!
Bm

(
Λ(1)

con(z, 1), ...,Λ
(m)
con (z, 1)

)
dr1. (55)
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Fig. 3. Coverage probability versus SINR threshold with at ∈ {0.2, 0.3, 0.4}, N = 4, λB = 4λb, and λR = 20λr: (a) the

target SINR for the typical UE τt; (b) the target SINR for the connected UE τc.

VI. NUMERICAL RESULTS

In this section, we first present the numerical results to verify our analytical expressions

derived in previous sections and then provide some interesting insights. For small-scale fading

model, we mainly focus on the Rician fading channel as we discussed in Section III. The noise

power is n0
2 = −174 + 10 log10 W , where W is the bandwidth. We denote λb = 2 km−2 and

λr = 10 km−2 as the BS and RIS reference densities, respectively. Without otherwise stated,

the simulation parameters are defined as follows. The transmit power PB is 30 dBm. The path

loss exponent is αr = 2.8. The intercept is Cr = −30 dB. The energy splitting coefficients are

βT = βR = 0.5. The target rate is set to be equal as ρt = ρc = 0.1 bit per channel use (BPCU)

for the typical UE and the connected UE. Thus, the target SINR are τt = 2ρt−1 and τc = 2ρc−1.

The power allocation coefficients are at = 0.4 and ac = 0.6. The bandwidth is W = 100 MHz.

The distance between the connected UE and its serving STAR-RIS is fixed at dc = 80 m.

A. Validation and Simulations

Validation of analytical expressions of the coverage probability for the typical UE and the

connected UE are illustrated in Fig. 3 with different power allocation coefficients. We use lines

to present the analytical results and marks to depict the Monte Carlo simulations. We set the

bandwidth W = 5 MHz and hence n0
2 = −107 dBm. In Fig. 3(a) we vary the SINR threshold

for the typical UE while in Fig. 3(b) we vary the counterpart for the connected UE. Although
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Fig. 4. System performance versus the number of STAR-RIS elements: (a) coverage probability; (b) ergodic rate.

the STAR-RIS elements number is not large, the analytical results fit the simulation curves well.

Due to the limited computing precision of Matlab, it is difficult to calculate the analytical

results of the ergodic rate under the predefined parameter setup. However, according to the proof

of Theorem 3 and Theorem 4 we can find that the expressions of Rt,STAR and Rc,STAR are

from the coverage probabilities of the typical UE and the connected UE, respectively. Therefore,

the validation of analytical expressions for the coverage probability guarantees the accuracy of

results for the ergodic rate.

B. Impact of Number of Elements

In this subsection, we investigate the impact of the increasing of STAR-RIS elements on both

the coverage probability and the ergodic rate. Fig. 4 plots the performance of both the typical

UE and the connected UE versus the number of RIS elements N . In Fig. 4(a) we focus on the

coverage probability while ergodic rate in Fig. 4(b). We observe that with the increase of N ,

both the coverage and rate grow first and then achieve steady values. This can be explained

that the CPG for the small-scale fading becomes large with the increase of N and the noise is

negligible. Since the distribution of the CPGs for the signal and interference are the same, the

average value of SINR is a constant.

C. Impact of Energy Splitting Coefficients

Here, we focus on the impact of energy splitting coefficients of STAR-RISs. Fig. 5 plot the

coverage probability and the ergodic rate for the paired NOMA UE versus the energy splitting

Page 63 of 71

IEEE Transactions on Communications

Under review for possible publication in

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



25

0 0.2 0.4 0.6 0.8 1
Energy splitting coefficient,   

T

0.3

0.4

0.5

0.6

0.7

0.8

C
ov

er
ag

e 
Pr

ob
ab

ili
ty

0.4

0.5

0.6

0.7

0.8

0.9

1

E
rg

od
ic

 R
at

e 
(B

PC
U

)

CP: typical UE
CP: connected UE
ER: typical UE
ER: connected UE

Fig. 5. System performance versus energy splitting coefficient βT with N = 16, λB = λb, and λR = 10λr . ”CP” represents

coverage probability and ”ER” represents ergodic rate.
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Fig. 6. System performance versus energy splitting coefficient βχ for the typical UE with N = 16, λB = λb, and λR = 10λr:

(a) coverage probability; (b) ergodic rate.

coefficient for transmitting βT. One can observe that for the STAR-RIS aided scenarios, two

kinds of performance are simultaneously maximized when βT = 1
2
, which has been discussed

in Corollary 2, 5, 6 and 7. Besides, the curves are symmetric about βT =
1
2
.

We denote the energy splitting coefficient for the typical UE as βχ. In Fig. 6, we plot the

coverage probability and the ergodic rate versus βχ. The performance of conventional RIS

aided networks is also shown in this figure for comparison. As shown in Fig. 6, two kinds

of performance of the typical UE and the connected UE vary by adjusting the energy splitting

coefficient βχ, which means different performance demands can be satisfied. Besides, STAR-RISs
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Fig. 7. System performance versus normalized RIS density λR/λr with N = 16, λB = λb: (a) coverage probability; (b)

ergodic sum rate.

with appropriate βχ help the paired NOMA UEs to achieve better performance than conventional

RISs.

D. Comparison among Different Scenarios

In Fig. 7(a), we plot coverage probabilities versus normalized RIS density λR/λr in multiple

scenarios, where different kinds of RISs and multiple access techniques are considered. We

observe that the increase of λR/λr bridges the performance gap between STAR-RISs and

conventional RISs. This is because the network densification brings the serious interference from

the full region and hence degrade the performance in STAR-RISs aided networks. Compared

with OMA, NOMA enhances the coverage probability of the connected UE. This enhancement

comes from the higher power allocated to the connected UE who has the high probability to be

in the worse channel condition than the typical UE in NOMA systems.

In Fig. 7(b), we compare ergodic sum rates of the paired UEs versus normalized RIS density

λR/λr for STAR-RIS aided NOMA networks, conventional RIS aided NOMA networks, and

STAR-RIS aided OMA networks. We can observe that the NOMA system always outperforms

the OMA system because of its high bandwidth efficiency. Similar to the observation in coverage

probability, STAR-RISs achieve higher ergodic sum rate than conventional RISs in low density

cases while the result reverses when the RIS density becomes large. However, for the dense

scenarios, large amount of signaling overhead is needed to control and reconfigure the RISs and

hence it is not practical. Therefore within practical RIS density regions STAR-RISs have the

Page 65 of 71

IEEE Transactions on Communications

Under review for possible publication in

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



27

best performance among all scenarios we considered in this subsection.

VII. CONCLUSION

In this paper, a fitting method has been proposed to approximate the distribution of the RIS

aided composite CPG. Then, a general analytical framework has been provided to evaluate

the coverage probability and the ergodic rate of STAR-RIS aided NOMA multi-cell networks.

Theoretical expressions in conventional RIS-aided networks have been obtained for comparison.

For more insights, we have investigated the impact of energy splitting coefficients and considered

the interference-limited scenario as a special case. The analytical results have revealed that

appropriate energy splitting coefficients can simultaneously improve the system coverage and the

ergodic performance. The numerical results have shown that: 1) the increase of RIS elements

cannot always help to improve the system coverage and the rate performance; 2) when the

density of RIS is low, a specific range of energy splitting coefficients guarantees STAR-RISs

outperform conventional RISs while in dense scenarios, interference becomes a main factor

that seriously degrades the performance of STAR-RISs; 3) STAR-RISs provide flexibility for

satisfying different UE demands by altering energy splitting coefficients.

APPENDIX A: PROOF OF LEMMA 2

Based on Campbell’s theorem, the Laplace transform of the interference for the typical UE

can be expressed as follows

LIt(s)

= EΦB

⎡
⎣ ∏
m∈ΦTB\i

E|ht|2
[
exp

(
−sβTPBL

(k)
t,m|ht|2

)]⎤⎦
︸ ︷︷ ︸

Transmissive Interference

EΦB

⎡
⎣ ∏
m∈ΦRB\i

E|ht|2
[
exp

(
−sβRPBL

(k)
t,m|ht|2

)]⎤⎦
︸ ︷︷ ︸

Reflective Interference

(a)
=

∏
χ∈{T,R}

exp

(
−πλB

∫ ∞

rt

(
1− E|h̃t|2

[
exp

(
−skrθrCrβχPB (rdt)

−αr |h̃t|2
)])

rdr

)

(b)
=

∏
χ∈{T,R}

exp

(
−πλB

∫ ∞

rt

(
1− (

1 + sθrCrβχPB (rdt)
−αr

)−kr)
rdr

)
, (A.1)

where |h̃t|2 ∼ Γ(kr,
1
kr
). (a) is obtained by using the probability generating functional (PGFL)

and the fact that Γ(kr, θr) = krθrΓ(kr,
1
kr
). (b) follows from the moment generation function of

the Gamma distribution. By applying [26, eq. C.2] in our previous work [26], we can obtain a

more elegant form as shown in (20).
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APPENDIX B: PROOF OF THEOREM 1

We denote Z = τ ∗t
It+n02

θrβχPBL
(k)
t,i

. Based on the fact that 1
θr
|hr|2 appr.∼ Γ(k̄r, 1) as well as the CDF

of the Gamma random variable, we have

Pt,STAR,χ|d(k)t,i
= EIt

[
e−Z

k̄r−1∑
m=0

Zm

m!

]
=

k̄r−1∑
m=0

(−1)m
m!

[
∂m

∂xm
EIt

[
e−Zx

]]
x=1

. (B.1)

When the signal transmission mode of assisted STAR-RIS for the typical UE is χ, the coverage

probability is expressed as

Pt,STAR,χ =

∫ ∞

0

∫ ∞

0

k̄r−1∑
m=0

(−1)m
m!

[
∂m

∂xm
LIr(st,χx) exp(−st,χn0

2x)

]
x=1

fBR(r1)fRU(r2)dr1dr2,

(B.2)

where st,χ =
τ∗t (r1r2)αr

θrβχPBCr
.

For simplicity, We denote DTχ =
τ∗t βT
βχ

and DRχ =
τ∗t βR
βχ

. Then we plug (3) and (20) into

(B.2). After some simple algebraic manipulations, the coverage probability is derived as

Pt,STAR,χ =

∫ ∞

0

∫ ∞

0

2πλBr1fRU(r2)
k̄r−1∑
m=0

(−1)m
m!

[
∂m

∂xm
exp (Vχ(x))

]
x=1

dr1dr2, (B.3)

where

Vχ(x) = −st,χn0
2x− 1

2
πλBr1

2ξ0 (kr, αr, DTχ; x)− 1

2
πλBr1

2ξ0 (kr, αr, DRχ; x) . (B.4)

Now let us focus on the high-order derivatives of the composite function exp (Vχ(x)). Ac-

cording to Faà di Bruno’s formula [40], we have

∂m

∂xm
exp (Vχ(x)) =

m∑
l=0

exp (Vχ(x))
(l) Bm,l

(
V (1)
χ (x), ..., V (m−l+1)

χ (x)
)

(a)
= exp (Vχ(x))Bm

(
V (1)
χ (x), ..., V (m)

χ (x)
)
, (B.5)

where Bm (x1, ..., xm) is the mth complete Bell polynomial. Bm,l (x1, ..., xm−l+1) is the incom-

plete Bell polynomial. (a) is obtained by combining the fact that exp(x)(m) = exp(x) and the

property that Bm (x1, ..., xm) =
∑m

l=1 Bm,l (x1, ..., xm−l+1).

By applying [41, eq. 15.5.2], the mth derivative of Vχ(x) has the following closed form

V (m)
χ (x) =−Δ(m) − 1

2
πλBr1

2ξm
(
kr, αr, D

T
χ ; x

)− 1

2
πλBr1

2ξm
(
kr, αr, D

R
χ ; x

)
, (B.6)

where Δ(0) = st,χn0
2x, Δ(1) = st,χn0

2, and Δ(m) = 0 when m ≥ 2.
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According to the location relationship among the typical UE, the assisted STAR-RIS, and the

serving BS, if the STAR-RIS aided link is transmissive, the BS can be only located in the half

part of the considered plane R
2 split by the STAR-RIS and vice versa. Therefore, the overall

coverage probability of the typical UE is expressed as

Pt,STAR =
1

2
Pt,STAR,T +

1

2
Pt,STAR,R. (B.7)

Then, the proof is completed.

APPENDIX C: PROOF OF COROLLARY 2

Let us denote β = βT = 1−βR. Since z makes no difference here, we denote Vχ(x) � Vχ(z, x).

By substituting sχ =
τ∗t (r1r2)αr

θrβχPBCr
into (B.4), Vχ(x) can be rewritten as

Vχ(x; β) = −c0x

βχ

− 1

2
πr1

2λBξ0

(
kr, αr, τ

∗
t xz;

β

βχ

)
− 1

2
πr1

2λBξ0

(
kr, αr, τ

∗
t xz;

(1− β)

βχ

)
,

(C.1)

where c0 =
τ∗t (r1r2)αrn02

θrPBCr
.

To find the optimal energy splitting coefficient for the coverage probability, we take the

derivative of Pt,STAR with respect to β

∂

∂β
Pt,STAR =

∂

∂β

∫ ∞

0

∫ ∞

0

πλBr1fRU(r2)
kr−1∑
m=0

(−1)m
m!

[
∂m

∂xm
exp (VT(x; β) + VR(x; β))

]
x=1

dr1dr2

(a)
=

∫ ∞

0

∫ ∞

0

πλBr1fRU(r2)
kr−1∑
m=0

(−1)m
m!

[
∂m

∂xm

∂

∂β
exp (VT(x; β) + VR(x; β))

]
x=1

dr1dr2. (C.2)

where (a) utilize the fact that the high-order derivatives of exp (Vχ(x; β)) is continuous, hence

the operators of different partial derivatives are interchangeable.

Now let us calculate the first derivative in (C.2), we have

∂

∂β
exp (VT(x; β) + VR(x; β)) �

∂

∂β
exp (V (x; β)) = exp (V (x; β))B1

(
V (1)(x; β)

)
= exp (V (x; β))

(
−c0x

(
1

(1− β)2
− 1

β2

)

+
πr1

2λB

β2
ξ1

(
kr, αr, τ

∗
t x;

1− β

β

)
− πr1

2λB

(1− β)2
ξ1

(
kr, αr, τ

∗
t x;

β

1− β

))
. (C.3)

It can be observed that when β = 1
2
, ∂
∂β
Pt,STAR = 0. Moreover, when β → 1

2

−
, ∂
∂β
Pt,STAR > 0,

and when β → 1
2

+
, ∂

∂β
Pt,STAR < 0. Thus, Pt,STAR is maximized when βT = βR =

1
2
.
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APPENDIX D: PROOF OF THEOREM 3

If γt→c > τc holds, we have γt > atτ
∗
c . Therefore, (41) can be rewritten as follows

Rt,STAR =

∫
z>atτ∗c

log2 (1 + γt)
∂

∂z
(1− P (γt > z)) dz. (D.1)

We denote F̄t(z) = P (γt > z), which represents the CCDF of the decoding SINR for the

typical UE. Then (D.1) can be expressed as

Rt,STAR = −
∫ ∞

atτ∗c
log2 (1 + z)

∂

∂z
F̄t,STAR(z)dz

= −
∫ ∞

atτ∗c

∫ z

0

1

ln 2(1 + x)
dx

∂

∂z
F̄t,STAR(z)dz

(a)
= − 1

ln 2

∫ atτ∗c

0

1

1 + x

∫ ∞

atτ∗c

∂

∂z
F̄t,STAR(z)dzdx− 1

ln 2

∫ ∞

atτ∗c

1

1 + x

∫ ∞

x

∂

∂z
F̄t,STAR(z)dzdx

(b)
= log2 (1 + atτ

∗
c ) F̄t,STAR(atτ

∗
c ) +

1

ln 2

∫ ∞

atτ∗c

F̄t,STAR(x)

1 + x
dx, (D.2)

where (a) is obtained by exchanging the order of integration. (b) is obtained by using the fact

that lim
z→∞

F̄t,STAR(z) = 0.

Now we calculate F̄t,STAR(z). Based on (8), we have

F̄t,STAR(z) =
1

2

∑
χ∈{T,R}

∫ ∞

0

∫ ∞

0

P

(
|ht|2 > (It + n0

2) z

atβχPBCr(r1r2)−αr

)
dr1dr2. (D.3)

By utilizing the same proof as Theorem 1, we can obtain (42). This proof is completed.
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