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Abstract— In radar target recognition using high-resolution
range profile, moving target recognition is a challenging issue,
due to the target-aspect angle variation. To address the problem,
two key issues need to be solved. First, we need to reflect
the target moving status. Next, we need to find the common
knowledge among different target-aspect angles. Accordingly,
a novel moving target recognition based on three distribution
over-complete dictionary in conjunction with transfer learning
is proposed. Specifically, we propose a three distribution over-
complete dictionary to represent the target and extract its
moving status by dictionary learning. Moreover, we structure
the feature set with generation among target-aspect angles by
using a transfer learning method. This framework can be trained
by using a small number of samples from limited target-aspect
angles to recognize the targets of other target-aspect angles.
Another advantage of this method is that it is robust against
signal noise rate variation. Simulation results are presented to
demonstrate the effectiveness of the proposed scheme.

Index Terms— Moving target recognition, three-dimensional
over-complete dictionary, transfer learning, noise robust.

I. INTRODUCTION

RADAR automatic target recognition (RATR) is a state-
of-the-art application of radars, which is a subject of

wide interest in both civil and military applications [1]–[9].
Generally, three kinds of sensor information can be used for
target recognition, viz. high-resolution range profile (HRRP),
synthetic aperture radar (SAR) image and inverse synthetic
aperture radar (ISAR) image. Due to the advent of wide band
radar, it is easy to obtain HRRP of a target [2], [3]. Therefore,
radar auto target recognition based on HRRP is most attractive.
Since the echo returning from target scattering centers is in a
form of complex on the radar line-of-sight (LOS), HRRP is a
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real vector composed of the amplitude of the complex of target
scatterers in each range cell. Therefore, several geometric
structure information can be obtained, such as scatterer
distribution and target size. These information can be used to
recognize the target. Therefore, radar target recognition based
on HRRP has received intensive attention from the radar
automatic target recognition community [3]–[5], [7], [9].

The moving target recognition is a critical issue in RATR.
As discussed in [3], [7], and [9], most moving targets we
concern are noncooperative. The target motion information,
especially the target-aspect angle, is difficult to measure pre-
cisely, which brings great difficulties to motion compensation.
At the same time, another approach for moving target recog-
nition is to make the classification in the ISAR image domain.
An obvious advantage of HRRP based RATR is that data need
not be processed to form an image in training or classification
phases [2], [9]. However, there also exist challenges in HRRP
based RATR, due to target-aspect angle variation.

To address the problem, many researchers have made efforts
recently. In [3], a scheme using dynamic system and principal
component analysis (PCA) was proposed, which can recognize
targets with different target-aspects effectively. In [8] and [9],
the temporal dependence of multiple HRRPs in a sequence and
hidden Markov models are utilized for RATR. Du et al. [9]
proposed a moving target recognition approach by using
multitask learning framework, which presents a promising
result. More recently, an approach for radar HRRP target
recognition was presented in [7], which combines the empiri-
cal mode decomposition (EMD) method with the nonnegative
gradient projection for sparse reconstruction (NGPSR). These
approaches made some achievements, but do not eliminate
effects to recognition caused by aspect angle variation.

Against this background, we present a novel moving target
recognition approach, which proposes a space-time-energy
three-dimensional over-complete dictionary to describe mov-
ing targets and utilizes transfer learning to find the common
knowledge among data of targets with different aspect angles,
such that moving targets can be recognized and refrain from
the influence of motion. The distinct features of this work are
outlined as follows.

• In order to leverage the spatio-temporal information of
HRRP sequence, a cubic space of time, distance and
energy is built where the moving target can be represented
in the cubic distribution of time, distance and energy. The
changing of scatters’ location and energy can be obtained.
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Fig. 1. An example of a plane target HRRP sample and scatters. This picture
is cited from [9].

The moving and structure characteristic can be studied
through the distribution.

• In this paper, sparse representation is utilized for mov-
ing target recognition. An over-complete dictionary
for three-dimensional distribution sparse representation
is proposed. By dictionary learning, the spatio-temporal
distribution of moving targets can be can be represented
exactly and decomposed sparsely.

• In order to address pose sensitivity of moving targets, the
feature set is learned from the updated dictionary by using
transfer learning, which can find the common knowledge
among different target-aspect angles. Therefore, the fea-
tures are robust against the influence by target’s motion.

The remainder of the paper is organized as follows. First, the
radar automatic target recognition system model with spatio-
temporal property and sparse representation are presented in
Section II. In Section III, next, the sparse representation based
on spatio-temporal property is proposed, then the recognition
based on sparse representation and transfer learning is pre-
sented. Section IV then illustrates the simulation results to
demonstrate the performances of the proposed scheme. Finally,
we conclude this study in Section V.

II. SYSTEM DESCRIPTION

HRRP, a real vector, which is exploited wildly in radar target
recognition, is the amplitude of the coherent summations of
the complex time return from target scatterers in each range
cell. The gain process of HRRP is shown in Fig. 1.

Unfortunately, target recognition on HRRP is incapable
in moving target recognition. The variation of target-aspect
caused by target moving will change the target statistical char-
acteristics substantially. In this paper, we study the approach
of moving target recognition based on three distribution (3D)
over-complete dictionary and transfer learning. The model of
moving target system is shown in Fig. 2.

The moving target recognition system can be separated into
two parts, namely, training and recognition. In the former,
the training targets are represented sparsely, which consists of
three stages. The first stage is the mapping between the moving
target information and the spatio-temporal-energy 3D distrib-
ution based on known target HRRP sequences. In the second

stage, the 3D over-complete dictionary is updated based on
known target to adapt the moving target recognition. The last
stage is to find the key knowledge with generalization among
different target-aspect angles, by using transfer learning. In the
recognition, target samples with unknown target-aspect angles
are decomposed based on the sparse representation model and
recognized.

In this paper, the vectors of the same target due to dif-
ferent target-aspect angles is defined as different domains.
Therefore, a domain D consists of two components: a feature
space X and a marginal probability distribution P(x), where
X = {x1, x2, . . . , xn}. In this framework, the learning task is
radar target classification, and each target is taken as a vector.
X is the space of all target vectors, xi is the i th target vector
corresponding to some targets, and X is a particular learning
sample. For samples in two different domains, they have
the same feature spaces, but different marginal probability
distributions. Given a specific domain, D = {X; P(X)},
a task consists of two components: an objective predictive
function f (·) and a label space Y . The task can be denoted
by τ = (Y, f (·)) and learned from the training data, which
consist of pairs {xi ; yi}, where xi ∈ X and yi ∈ Y . The
function f (·) can be used to predict the corresponding label
of a new instance x . From the viewpoint of probability,
f (x) can be written as P(y|x) [10].

We study the case where there exists one source domain DS ,
and several target domains, DT , as this is by far a bot-
tleneck of the radar target recognition research works.
More specifically, we denote the source domain data as
DS = {(

xS1, yS1

)
, . . . ,

(
xSn , ySn

)}
, where xSi ∈ X S is the

data instance and ySi ∈ YS is the corresponding class label.
In our paper, DS can be a set of term vectors from HRRP,
together with their associated class labels. Similarly, we denote
the target-domain data as DT = {(

xT1, yT1

)
, . . . ,

(
xTn , yTn

)}
,

where the input xTi is in XT and yTi ∈ YT is the corresponding
output.

What we need to do is to find a learning task TS , to improve
the learning of the target predictive function fT (·) in DT

using the knowledge in DS and TS , where DS �= DT . The
task is defined as a pair τ = {y, P (Y |X)}. The condition
τS �= τT implies that P (YS |X S) �= P (YT |XT ). The domains
are different, namely, the feature spaces between the domains
are the same but the marginal probability distributions between
domain data are different; i.e., P(X S) �= P(XT ), where
X Si ∈ χS and XTi ∈ χT .

The details of our approach will be introduced in the
following section.

III. FEATURE LEARNING AND RECOGNITION

A. Three-Dimensional Over-Complete Dictionary Based on
Higher Order Autocorrelation Function

In this paper, a 3D distribution of HRRP sequence is used
to describe a moving target, which will be decomposed upon a
3D over-complete dictionary. Then, the feature with generation
against target-aspect angle variation will be extracted from the
3D over-complete dictionary. Therefore, the 3D over-complete
dictionary will be introduced first.
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Fig. 2. The model of the proposed moving target recognition system.

Fig. 3. The reference space model.

Recent years have witnessed a growing interest in the
research for sparse representations of signals [11], [12], using
an over-complete dictionary matrix D = R

d×m with m
prototype signal-atoms for columns, which is donated by
{d j }m

j=1. The representation of a signal y ∈ R
d may either

be exact y = Dx , where the vector x ∈ R
m contains the

representation coefficients of the signal y. In this paper, a 3D
over-complete dictionary is obtained by using higher order
local auto-correlation function.

Let g(r) be three-way (cubic) data defined on the region
DT : T × F × E with r = (t, f, e)T, where F and E denote
the frequency and energy of a target sample, respectively, and
T is the time length of the time window. Let aie, ai f , ait be the
shifts in energy, frequency and time, respectively. Particularly,
we make the restriction that aie, ai f , ait ∈ {±�r, 0}, so that
the range of higher order autocorrelation function is restricted
in a cube, namely, N ∈ {0, 1, . . . , 26}, e.g., as shown in Fig. 3.

Then the N th order auto-correlation function is defined by

RN (a1, . . . , aN ) =
∫

DS

g(r)g(r + a1) · · · g(r + aN )dr (1)

DS = {r|r + ai ∈ DT ∀i} (2)

where ai (i = 1, . . . , N) denote shift vectors from the ref-
erence point r. A higher order local auto-correlation (HLAC)
vector is made up of RN (a1, . . . , aN ) with various a1, . . . , aN

in the local region.
Specifically, Eq. (1) is translated to a corresponding discrete

version:

RN (a1, ..., aN ) =
∑

t, f,e

g(t, f, e)g(t + a1t , f + a1 f , e + a1e)

· · · g(t + aNt , f + aN f , e + aNe) (3)

Algorithm 1. Three-Dimensional Over-Complete
Dictionary Based on Higher-Order Autocorrelation

Define the cubic local higher-order autocorrelation
function, as (1).
for i = 1 : d do

Obtain the logical conditions of the i th-order cubic
local autocorrelation function.

end
for j = 1 : Nc do

for i = 1 : m do
if X (r) ∗ Ai �= 0, then

Ni = Ni + 1
end

end
end
Obtain the coefficient matrix c and X is decomposed as
X = Dc.

In the case of binary distribution ( f (r) = 0 or 1), the scan
by the reference point (t, f, e) can be restricted to the “1”
points, viz., g(r) = 1, in g. The configuration (a1, a2, . . . , aN )
is represented by a local 3D distributions in DT , namely,
atoms. Then, the Nth-order autocorrelation function of a
binary distribution can be regarded as counting the number
of points satisfying some logical condition, namely,

g (r) ∧ g (r + a1) ∧ · · · ∧ g (r + aN ) = 1 (4)

The higher order autocorrelation function can be trans-
formed into counting the patterns characterized by the above
logical statement over g. When scanned by the reference
point r, X can be decomposed by using atoms in the
CHLAC dictionary. The algorithm of three-dimensional over-
complete dictionary based on higher order autocorrelation is
shown as Algorithm 1, where D ∈ Rd×m , d = 26 and
m= 227 − 1. D(i), Nc and Ni donate the i atom, the
number of points in region D and the i th atom in dictionary,
respectively.

B. Dictionary Learning

Dictionary learning is to find an sub-dictionary which rep-
resents the training signals best. Therefore, during dictionary
learning, the dictionaries are trained to adapt to the train-
ing data. More precisely, let Y be the training data, where
each column of Y corresponds to one training sample. For



5674 IEEE SENSORS JOURNAL, VOL. 16, NO. 14, JULY 15, 2016

a given dictionary D, the excellently learned sub-dictionary
D∗ ∈ Rm×d is the one that minimizes

‖Y − DX‖2
F (5)

where is ‖·‖ the Frobenius norm.
The learned dictionary will have the potential to offer an

improved performance compared with the predefined dictio-
nary, since the salient information directly from the training
data is captured by the atoms derived [12]. However, dictionary
learning is a joint optimization problem and this process
usually involves higher computational complexity. To decrease
the computational complexity, a succinct learning approach for
3D dictionary is proposed.

In this approach, dictionary learning is achieved by an ana-
lytical way, instead of directly solving the joint optimization
problem. We analyze contents of the 3D distribution of training
data such that the atoms existing in training data can be found.
We delete the uncorrelated atoms from the initial dictionary
and obtain the dictionary learned.

First, we build a reference cube M, e.g., shown in Fig. 3.
In M, there are three layers (i.e., M−1, M0 and M+1) and
positions are labeled by a, b, c, d, e, f, g, h, i in each layer.
Therefore, 27 units are in M in total. The unit e in M0 layer
is termed as reference point.

We give each unit (from a in M−1 to i in M−1) a weight,
which is 2n (n ∈ [0, 1, · · ·, 26]). Therefore, each atom com-
posing of units can be represented by a weight, which comes
from the accumulation of unit weight. Execute the discrete
convolution between M and training samples, namely

C (t, f, e) =
∑

t

∑

f

∑

e

M
(
t ′, f ′, e′)XT

× (
t − t ′, f − f ′, e − e′) (6)

where XT (t, f, e) denotes the 3D distribution of the training
sample.

Then, as the reference point traverses the 3D distribution
of training data, convolution results will be recorded in the
training data distribution. Therefore, the frequency of each
atom appearance in the training data can be calculated. The
training data can be decomposed into atoms and uncorrelated
atoms can be found. The size of the dictionary is reduced.

C. Feature Learning Based on Transfer Learning

In order to characterize different targets, the time-frequency-
energy distribution are decomposed by using atoms in D∗. Due
to the target moving, the difference among target-aspect angles
of the same target can confuse the recognition. Therefore,
transfer learning method is used here is to enhance the gen-
eralization of recognition against targets with different target-
aspect angles.

Transfer learning has been proposed to deal with the prob-
lem of how to reuse the knowledge learned previously from
other data or features [13], [14]. The idea behind transfer
learning is to exploit commonalities between different learn-
ing tasks in order to share statistical strength, and transfer
knowledge across tasks [14]–[16].

Fig. 4. Illustration of the shared-hidden-layer autoencoder (SHLA) on the
training set and test set [17].

The shared-hidden-layer autoencoder (SHLA) is an efficient
transfer learning method and utilized here to obtain the feature
set with common knowledge from dictionary D∗ [17]. The
structure of the SHLA is shown in Fig. 4.

As shown, it sets the target values to be equal to the input,
so as to automatically find common feature representations
for both training data and test data in an unsupervised way.
In response to an input example x , the hidden representation
h (x) is

h (x) = f (W1x + b1) (7)

where f (z) is a non-linear activation function, typically a
logistic sigmoid function f (z) = 1/(1 + exp(z)) applied
component-wise, W1 is a weight matrix, and b1 is a bias vector.

The network output completes the reconstruction process,
which takes the hidden representation h, and maps it back to
a reconstruction x̃ :

x̃ = f (W2h (x) + b2) (8)

where W2 is a weight matrix, and b2 is a bias vector.
Note that the SHLA shares the same parameters for the

mapping from the input layer to the hidden layer, but uses
independent parameters for the reconstruction process. Given
a training set of examples Xtr , and a test set of examples Xte,
the two objective functions, are formed as follows:

jtr (θtr) =
∑

x∈χ tr

‖x − x̃‖2 (9)

jte (θte) =
∑

x∈χ te

‖x − x̃‖2 (10)

where the parameters θtr = {W1, W tr
2 , b1, btr

2 }, and θte =
{W1, W te

2 , b1, bte
2 } share the same parameters {W1, b1}.

In the end, the overall objective function is obtained by
joining the distance for the two sets, given by:

jS A (θS A) = jtr (θtr ) + γ jte (θte) (11)

where θS A = {
W1, W tr

2 , W te
2 , b1, btr

2 , bte
2

}
are the parameters

to be optimized during training, the hyper-parameter γ con-
trols the strength of the regularization. Training the SHLA is
equivalent to training a basic autoencoder, and the standard
back-propagation algorithm can be applied.

To minimize the objective function, the shared hidden layer
is biased to make the distribution induced by the training set
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TABLE I

INFORMATION OF KNOWN RADAR TARGET

as similar as possible to the distribution induced by the target
set. This helps to regularize the functional behavior of the
autoencoder.

IV. SIMULATION RESULTS AND DISCUSSIONS

A. Selected Task and Data

In the simulation, we will examine the moving target
recognition rate of the proposed approach. In addition, the
robust against SNR changing will be studied. In order to test
the generalization performance of the recognition methods, the
training data cover only one target-aspect angle of the test data,
while the test data cover all target-aspect angles.

We investigate the performance of the proposed framework
on two parts of data. One is the simulated HRRP data of
airplanes, including B-52, TU-16 and F-15. The other is the
measured HRRP data from three real airplanes, which insists
of Yark-42, Cessna Citation S/II and An-26. The information
of targets is shown in Table I.

Due to motion, the target-aspect angle of a target varies.
Therefore, the measured data of Yark-42, Cessna Citation S/II,
and An-26 cover 5, 7 and 7 target-aspect angles, respectively
and the simulated data of targets insist of 6 target-aspect
angles.

B. Experimental Setup and Evaluation Metrics

We evaluate the proposed approach using the simulated
data and measured data, respectively. In dictionary establishing
stage, a target-aspect angle of each plane is chosen randomly
used to train the dictionary. After dictionary learning, the
moving targets can be characterized by using atoms in the
dictionary. The common knowledge which can be used in
different target-aspect angles will be found among these atoms.
In the decompose process, the feature set including the com-
mon knowledge is built.

In the transfer learning, SHLA is adapted. In SHLA,
the attempted hyper-parameter and weight decay values
were the following: γ ∈ {0.1, 0.3, 0.5, 1, 2, 3}, λ ∈
{0.0001, 0.001, 0.01, 0.1}. Because the size of learned feature
set is relevant to the number of hidden units m, influence of
m will be studied first. As classifier, we use linear SVMs with
a fixed penalty factor C = 0.5 as the basic supervised learner.

To evaluate the proposed approach, we examine two aspects:
generation in different target-aspect angles and robustness
against SNR changing. Therefore, we examine the recognition
rate on not only the training target-aspect data but also
all target-aspect data and in different SNR circumstances.
In order to evaluate the proposed approach in this paper,

Fig. 5. Recognition rate vs. the number of hidden units m.

the approaches proposed in [3], [6], [7], and [9] are used
for comparison. In [3], a dynamic system which models the
short dependency between consecutive samples of HRRP in
segments for moving target recognition is proposed (which
is termed as DS-ARTR). In [6], a novel target recognition
method termed as orthogonal maximum margin projection
subspace is proposed for HRRP-based radar target recognition
(which is termed as OKMMPS-ARTR). In [7], a radar target
recognition approach based on sparse representation and time-
frequency feature is proposed (which is termed as SP-ARTR).
Moreover, for moving target recognition, a closely related
learning technique to transfer learning is the multitask learning
framework. Therefore, a radar target recognition approach
based on multitask learning [9] is adapted in the comparison
(which is termed as MT-ARTR).

C. Results

At first, we evaluate the performance of proposed scheme
in term of the recognition rate over different size of the
feature set, namely m. Actually, m is also the number of the
hidden nodes of SHLA, which can influence the generation in
different target-aspect angles of moving targets.

As shown in Fig. 5, as m grows from 10 to 100, the
average recognition rate increases from about 63% to 93%.
This suggests that the proposed approach can get a satisfactory
result to recognize the radar targets in different target-aspect
angles with a small number of features. Moreover, it is a rapid
increase process from m = 10 to m = 60. Especially, when
m = 60, the average recognition receive about 92%. This
result can prove the proposed approach’s validity well. It also
means that we can use target information in one target-aspect
angle to recognize others.

To make a compromise between recognition and computing
complexity, we let m = 60 in the following simulations.

In Fig. 6, we evaluate the Average Recognition Ratio (ARR)
performance of the proposed scheme over different target-
aspect angles using the simulated data set. We can know that
the proposed approach achieve high ARRs over all target-
aspect angles. Since only one target-aspect angle data are
used for training, ARR on the whole test data set vary from
about 90% to 98%. In the domain (target-aspect angles)
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TABLE II

CONFUSION MATRIXES COMPARISON

Fig. 6. Average recognition rates of the simulated target data with different
TAAs.

Fig. 7. Average recognition rates against different SNRs.

of 45 degree, ARR achieves the high performance, namely,
around 98%. Moreover, in each domain, ARR performance is
very close on three types targets. It can be proved that the
common knowledge among different target-aspect angles is
found through the transfer learning.

Fig. 7 shows the performance of the proposed scheme
over different SNRs on the simulated data set. It can be
observed that the performance of the proposed scheme have
obvious increasing recognition rates, as the SNR increases.
In high SNR environment, the proposed scheme can get good
performance. ARR is higher than 90% with 20 dB SNR.
Especially, when SNR increases to 40 dB, the recognition

Fig. 8. Average recognition rates against different training set size.

rate is approximate to 95%. In lower SNR environment, our
scheme can also have a good performance. More specifically,
it has a recognition more than 80% in 10 dB SNR and 90%
in 20 dB SNR, which can show that the proposed scheme has
good robust against noise variation.

In Fig. 8, we evaluate the Average Recognition Ratio (ARR)
performance of the proposed scheme over different training set
size. We can know that the ARR of approaches in comparison
increase as the training size increases. When training size is
above 2000, all approaches obtain more than 90% recognition
rates and when training size is above 8000, all approaches can
get more than 92% recognition rates. The two deep learning
approaches, multitask and transfer learning, have good perfor-
mance in this stage. They have higher average recognition rates
than other approaches. Compared with existing approaches,
the proposed approach in this paper has a better performance
in this comparison. More specifically, it obtains a recognition
more than 93% with 2048 training samples and 95% with 4096
training samples, which reflects the validity of the proposed
approach.

In moving target recognition, a similar approach with
transfer learning is the framework based on multitask
learning (proposed in, which is also a deep learning-based
approach. Therefore, we compare the multitask learning-based
scheme proposed in [9] and our scheme. A confusion matrix
with 2048 training samples is given in Table II. We can
know that the proposed scheme outperforms the multitask
learning-based scheme in ARR performance. The ARR of
the proposed approach is higher than that of the multitask
learning framework by about 1.5% for the given test dataset.

In Fig. 9, we evaluate the ARR performance of the proposed
scheme over different SNRs. In a low SNR condition (5 dB),
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Fig. 9. Average recognition rate comparison under different SNR environ-
ments.

recognition rates of schemes have acceptable performances
(close to or higher than 70%), and the scheme OKMMPS-
ARTR has the highest ARR. As the SNR grows, the average
recognition rates of all schemes increase obviously. Especially,
the proposed scheme in this paper outperform other schemes
when SNR is above 10 dB. In a high SNR condition (higher
than 30 dB), most schemes have average recognition rates
more than 90%. The schemes of SP-ARTR and MT-ARTR
have similar performances, and converge when SNR grows
to 35 dB. Obviously, the proposed scheme has the best per-
formance in the comparison. More specifically, it has average
recognition rates of 80%, 90% and 95% under 10 dB, 20 dB
and 40 dB SNR conditions, respectively. Therefore, we can
draw the conclusion that the proposed scheme is effective
under both low and high SNR conditions.

V. CONCLUSIONS AND FUTURE WORK

This paper has studied the problem of moving target recog-
nition. We considered that the key issue of this problem is
how to eliminate the affect of target-aspect angle. Therefore,
we tackle the problem in two steps. First, we structured a 3D
over-complete dictionary based on cubic higher-order auto-
correlation function to represent moving targets. Next, we
extracted the target feature by using the SHLA, which contains
the common knowledge among different target-aspect angle
targets. Therefore, we used limited target samples from one
target-angle to train the moving target recognition system and
recognized targets with different target-aspect angles. Finally,
simulation results have been presented to demonstrate the
performance of proposed scheme. From the simulation results,
we have verified the validity of proposed scheme and the
efficiency. Then we have analyzed the performance effect
under SNR variation, which proves that the proposed approach
has noise robustness. In our future work, we will study the shift
sensibility of moving target recognition.
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