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Abstract

Due to the increasing complexity of electromagnetic signals, there exists a significant challenge for recognizing radar
emitter signals. In this article, a hybrid recognition approach is presented that classifies radar emitter signals by
exploiting the different separability of samples. The proposed approach comprises two steps, i.e., the primary signal
recognition and the advanced signal recognition. In the former step, the rough k-means classifier is proposed to
cluster the samples of radar emitter signals by using the rough set theory. In the latter step, the samples within the
rough boundary are used to train the support vector machine (SVM). Then SVM is used to recognize the samples in
the uncertain area; therefore, the classification accuracy is improved. Simulation results show that, for recognizing
radar emitter signals, the proposed hybrid recognition approach is more accurate, and has a lower time complexity
than the traditional approaches.
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Introduction
Radar emitter recognition is a critical function in radar
electronic support system, for determining the type of
radar emitter [1]. Emitter classification based on a collec-
tion of received radar signals is a subject of wide interest in
both civil andmilitary applications. For example, in battle-
field surveillance applications, radar emitter classification
provides an important means to detect targets employ-
ing radars, especially those from hostile forces. In civilian
applications, the technology can be used to detect and
identify navigation radars deployed on ships and cars used
for criminal activities [2].
The recent proliferation and complexity of electromag-

netic signals encountered in modern environments is
greatly complicating the recognition of radar emitter sig-
nals [1]. Traditional recognition methods are becoming
inefficient against this emerging issue [3]. Many new radar
emitter recognition methods were proposed, e.g., intra-
pulse feature analysis [4], stochastic context-free gram-
mars analysis [1], and artificial intelligence analysis [5-8].
In particular, the artificial intelligence analysis approach
attracted much attention. Among the artificial intelligence
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approaches, neural network and support vector machine
(SVM) are widely used for the radar emitter recognition.
In [6], Zhang et al. proposed a method based on rough
sets theory and radial basis function (RBF) neural net-
works. Yin et al. [7] proposed a radar emitter recognition
method using the single parameter dynamic search neural
network. However, the predication accuracy of the neu-
ral network approaches is not high and the application of
neural networks requires large training sets, which may
be infeasible in practice. Compared to the neural network,
the SVM yields higher prediction accuracy while requiring
less training samples. Ren et al. [2] proposed a recogni-
tion method using fuzzy C-means clustering SVM. Lin
et al. proposed to recognize radar emitter signals using
the probabilistic SVM [8] and multiple SVM classifiers
[9]. These proposed SVM approaches can improve the
accuracy of recognition. Unfortunately, the time complex-
ity of SVM increases rapidly with the increasing number
of training samples. The classification method with high
accuracy and low time complexity is becoming the focus
of research.
Classifiers can be categorized into linear classifiers and

nonlinear classifiers. A linear classifier can classify linear
separable samples, but cannot classify linearly insepara-
ble samples efficiently. A nonlinear classifier can classify
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linearly inseparable samples, nevertheless the time com-
plexity of the nonlinear classifier will be increased when
processing linearly separable samples. In practice, the
radar emitter signals consist of both linearly separable
samples and linearly inseparable samples, which makes
classification challenging. In the traditional recognition
approach, only one classifier is used; thus, it is difficult to
classify all radar emitter signal samples. In this article, a
hybrid recognition method based on the rough k-means
theory and the SVM is proposed. To deal with the draw-
back of the traditional recognition approaches, we apply
two classifiers to recognize linearly separable samples
and linearly inseparable samples respectively. Samples are
firstly recognized by the rough k-means classifier, while
linearly inseparable samples are picked up and further rec-
ognized by using RBF-SVM in the advanced recognition.
The simulation results show that the proposed approach
can recognize radar emitter signals more accurate and has
a lower time complexity when compared with the existing
approaches.
The rest of the article is organized as follows. In Section

‘Basic concepts’, some basic concepts are reviewed. In
Section ‘Radar emitter recognition system’, a novel radar
emitter recognition model is proposed. The perfor-
mance of the proposed approach is analyzed in Section
‘Simulation results’, and conclusions are given in Section
‘Conclusions’.

Basic concepts
Rough sets
An information system can be expressed by a four-
parameters group[10]: S = {U,R,V , f }. U is a finite and
non-empty set of objects called the universe, and R =
C ∪ D is a finite set of attributes, where C denotes the
condition attributes andD denotes the decision attributes.
V = ∪vr , (r ∈ R) is the domain of the attributes, where
vr denotes a set of values that the attribute r may take.
f : U × R → V is an information function. The equiv-
alence relation R partitions the universe U into subsets.
Such a partition of the universe is denoted by U/R =
E1, E2, . . . , En, where Ei is an equivalence class of R. If
two elements u, v ∈ U belong to the same equivalence
class E ⊆ U/R, u and v are indistinguishable, denoted
by ind(R). If ind(R) = ind(R − r), r is unnecessary in R.
Otherwise, r is necessary in R.
Since it is not possible to differentiate the elements

within the same equivalence class, one may not obtain a
precise representation for a set X ⊆ U. The set X, which
can be expressed by combining sets of some R basis cate-
gories, is called set defined, and the others are rough sets.
Rough sets can be defined by upper approximation and
lower approximation. The elements in the lower bound of
X definitely belong to X, and elements in the upper bound
of X belong to X possibly. The upper approximation and

lower approximation of the rough set R can be defined as
follows [11]:

R(X) = ∪
{
Y ∈ U

R : Y ⊆ X

}
(1)

R(X) = ∪
{
Y ∈ U

R : Y ∩ X �= ∅
}

(2)

where R(X) represents the set that can be merged into X
positively, and R(X) represents the set that is merged into
X possibly.
Suppose P and Q are both the equivalent relationship of

systemU, and the knowledge systems decided by them are
U/P = {

[x]P|x ∈ U
}
and U/Q =

{[
y
]
Q|y ∈ U

}
. If for any

[x]P ∈ (U/P), Q
(
[x]P

) = Q
(
[x]P

) = [x]P, then knowl-
edge P is dependent on knowledgeQ completely, that is to
say when disquisitive object is some characteristic of Q, it
must be some characteristic of P. P and Q are of definite
relationship. If knowledge P is dependent on knowledgeQ
partly, P andQ are of uncertain relationship. So the depen-
dent extent of knowledge P to knowledge Q is defined as
[10]

γQ = POSQ(P)/|U| (3)

where POSQ(P) = ∪Q(x) and 0 ≤ γQ ≤ 1. The value
of γQ reflects the dependent degree of knowledge P to
knowledge Q. γQ = 1 shows knowledge P is dependent
on knowledge Q completely; γQ close to 1 shows knowl-
edge P is dependent on knowledgeQ highly. γQ = 0 shows
knowledge P is independent of knowledge Q.

Rough k-means algorithm
The k-means algorithm is one of the most popular itera-
tive descent clustering algorithms [12]. The basic idea is
to make the samples have high similarity in a class, and
low similarity among classes. The center of a cluster can
be given by:

ti =
∑
x∈Xi

x

card(Xi)
, i = 1, 2, . . . , I (4)

where x denotes the sample to cluster, Xi denotes the clus-
ter i, card(Xi) denotes the number of the elements in Xi,
and I denotes the number of clusters.
The k-means algorithm is efficient for clustering. But

k-means clustering algorithm has the following problems:

1. The number of clusters in the algorithm must be
given before clustering [13].

2. The k -means algorithm is very sensitive to the initial
center selection and can easily end up with a local
minimum solution [13,14].

3. The k -means algorithm is also sensitive to the
isolated point [15].
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To overcome the problem of isolated points, Pawan
and West [15] proposed the rough k-means algorithm.
This method introduces upper approximation and lower
approximation into k-means clustering algorithm. The
improved cluster center is given by [15]:

Cj =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

ωlower ×
∑

v∈A(x) vj
|A(x)| + ωupper

×
∑

v∈(A(x)−A(x)) vj
|A(x) − A(x)| if A(x) − A(x) �= ∅

ωlower ×
∑

v∈A(x) vj
|A(x)| otherwise

(5)

where the parameters ωlower and ωupper are lower and
upper subject degrees of X relative to their clustering cen-
ters. For each object vector v, d(x, ti) denotes the distance
between the center of cluster ti and the sample. The lower
and upper subject degrees of x relative to its cluster is
based on the value of d(x, ti) − dmin(x)(1 ≤ i ≤ I),
where dmin(x) = mini∈[1,I] d(x, ti). If the value of d(x, ti)−
dmin(x) ≥ λ, the sample x is subject to the lower approx-
imation of its cluster, where λ denotes the threshold for
determining upper and lower approximation. Otherwise,
x will be subject to the upper approximation. The com-
parative degree can be determined by the number of
elements in the lower approximation set and the upper
approximation set, as follows:

ωlower(i)
ωupper(i)

= |A(Xi)|
|A−(Xi)| , (A−(Xi) �= ∅) (6)

ωlower(i) + ωupper(i) = 1. (7)

SVM
In this section, we give a very brief introduction to SVM.
Let (xi, yi)1≤i≤N be a set of training examples, each exam-
ple xi ∈ Rd, d being the dimension of the input space,
belongs to a class labeled by y ∈ {−1, 1}. It amounts to
finding w and b, which satisfy

yi[ (w · xi) + b]≥ 1. (8)

The aim of SVM is to find the hyperplane which makes
the samples with the same label at the same side of the
hyperplane. The quantity ||w||

2 is named the margin, and
optimal separating hyperplane (OSH) is the separating
hyperplane which maximizes the margin. The larger the
margin, the better the generalization is expected to be
[16].
To search the minimum ||w||

2 , Lagrange multiplier is
usually used, leading to maximizing

w(α) =
N∑
i=1

αi − 1
2

N∑
i,j=1

αiαjyiyj(xi · xj) (9)

subject to∑
αiyi = 0 (10)

where α = (α1, . . . , αN ) denotes the non-negative
Lagrange multipliers, xi denotes the input of the training
data and yi denotes the output of the training data [17].
The decision function is

f (x) = sign[
N∑
i=1

yi · ai(xi · x) + b] (11)

In the nonlinear case, the approach adapted to noisy
data is to make a soft margin. We introduce the slack
variables (ξ1, . . . , ξi) with ξ1 > 0 so that

yi[ (w · xi) + b]≥ 1 − ξi, i = 1, . . . ,N . (12)

The generalized OSH is the solution of minimizing

1
2
w · w + C

N∑
i=1

ξi (13)

subject to (12) and ξi > 0. The parameter
∑

ξi is the
upper bound on the number of training errors andC is the
penalty parameter to control errors.
In the nonlinear SVM, a kernel function is introduced

to change the initial data into a feature space with high
dimension. In the new space the data should be linearly
separable. Then the quadratic optimization problem can
be converted to maximize

w(α) =
N∑
i=1

αi − 1
2

N∑
i,j=1

αiαjyiyjK(xi · xj) (14)

subject to (10) and 0 ≤ αi ≤ C. K(x, xi) is the kernel func-
tion. As one of themost popular kernel functions, the RBF
kernel function is considered in this article, and it takes
the following form [18,19]:

K(x, xi) = exp{−γ ||x − xi||2}. (15)

(14) is converted to maximize

w(α) =
n∑

i=1
αi − 1

2

n∑
i=1

n∑
j=1

yiyjαiαj exp
{−γ ||xi − xj||2

}
(16)

subject to (10) and 0 ≤ αi ≤ C. The new decision function
is :

f (x) = sign

( Ns∑
i=1

yi · ai·K(x, xi) + b
)

(17)

The result of the minimization is determined by the
selection of parameters C and γ . Usually, C and γ are
determined by using cross validation.
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Radar emitter recognition system
In this section, a hybrid radar emitter recognition
approach that consists of a rough k-means classifier in the
primary recognition and a SVM classifier in the advanced
recognition is proposed. This approach is based on the
fact that in the k-means clustering, the linearly inseparable
samples aremostly at themargins of clusters, whichmakes
it difficult to determine which cluster they belong to. To
solve this problem, a linear classifier based on the rough
k-means and a nonlinear classifier SVM are adopted. This
approach can classify linearly separable samples and pick
up those linearly inseparable samples to be classified in the
advanced recognition using SVM.
After sorting and feature extraction, radar emitter sig-

nals are described by pulses describing words. Radar
emitter recognitions are based on these pulses describing
words. The process of the hybrid radar emitter recogni-
tion approach is shown in Figure 1. Based on the pulses
describing words, we can obtain an information sheet
of radar emitter signals. By attribute discretization and
attribute reduction, the classification rules are extracted.
These classification rules are the basis of the initial cen-
ters of the rough k-means classifier, i.e., they determine
the initial centers and the number of clusters. After that,
the known radar emitter signal samples are clustered by

Figure 1 Flow chart of the hybrid radar emitter recognition
approach proposed in this article. The hybrid recognition
approach is made up of two classifiers, a linear classify and a
nonlinear classify, which can classify linearly separable samples and
pick up those linearly inseparable samples to be classified in the
advanced recognition using SVM.

the rough k-means while the rough k-means classifier in
the primary recognition is built, as described in the fol-
lowing section. The samples in the margin of a cluster are
picked up to be used as the training data for the SVM
in the advanced recognition. The unknown samples to be
classified are recognized firstly by the rough k-means clas-
sifier. The uncertain sample set, which contains most of
the samples with linear inseparability, is classified by the
SVM in the advanced recognition.
Based on the process of the recognition approach

described above, the accuracy of recognition can be given
by:

Atotal = Aprimary+(1−Aprimary)·NWIU
NW

·Aadvanced (18)

where Atotal is the accuracy of the hybrid recognition,
Aprimary is the accuracy of the primary recognition,
Aadvanced is the accuracy of the advanced recognition,
NWIU is the number of samples which are falsely classi-
fied in uncertain area, and NW is the number of wrong
classified samples.

Primary recognition based on improved rough k-means
As mentioned above, a classifier based on the rough k-
means is proposed as the primary recognition. In the
rough k-means algorithm, there are two areas in a cluster,
i.e., certain area and rough area. But in the rough k-means
classifier proposed in this article, there exist three areas.
For example, in two dimension, a cluster is depicted in
Figure 2. At the edge of the cluster, there is an empty area
between the borderline and the midcourt line of the two
cluster centers. We name this area as the uncertain area.
In clustering, there is no sample in the uncertain area.
When the clustering is completed, these clusters will be
used as the rough k-means classifiers. When unknown
samples are classified, for each cluster center, samples are
nearer than the midcourt line are classified into its class.
Linear inseparable samples are usually far from cluster
centers and probably out of the cluster, i.e.,in the uncertain
area. Thus after distributed into their nearest clusters, the
unknown samples in uncertain area will be recognized by
the advanced recognition. For those unknown samples in
the certain area and rough area, the primary recognition
outputs final results.
As shown in Figure 2, in the training process of the

rough k-mean classifier, we calculate the cluster center,
rough boundary Rro and uncertain boundary Run in every
cluster. After clustering, the center of a cluster and the far-
thest sample from the center of the cluster are determined.
The area between rough boundary and uncertain bound-
ary (Rro < dx < Run) is defined as rough area, where dx
denotes the distance from a sample to the center. In the
training, if a training sample is in the rough area, it will be
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Figure 2 An example of a cluster. There are three areas in our rough k-means classifier, the certain area, rough area and uncertain area. These
areas will be introduced in detail in the text.

used to train the SVM in the advanced recognition. The
uncertain boundary threshold Run is defined as

Run = max(dx) (19)

where max(dx) is the distance from the farthest sample to
the center.

In a cluster, The area beyond uncertain boundary (dx >

Run) is the uncertain area. When unknown samples are
recognized, they will be distributed into the nearest clus-
ter. If dx > Run, these samples will be further recognized
by the advanced recognition. For other unknown samples,
the result of the primary recognition will be final.

Figure 3 Comparison of radiuses of the rough k-means cluster and the k-means cluster. The radius of a cluster in rough k-means is shorter
than that in k-means.
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As the discussions in previous section, the k-means
algorithm has some problems. The rough k-means
method can solve the problems of nondeterminacy in
clustering and reduce the effect of isolated samples [20].
But it still requires initial centers and the number of cen-
ters as priors. In addition, the choice of initial centers
is very important for rough k-means. So the initial cen-
ters are usually determined by computing the least means
square. In this article, we propose to determine the initial
centers based on rough sets theory. Using this approach,
the initial centers are computed based on the classifica-
tion rules of rough sets. The process can be described as
follows:

1. Classification rules are obtained based on the rough
sets theory.

2. The mean value of every class is obtained.
3. Define the mean values as the initial clustering

centers. The clustering number equals to the number
of rules:

tp =

∑
x∈Xp

x

card(Xp)
(20)

where Xp denotes the set of samples in the classification
rule p of the rough sets theory.
In (5), the parameter λ determines the lower and upper

subject degree of Xk relative to some clustering. If the
threshold λ is too large, the low approximation set will be
empty, while if the threshold λ is too small, the boundary
area will be powerless. Usually, λ is set to a value, which
makes most samples in the lower approximation and the
upper approximation not empty. The threshold λ can be
determined by:

1. Compute the Euler distance of every object to K class
clustering centers and distance matrix D(i, j).

2. Compute the minimum value dmin(i) in every row of
matrix D(i, j).

3. Compute distance between every object and other
class center d(i) and dt(i, j) = d(i) − dmin(i).

Table 1 Information of known radar emitter signals

No. RF (MHz) PRF (Hz) ARR (round/s) PW (us) Type

1 6558 1319 2 1.61 1

2 5436 2530 1 0.62 1

3 1984 1276 2 0.99 2

4 3787 145 3 0.38 2

5 4406 601 2 0.34 2

6 7745 1698 3 3.81 3

7 3214 2083 2 0.71 3

8 2460 1793 2 1.33 3

Table 2 Discrete information of known radar emitter
signals

No. A B C D Type

1 3 2 2 2 1

2 3 3 1 1 1

3 1 2 2 1 2

4 2 1 3 1 2

5 2 1 2 1 2

6 3 2 3 3 3

7 2 3 2 1 3

8 1 2 2 2 3

4. Obtain the minimum value ds(i) (except zero) in
every row.

5. λ is chosen from the minimum value ds(i).

After that, known samples are clustered by using (5).
The cluster centers C, the rough boundary Rro and the
uncertain boundary Run are determined.
In addition, the primary recognition result is effected

greatly by radiuses of clusters. Rough k-means clustering
can lessen the radiuses of clusters effectively. As shown
in Figure 3, the radius of k-means cluster is the distance
from the cluster center to the farthest isolated sample. In
the rough k-means, the cluster center is the average of the
lower approximation center and the upper approximation
center. The upper approximation center is near to the far-
thest sample. So the cluster radius of rough k-means Rr is
less than the k-means radius R, obviously. As the radius
is shorten, when unknown samples are recognized, the
probability that an uncertain sample is recognized as a
certain sample is reduced. Therefore, the accuracy of the
primary recognition is increased.

The time complexity of the hybrid recognition approach
The time complexity of the approach proposed in this arti-
cle consists of two parts, namely the time complexity of
the primary recognition and the time complexity of the
advanced recognition.

Table 3 Knowledge rules

No. A B D Type

1 3 2 2 1

2 3 3 - 1

3 - 2 1 2

4 - 1 - 2

5 - - 3 3

6 2 3 - 3

7 1 - 2 3
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Table 4 Parameters in primary recognition

Cluster Center Rro Run

1 (6567,1324,1.650) 225 662

2 (5643,2569,0.520) 231 578

3 (2196,1534,1.142) 149 356

4 (3987,132,0.430) 130 407

5 (7845,1654,3.940) 465 913

6 (3213,2093,0.695) 200 466

7 (2459,1783,1.331) 128 401

In the training of the primary recognition, samples are
clustered by using rough k-means. The time complexity of
the rough k-means is O(dmt), where d, m, and t denote
the dimensionality of samples, the number of training
samples and the iterations, respectively. In this article, the
optimal initial centers are determined by analyzing the
knowledge rule of the training sample set based on rough
set theory, instead of iteration. Thus, the time complexity
of the primary recognition isO(dm).
The SVM is used as the advanced recognition in our

approach. The time complexity of SVM has nothing with
the dimension of samples, but is related with the num-
ber of samples. The time complexity of SVM training is
discussed with respect to the complexity of the quadratic
programming. Standard SVM training has O(m3) time
complexity [21].
In conclusion, the time complexity of our hybrid recog-

nition is O(dm) + O(m′3), wherem′ denotes the number
of training samples for SVM in the advanced recogni-
tion (After the primary recognition, the training samples
for SVM is reduced). In general, O(dm) is far less than
O(m′3). Therefore, the time complexity of the hybrid
recognition training is regard asO(m′3).

Simulation results
Data set description and experiment design
The validity and efficiency of the proposed approach is
proved by simulations. In the first simulation, radar emit-
ter signals are recognized. The type of radar emitter is
the recognition result. The pulse describing words of

the radar emitter signal include a radio frequency (RF),
a pulse repeating frequency (PRF), antenna rotate rate
(ARR) and a pulse width (PW). 240 groups of data are gen-
erated on above original radar information for training,
while 200 groups are generated for testing. This simula-
tion is repeated 100 times, and the average recognition
is obtained. Another simulation is adopted to test the
efficiency of the hybrid recognition with the Iris data
set. Iris data set contains 150 patterns belonging to three
classes. There are 50 exemplars for each class and each
input is a four-dimensional real vector [22]. The recogni-
tion accuracy and time complexity are compared between
SVM and our approach. There are two parts in this simu-
lation. In the first part, all 150 samples are used in training.
And these 150 samples are used to test the training accu-
racy. In the second part, 60 samples from the Iris data
set are used to train classifiers and other 90 samples are
used for test. The generalization of the proposed approach
is proved.

Results of experiment 1: classification of the radar emitter
signals
An information sheet of radar emitter signals is built,
which is shown as Table 1. Data in the information table
should be changed into discrete values, because continu-
ous values cannot be processed by the rough sets theory.
There are many methods for data discretization and here
the equivalent width method [11] is adopted in this arti-
cle. Based on the equivalent width method, the range is
divided into intervals. Intervals of one attribute are of the
same size and different attributes can have different num-
bers of intervals. In our article, attributes are divided into
three intervals. The attribute values in the same interval
have the same discrete value. The discrete information
is shown in Table 2, where A, B, C, and D denote the
attribute RF, PRF, ARR, and PW, respectively. After that,
the dependent extent of radar type to each attribute is
computed used (3). γA = 7

8 , γB = 7
8 , γC = 0, and γD = 7

8 .
As the dependent extent of radar type to the attribute C
(ARR) is 0, the attribute C is unnecessary for classification
and removed. The knowledge rules are obtained. Table 3
shows these rules, where—denotes an any value. Some

Table 5 Confusionmatrices of radar emitter recognition

Subc. 1 Subc. 2 Subc. 3 Subc. 4 Subc. 5 Subc. 6 Subc. 7

Subclass 1 32 0 0 0 2 0 0

Subclass 2 0 36 0 0 0 0 0

Subclass 3 0 0 34 0 0 0 3

Subclass 4 0 0 0 33 0 0 0

Subclass 5 0 0 0 0 20 0 0

Subclass 6 1 0 0 0 0 18 0

Subclass 7 0 0 5 0 0 0 16
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Table 6 Results of radar emitter recognitionmethods

Recognition method Average recognition accuracy

RBF neural network 92.0%

RBF-SVM 92.5%

PSVM 94.0%

Method in this article 94.5%

radars have different operating modes and in different
operating mode, the emitter signals parameters vary obvi-
ously. In the clustering of radar emitter signal samples, if
cluster samples of one radar emitter into one cluster, that
samples of the same radar may gather in several subre-
gions in the cluster. The aggregation of the cluster would
be reduced. Thus, we cluster the samples based on the
subregions determined by using rough sets. The samples
of three types of radar emitters are distributed into seven
clusters.
Based on these knowledge rules, initial clustering cen-

ters are obtained using (20). The known radar emitter
samples are clustered by using the rough k-means on these
initial cluster centers. As shown in Table 4, 240 train-
ing samples are clustered into seven clusters. The cluster
centers, rough boundary and uncertain boundary of the
primary recognition are computed. The rough k-means
classifier has been built.
The classification accuracy of each radar emitter is as

the confusion matrices shown in Table 5. For example,
row (1) indicates that on the 34 samples of the subclass
1, 32 have been classified correctly and 2 in subclass 5.
The primary recognition accuracy is 86%. The advanced
recognition accuracy is 92%. The number of samples that
are falsely classified in uncertain areas is 18, while the
total number of wrong classified samples is 28. As (18)
described, the theoretical accuracy can be computed as:
Atotal = 86% + 14% × 18

28 × 92% = 94.28%.
The proposed method is compared with the RBF neu-

ral network studied by Zhang et al. [6], the RBF-SVM and
the probabilistic SVM radar recognition approach studied
by Lin et al. [8]. As shown in Table 6, the accuracy of the
hybrid recognition proposed in this article is 94.5%, which
is higher than existing methods, i.e., 92, 92.5, and 93%.
The accuracy of the hybrid recognition from simulation
experiments is close to the theoretical value, i.e., 94.28%.

Results of experiment 2: classification of the data set Iris
From Table 7, we can know the proposed approach has
not only a higher recognition accuracy than SVM, but
also high training accuracy and good generalization. In the
first part of this experiment, all the 150 samples are used
to train and test these two methods. The hybrid recogni-
tion proposed in this article has a high training accuracy,
i.e., 99.33%, which is higher than SVM’s, i.e., 98.67%. In
the second part of this experiment, 60 samples are used
as training samples, and other 90 samples are used to
test SVM and the hybrid recognition. The recognition
accuracy of the proposed approach is 97.78%, which can
indicate the hybrid recognition has a good generalization.
In addition, let’s compare the time complexities of SVM

and the proposed approach. The time complexity of SVM
is O(m3), and that of the proposed approach is O(m′3),
where m and m′ are the number of training samples for
the SVM and the number of training samples for the SVM
in the advanced recognition of the hybrid recognition,
respectively.
When 150 samples are used as training samples, all of

them are used to train the classical SVM. m = 150 and
the time complexity of the classical SVM is O(1503). In
our approach, training samples are clustered in the pri-
mary recognition, and only the rough samples are used to
train the SVM in the advanced recognition. More specif-
ically, there are 70 training samples for the SVM in the
advanced recognition, i.e., m′ = 70, so the time com-
plexity is O(703). Similarly, when 60 samples are used as
training samples, all of these samples are used to train the
classical SVM, while there are 36 training samples for the
SVM in the advanced recognition of the hybrid recogni-
tion, i.e., m = 60 and m′ = 36. So in the second part, the
time complexity of the classical SVM is O(603), while the
time complexity of the proposed approach isO(363).
From the comparison above, we can know that the time

complexity of the hybrid recognition is obviously lower
than the classical SVM.

Conclusions
In this article, a hybrid recognition method has been
proposed to recognize radar emitter signals. The hybrid
classifier consists of a rough k-means classifier (linear
classifier) and a SVM (nonlinear classifier). Based on the

Table 7 Recognition results of Iris

Method Recognition accuracy The number of training samples for SVM The time complexity

SVM in the first part 98.67% 150 O(1503)

Our method in the first part 99.33% 70 O(703)

SVM in the second part 93.33% 60 O(603)

Our method in the second part 97.78% 36 O(363)
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linear separability of the classifying sample, the sample
is classified by the suitable classifier. Thus for the radar
emitter sample set containing both linearly separable sam-
ples and linearly inseparable samples, the approach can
achieve a higher accuracy.
A linear classifier based on the rough set and the rough

k-means has been proposed, i.e., the rough k-means clas-
sifier. The rough k-means clustering can reduce the radius
of the clusters and increase the accuracy of the primary
recognition. The initial centers for the rough k-means are
computed based on the rough set, which can reduce the
time complexity of the rough k-means clustering. The
rough k-means classifier can classify linear separable sam-
ples efficiently and pick up linearly inseparable samples.
These linear inseparable samples are processed by the
SVM in the advanced recognition. Therefore, the train-
ing samples for the SVM in the advanced recognition are
reduced. Simulation results have shown that the proposed
approach can achieve a higher accuracy and a lower time
complexity, when compared with existing approaches.
The hybrid recognition approach in this article is suit-

able for the classification of the radar emitter signal sam-
ple set containing both linearly separable and linearly
inseparable samples. We admit that our hybrid recog-
nition approach is based on the fact that these linearly
inseparable samples which reduce the accuracy of cluster-
ing are mostly at the edges of clusters. From (18), we know
that if the linearly inseparable sample appears frequently
in the center region instead of the edge, the accuracy of
recognition will be reduced. How to solve this problem is
the focus of our future study.
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