
1

Adaptive Model Pruning for Communication and
Computation Efficient Wireless Federated Learning

Zhixiong Chen, Student Member, IEEE, Wenqiang Yi, Member, IEEE,
Hyundong Shin, Fellow, IEEE, and Arumugam Nallanathan, Fellow, IEEE

Abstract—Most existing wireless federated learning (FL) s-
tudies focused on homogeneous model settings where devices
train identical local models. In this setting, the devices with
poor communication and computation capabilities may delay
the global model update and degrade the performance of FL.
Moreover, in the homogenous model settings, the scale of the
global model is restricted by the device with the lowest capability.
To tackle these challenges, this work proposes an adaptive
model pruning-based FL (AMP-FL) framework, where the edge
server dynamically generates sub-models by pruning the global
model for devices’ local training to adapt their heterogeneous
computation capabilities and time-varying channel conditions.
Since the involvement of diverse structures of devices’ sub-
models in the global model updating may negatively affect the
training convergence, we propose compensating for the gradients
of pruned model regions by devices’ historical gradients. We then
introduce an age of information (AoI) metric to characterize
the staleness of local gradients and theoretically analyze the
convergence behaviour of AMP-FL. The convergence bound
suggests scheduling devices with large AoI of gradients and
pruning the model regions with small AoI for devices to improve
the learning performance. Inspired by this, we define a new
objective function, i.e., the average AoI of local gradients, to
transform the inexplicit global loss minimization problem into a
tractable one for device scheduling, model pruning, and resource
block (RB) allocation design. Through detailed analysis, we
derive the optimal model pruning strategy and transform the
RB allocation problem into equivalent linear programming that
can be effectively solved. Experimental results demonstrate the
effectiveness and superiority of the proposed approaches. The
proposed AMP-FL is capable of achieving 1.9x and 1.6x speed
up for FL on MNIST and CIFAR-10 datasets in comparison with
the FL schemes with homogeneous model settings.

Index Terms—Device scheduling, federated learning, model
pruning, resource management

I. INTRODUCTION

The explosive growth of data generated at edge devices
motivated deploying advanced machine-learning techniques
in future wireless networks to exploit the data for serving

Part of this work has been accepted to IEEE Global Communications
Conference (GLOBECOM), 2023 [1].

Zhixiong Chen and Arumugam Nallanathan are with the School of
Electronic Engineering and Computer Science, Queen Mary University of
London, London, U.K. Arumugam Nallanathan is also with the Department of
Electronic Engineering, Kyung Hee University, Yongin-si, Gyeonggido 17104,
Korea. (emails: {zhixiong.chen, a.nallanathan}@qmul.ac.uk).

W. Yi is with the School of Computer Science and Electronic
Engineering, University of Essex, Colchester CO4 3SQ, U.K. (email:
wy23627@essex.ac.uk).

Hyundong Shin is with the Department of Electronics and Information
Convergence Engineering, Kyung Hee University, Yongin-si, Gyeonggido
17104, Republic of Korea (e-mail: hshin@khu.ac.kr).

diverse applications, e.g., autonomous driving and the meta-
verse [2]. Federated learning (FL) is a promising distributed
learning framework that enables multiple edge devices to
learn a shared global model collaboratively without exposing
their private data [3]. However, implementing FL in practical
wireless networks encounter two main challenges: 1) Scarce
Wireless Resources: The limited wireless resource only allows
a tiny proportion of devices to be scheduled in each learning
round [4]. Since the local data distributions among devices
are generally heterogeneous, partial device participation may
lead to biased model aggregation and degrade the learning
performance of FL [5]. 2) Heterogenous Devices: In practice,
edge devices are drastically different in computation and
communication capabilities. Most existing wireless FL studies
focused on homogeneous model settings where all devices
train identical models in each round. In this setting, the devices
with poor capabilities delay global aggregation and slow down
the learning convergence, as well as restrict the scale of the
global model due to their resource bottlenecks [6]. It is worth
mentioning that although the personalized FL approaches [6],
[7] were developed to enable devices to train heterogeneous
local models, they aim to train a customized local model for
each device based on their individual local data distribution
that may not generalize well on the classes out of their local
data classes. When a device predicts classes are not in its local
data, the personalized model shows lower performance than
the generalized global model. Thus, this work mainly focuses
on training a generalized shared global model while mitigating
the straggler effect in the homogeneous local model setting.
To address these problems, wireless FL needs a heterogeneous
local model setting that is able to adapt devices’ computation
and communication capabilities.

A. Related Works

To tackle the limited wireless resources problem, exist-
ing works have developed various solutions to reduce band-
width consumption, e.g., device scheduling [8]–[10], mod-
el compression [11]–[14], and knowledge distillation [15],
[16]. The device scheduling approach selects part of the
devices to engage in the learning process of each round to
alleviate the communication burden. Specifically, the joint
device scheduling and resource management approaches in
[8] and [9] effectively reduced the energy consumption and
convergence time of wireless FL, respectively. In [10], the co-
design of device selection and wireless networks significantly
improved the learning accuracy of wireless FL. While device

2

scheduling can effectively alleviate communication pressure
for wireless FL, uploading the entire model parameters still
poses a challenge for devices with poor channel conditions. To
address this issue, the model compression approach reduces
the uploaded data size for devices by quantizing devices’
parameters with fewer bits or only uploading partial parameter
elements to the server. In [11], the co-design of gradient
compression at devices and reconstruction at the edge server
significantly reduced the communication overhead and ob-
tained a satisfactory learning performance for FL. The gradient
sparsification scheme in [12] compressed the resultant sparse
gradient to a low-dimensional vector to reduce the bandwidth
consumption. In [13], the stochastic quantization approach sig-
nificantly alleviated the communication burden and improved
the convergence performance for FL. The model quantization
approach in [14] achieved a tradeoff between learning accuracy
and communication time by adjusting devices’ quantization
levels proportional to their communication conditions. While
model compression effectively relieves the communication
pressure for devices, they introduce additional noise during
model aggregation and ultimately degrades the final model’s
accuracy. Knowledge distillation (KD)-based FL enables col-
laboratively training by exchanging light knowledge distilled
on a public dataset between devices and the edge server.
Specifically, the adaptive mutual KD-based FL approach in
[15] substantially decreased the communication overheads for
FL and obtained similar performance as centralized learning.
By mixing the local training data to generate a distillation
dataset to empower the FL process, the KD approach in
[16] significantly accelerates the learning speed. Nevertheless,
the prerequisite of the public dataset may leave these KD-
based FL approaches infeasible for many practical scenarios
since a carefully engineered public dataset may not always
be available. In addition, the above device scheduling, model
compression, and knowledge distillation approaches do not
reduce the model complexity, and the computation overhead
is still high for devices.

To learn a generalized shared global model while allowing
devices to train heterogeneous local models that adapted their
communication and computation capabilities, model pruning-
based FL approaches were developed to reduce the resource
demands for devices and achieve an approximate performance
of the original models. Existing model pruning works can be
categorised into unstructured weight pruning [17]–[19] and
structured model pruning [20]–[22]. Specifically, the weight
pruning approach prunes the weight parameters in the fully
connected (FC) layer of the deep neural network (NN) to
achieve both parameters and computation load reduction. The
weight importance-aware pruning method in [17] removed
the unimportant weights in deep NN, which effectively re-
duced the model size incurring only a small performance
loss. The random pruning mechanism in [18] significantly
reduced device communication and computation overhead and
avoided model overfitting. In [19], the pruning ratio and
bandwidth allocation scheme improved the convergence speed
of FL. However, these unstructured weight pruning approaches
may be ineffective in reducing the computation load of the
convolution NN since the pruned weight connections are from

the FC layers. In contrast, the computation overhead is mainly
concentrated in convolution layers. For instance, in VGG-16,
the FC layers account for 90% of the total parameters but only
occupy less than 1% of the overall floating point operations
[23]. Moreover, the unstructured pruning approach usually
results in irregular weight matrixes in the pruned models that
are difficult to compress, which requires specialized hardware
and software libraries to accelerate the training speed [24].
To effectively decrease computation and communication over-
head, the structured model pruning approach [20]–[22], [25],
[26] was developed to prune both filters in convolution layers
and neurons in FC layers to generate sub-models for devices
to train. Note that in centralized learning, pruning filters in
convolution layers have been demonstrated can effectively
accelerate the learning speed without sacrificing too much ac-
curacy [24], [27]. The random sub-model generation scheme in
[20] effectively decreased the server-to-client communication
and device-side computation costs. The static model pruning
approach in [21], [25] or local model composition approach
in [28] distributed heterogeneous sub-models to devices for
training and then aggregated them into a global inference mod-
el, which effectively reduced resource consumption for FL.
The model shrinking and gradient compression approach in
[26] enabled the local model training with elastic computation
and communication overheads. The model pruning method in
[22] dynamically adjusted the model size for resource-limited
devices and significantly improved the cost-efficiency of FL.
Although these structured model pruning approaches effective-
ly reduced the communication and computation overhead for
wireless FL, the different parts in the global model may not be
trained evenly across devices. This may induce the different
parts in the global model to drift toward different devices and
degrade the learning performance of FL.

B. Motivations and Contributions

Although the approaches in [8]–[16] with homogeneous
model settings effectively alleviate the communication bottle-
necks for wireless FL, the computation overhead is still high
for devices. This may restrict devices with poor computation
capabilities from engaging in the training process and thus
degrades the learning performance. In addition, the model
pruning approaches [17]–[22] do not consider the model
and data heterogeneity in the model pruning process, and
the global model’s parameters are not evenly trained across
devices. Consequently, different regions in the global model
are biased toward different devices. This may degrade the final
model’s accuracy, especially under high data heterogeneity.
To tackle these issues, this work jointly designs the wireless
network and learning mechanism to enhance the learning
performance for FL. Specifically, we propose an adaptive
model pruning approach to dynamically generate sub-models
for devices’ local training by pruning the global model to
adapt devices’ heterogeneous computation capabilities and
time-varying channel conditions in the learning process. To
mitigate the negative effect of diverse structures of the sub-
models from affecting the learning convergence, we propose
compensating the gradients of devices’ pruned model regions

3

by their historical gradients to improve learning performance.
The main contributions of this paper are listed as:

• We propose an adaptive model pruning-based FL (AMP-
FL) framework, which dynamically prunes the global
model to generate sub-models for adapting devices’ com-
munication and computation capabilities in the learning
process. This framework effectively reduces communica-
tion and computation overhead for devices at the same
time, enabling efficient FL over heterogeneous devices.
To prevent the diverse sub-model structures from affect-
ing the learning convergence, we propose compensating
for the gradients of pruned regions by devices’ historical
gradients. In addition, we theoretically analyze the rela-
tionship between the pruning ratio and communication &
computation load.

• We define an age of information (AoI) metric to charac-
terize local gradients’ staleness and theoretically analyze
AMP-FL’s convergence bound. Differing from existing
convergence analysis works with full device participation,
e.g., [22], [26], our convergence bound is based on the
more practical partial device participation situation and
characterizes how the AoI of devices’ gradients affect
the learning performance of FL. The bound indicates
that scheduling devices with large AoI and pruning the
global model regions with small AoI are able to improve
learning performance. Based on this, we define a new
objective function, i.e., the average square of AoI of
devices’ gradients, and transform the inexplicit global
loss minimization problem into a tractable one for guiding
device scheduling, model pruning, and resource block
allocation design. Note that the proposed approach aims
to minimize the average AoI of devices’ gradients and
achieves better learning performance than existing works
in [17], [19] that reduce the model pruning ratio.

• To solve the transformed problem, we first find the
optimal model pruning policies for devices under a given
RB allocation policy. On this basis, we transform it into
an equivalent linear programming problem that can be
effectively solved with polynomial time complexity. In
addition, to improve the implementation feasibility of
AMP-FL in practical wireless networks, we propose a
memory-friendly AMP-FL equivalent to AMP-FL but
with a low memory size requirement of the edge server.

• We conduct extensive simulations on two real-world
datasets, i.e., MNIST and CIFAR-10, to verify the ef-
fectiveness of AMP-FL. Specifically, compared to the FL
algorithms with the homogeneous local model settings,
the proposed AMP-FL is able to provide 1.9x and 1.6x
speed up on MNIST and CIFAR-10, respectively. The
proposed model pruning and device scheduling approach
also obtains higher learning accuracy and faster conver-
gence speed than the benchmark schemes.

C. Organizations

The rest of this paper is organized as follows: Section II in-
troduces the system model, the proposed AMP-FL framework,
and the problem formulation. In Section III, we present the

convergence analysis results and the problem transformation.
Section IV illustrates the proposed model pruning, device
scheduling, and RB allocation algorithm. Section V evaluates
the effectiveness of the proposed approaches by simulations.
The conclusion is presented in Section VI.

II. SYSTEM MODEL AND LEARNING MECHANISM

This work considers a typical wireless FL system, as shown
in Fig. 1, where K devices are orchestrated by an edge
server to collaboratively train a shared global machine learning
model, w, by periodically uploading local gradient information
to the edge server for global model update instead of transmit-
ting the raw training data. To mitigate the negative effect of
stragglers on learning performance, this work allows devices to
train heterogeneous local models adapted to their computation
and communication capabilities. The local models are obtained
by pruning the global model using the proposed structured
model pruning strategy (in Section IV-A) that dynamically ad-
justs the local models during the learning process with respect
to devices’ individual heterogeneous computation capabilities
and time-varying communication conditions.

We assume that the global model can be partitioned into
I disjoint regions indexed by I = {1, 2, · · · , I}, where each
model region i is either one filter in convolution layers or
one neuron in the fully-connected layers. Let w(i) (i ∈ I)
denote the i-th region of the global model. The devices are
indexed by K = {1, 2, · · · ,K}. Each device k (k ∈ K) has
a local dataset Dk with Dk = |Dk| data samples. The entire
dataset is denoted by D = ∪K

k=1Dk with D =
∑K

k=1 Dk data
samples. For any data sample ζ = (x, y) ∈ D, a loss function
f(x, y;w) is utilized to capture the fitting performance of
model w on the input-output data pair (x, y). Thus, the local
loss function of device k (k ∈ K), i.e., Fk(w), is given by
Fk(w) = 1

Dk

∑
(x,y)∈Dk

f(x, y;w). The global loss function
is given by F (w) =

∑K
k=1 akFk(w), where ak is the weight

of device k such that ak ≥ 0 and
∑K

k=1 ak = 1. Similar
to many existing works, e.g., [5], [17], [29], we consider a
balanced size of local datasets by setting ak = 1

K , ∀k ∈ K.
The goal of the FL system is to train a shared global model w
so as to minimize the global loss F (w) on the whole dataset
D, i.e., min

w
F (w).

A. Federated Learning with Adaptive Model Pruning

To improve the communication and computation efficiency
for wireless FL, this work proposes a novel AMP-FL frame-
work to adaptively generate sub-models for devices to train,
as shown in Fig. 1. In addition, to alleviate the adverse effects
of diverse structures of local models and partial participation
in the learning performance, we propose compensating the
gradients of pruned model regions and unscheduled devices by
devices’ historical gradients. The effectiveness of this gradient
compensation mechanism is evaluated in Section V. To this
end, the edge server maintains a gradient array {Gk,t : ∀k ∈
K} that caches the latest received gradients from devices. The
learning process consists of T global rounds and running the
following five steps in each round t (t ∈ {0, 1, · · · , T − 1}):

4

K

k

k

K

Fig. 1. Illustration of the considered wireless FL system with adaptive model pruning.

1) Device Selection and Model Pruning: The edge server
selects a subset of devices to engage in the current round.
Denote αk,t ∈ {0, 1} as the selection indicator of device k
in t-th round, where αk,t = 1 represents device k is selected,
αk,t = 0 otherwise. For ease of presentation, let St = {k :
αk,t = 1, ∀k ∈ K} denote the device scheduling decision
in round t. After device selection, the edge server prunes the
global model to generate sub-models for the scheduled devices
according to their computing and communication capabilities.
Let mk,t = {m(i)

k,t : i = 1, 2, · · · , I} denote the pruning mask
of device k in round t, where m

(i)
k,t = 1 represents that the

i-th region of the global model is preserved in device k’s sub-
model, m(i)

k,t = 0 otherwise. Thus, the sub-model of device k
can be denoted as wk,t = wt ⊙ mk,t, where ⊙ denote the
element-wise product.

2) Local Model Downloading: Each selected device down-
loads its sub-model from the edge server.

3) Local Model Training: Each selected device trains its
sub-model by performing λ-steps stochastic gradient descent
(SGD). Specifically, device k (k ∈ St) updates the i-th region
(∀i ∈ I,m(i)

k,t = 1) of its model as

w
(i)
k,t,l+1 = w

(i)
k,t,l − η∇F̃k(w

(i)
k,t,l), l ∈ {0, 1, · · · , λ− 1},

(1)

where w
(i)
k,t,l is the i-th region of device k’s local model in

the l-th iteration in round t with w
(i)
k,t,0 = w

(i)
t , and η is the

learning rate. In (1), the stochastic gradient ∇F̃k(w
(i)
k,t,l) is

given by ∇F̃k(w
(i)
k,t,l) = 1

Lb

∑
ζ∈Bk,t,l

∇f(w
(i)
k,t,l, ζ), where

Bk,t,l is a mini-batch data uniformly sampled from Dk with
Lb = |Bk,t,l| data samples.

4) Local Gradient Uploading: After finishing local train-
ing, each scheduled device k (k ∈ St) uploads its cumu-
lative local gradient, i.e., g̃k,t = {g̃(i)

k,t : ∀i ∈ I,m(i)
k,t =

1}, to the edge server, where g̃
(i)
k,t is given by g̃

(i)
k,t =∑λ−1

l=0 ∇F̃k(w
(i)
k,t,l) =

1
η (w

(i)
t −w

(i)
k,t,λ).

5) Global Model Update: After receiving the local gradi-
ents from the scheduled devices, the edge server updates the
gradient array as follows:

G
(i)
k,t =

{ g̃
(i)
k,t, αk,tm

(i)
k,t = 1,

G
(i)
k,t−1, αk,tm

(i)
k,t = 0,

∀i ∈ I, ∀k ∈ K. (2)

Then, the edge server updates the global model as w
(i)
t+1 =

w
(i)
t − η 1

K

∑K
k=1 G

(i)
k,t, ∀i ∈ I.

B. Communication and Computation Load Model
Let C represent the number of float-point operations (FLOP-

s) required to process one data sample on the global model,
and Q indicate the number of global model parameters. In each
round, devices train heterogeneous local models generated by
pruning the global model to adapt to their communication and
computation capabilities. For any device k (k ∈ K) in round
t with pruning mask mk,t, its pruning ratio is given by

βk,t = 1− 1

I

∑I

i=1
m

(i)
k,t. (3)

In fact, (3) indicates the ratio of pruned filters and neurons
in the global model. To avoid introducing layer-wise hyperpa-
rameters, the proposed AMP-FL uses the same pruning ratio
for every convolution or FC layer. Given the pruning ratio,
AMP-FL removes a corresponding ratio of filters and neurons
in each convolutional layer and FC layer to generate sub-
models. In the following, we analyze the number of parameters
and FLOPs for device k’s sub-model from the perspective of
convolution and FC layers.

1) For the l-th convolution layer in the global model with
Cl filters, the number of parameters in this layer is Qg,l =
(K2

c ×Cl−1+1)×Cl which contains K2
c ×Cl−1×Cl weight

parameters and Cl bias parameters; the number of FLOPs is
Cg,l = 2K2

cHWCl−1×Cl, where Cl−1 is the number of filters
in the (l − 1)-th layer, Kc is the filter width (assumed to be
symmetric), H and W are the height and width of the input
feature maps [30]. For device k’s sub-model with pruning ratio
βk,t, the number of parameters contained in its sub-model in
this layer is Qk,l = (1−βk,t)

2K2
c ×Cl−1×Cl+(1−βk,t)×

Cl ≈ (1 − βk,t)
2Qg,l, and the number of FLOPs is Ck,l =

2(1− βk,t)
2Cl−1ClK

2
cWH = (1− βk,t)

2Cg,l.
2) For the l-th FC layer in the global model with Nl

neurons, the number of parameters is Qg,l = (Nl−1+1)×Nl

which contains Nl−1 × Nl weight parameters and Nl bias
parameters; the number of FLOPs is Cg,l = 2Nl−1×Nl, where
Nl−1 is the number of neurons in the l − 1-th FC layer. For
device k’s sub-model with pruning ratio βk,t, the number of
parameters contained in its sub-model is Qk,l = (1−βk,t)

2×
Nl−1×Nl+(1−βk,t)×Nl ≈ (1−βk,t)

2Qg,l, and the number
of FLOPs is Ck,l = 2(1−βk,t)

2×Nl−1×Nl = (1−βk,t)
2Cg,l.

5

Note that in the above analysis, we approximate the number
of parameters of both convolution and FC layers in the sub-
model to be the ratio, i.e., (1− βk,t)

2, of that in the original
global model. This is because the number of bias parameters
is far less than that of weight parameters. According to the
above analysis, for each device k with pruning ratio βk, the
number of parameters and FLOPs for its sub-model can be
approximately scaled by (1−βk,t)

2 of the global model. That
is, the number of parameters of device k’s sub-model is

Qk = (1− βk,t)
2Q, (4)

and the corresponding number of FLOPs required to process
one data sample is

Ck = (1− βk,t)
2C. (5)

C. Learning Latency Model

In the following, we characterize the per-round learning la-
tency model for the proposed AMP-FL, including computation
and communication latency.

1) Computation Latency: We consider the CPU adopted
to perform local training on each device. Let fk be the CPU
frequency of device k. Each CPU cycle can process nk FLOPs.
Thus, the computation time1 of device k is

T L
k,t =

λLbCk
fknk

=
λLb(1− βk,t)

2C
fknk

. (6)

2) Communication Latency: This work considers the or-
thogonal frequency division multiple access is utilized with R
resource blocks (RBs) for devices to transmit their gradient
information. The RBs are indexed by R = {1, 2, · · · , R}. Let
zk,t = (z

(1)
k,t , z

(2)
k,t , · · · , z

(R)
k,t) denote the RB allocation decision

of device k in round t, where z(r)k,t ∈ {0, 1}, z(r)k,t = 1 represents
that the r-th RB is allocated to device k, z(r)k,t = 0 otherwise.
For ease of representation, we use Zt = (z1,t, z2,t, · · · , zK,t)
denote the RB allocation decisions for all devices in round t.
Denote pk as the transmit power of device k. Let hk,t represent
the channel gain between device k and the edge server,
and it remains unchangeable within one round but varies
independently over rounds. Thus, the transmit rate of device
k is rk,t(zk,t) =

∑R
r=1 z

(r)
k,tB log2

(
1 +

pkhk,t

Ir+BN0

)
, where B

is the bandwidth of each RB, N0 is the noise power spectral
density. Ir is the interference caused by devices located in
other service areas not participating in the FL process and
using the same resource block [9], [10]. We consider that each
device can only occupy at most one RB, and each RB can be
accessed by at most one device. Thus,

∑R
r=1 z

(r)
k,t ≤ 1 and∑K

k=1 z
(r)
k,t ≤ 1. Each parameter in devices’ local gradients is

1It is worth mentioning that the relationship between pruning ratio and
computation time in (6) is not evident in the GPU-based model training. In
practice, devices may adopt GPU or the hybrid of CPU and GPU for local
training, and how to accurately characterize the computation time in this case
is a promising future research direction.

quantized by q bits. Thus, the transmit time of device k to
upload its gradient information is

T U
k,t =

Qkq

rk,t(zk,t)
=

(1− βk,t)
2Qq

rk,t(zk,t)
. (7)

Note that the above analysis ignored the model pruning,
global model updating, and sub-model downloading latencies
since the edge server is usually computationally powerful and
has more transmit power than devices [13], [17]. The model
pruning, global model updating, and sub-model downloading
latencies are negligible compared to the above communication
and computation latency. In addition, it is worth mentioning
that the proposed algorithm in Section IV can be directly gen-
eralized in the case with non-negligible sub-model download
latency by simply adding the sub-model download latency into
the time constraint (8a).

D. Problem Formulation

This work focuses on improving the performance of the
proposed AMP-FL by minimizing the global loss value after
T global training rounds, i.e., E[F (wT)], where wT is the
global model in round T . Specifically, we jointly optimize
the device scheduling, model pruning, and RB allocation
strategies under latency and wireless resource restrictions. The
optimizing problem is given by

P : min
{St,Zt,mt}T−1

t=0

E[F (wT)] (8)

s. t. T L
k,t + T U

k,t ≤ Tmax,∀k ∈ K, ∀t, (8a)∑R

r=1
z
(r)
k,t ≤ 1, ∀k ∈ K, ∀t, (8b)∑K

k=1
z
(r)
k,t ≤ 1, ∀t, (8c)

z
(r)
k,t ∈ {0, 1}, ∀k ∈ K,∀t, (8d)

βk,t = 1− 1

I

∑I

i=1
m

(i)
k,t, ∀k ∈ K, ∀t, (8e)

0 ≤ βk,t ≤ 1, ∀k ∈ K, ∀t, (8f)

m
(i)
k,t ∈ {0, 1}, ∀k ∈ K, ∀t, (8g)

αk,t ∈ {0, 1}, ∀k ∈ K, (8h)

where (8a) stipulates that the per-round latency cannot surpass
its maximum allowed delay, Tmax. (8b), (8c), and (8d) impose
restrictions on the RB allocation decisions. (8e) characterizes
the relationship between pruning policy and model pruning
ratio for devices. (8f) prevents the model pruning ratio from
exceeding 1 or lessening 0 since the edge server can prune
at most the entire model or not prune for the global model.
(8g) and (8h) correspond to the constraints related to the model
pruning and device scheduling indicator domains, respectively.

Problem P is a typical integer programming that involves
multi-dimensional discrete variables and is intractable to solve.
In addition, solving problem P requires an explicit form of
E[F (wT)] with respect to the device selection (St), model
pruning (mt), and RB allocation (Zt) policies, which is almost
impossible since the evolution of the model vector is extremely
complex during the training process. To this end, similar to
many existing works, e.g., [6], [8]–[10], [29], we turn to find

6

an upper bound of the global loss function and optimize it for
global loss minimization in Section III.

III. CONVERGENCE ANALYSIS AND PROBLEM
TRANSFORMATION

In this section, we theoretically characterize the convergence
behaviour of AMP-FL to explore how the device schedule,
model pruning, and RB allocation policies affect its learning
performance. Based on the obtained convergence bound, we
define a new objective function, i.e., the AoI for local gradi-
ents, to transform problem P into a tractable one for guiding
the device selection, model pruning, and RB allocation design.

A. Convergence Analysis

This subsection analyzes the convergence behaviour of
AMP-FL. For ease of analysis, we define ∇Fk(wk,t,l) =
1
Dk

∑
(x,y)∈Dk

∇f (x, y;wk,t,l) as the full gradient of device
k in the l-th iteration of round t. Let F (w∗) be the loss
function of the optimal global model w∗. Note that we use
the latest received gradients of the pruned model regions
of scheduled devices and unscheduled devices to update the
global model. To characterize the impact of the staleness of
devices’ gradients on the learning performance, we define
an AoI metric to identify the staleness of devices’ gradients.
Specifically, the AoI of the gradient in the i-th region of device
k is denoted by τ

(i)
k,t , which evolves as

τ
(i)
k,t =

{
τ
(i)
k,t−1 + 1, αk,tm

(i)
k,t = 0,

0, αk,tm
(i)
k,t = 1,

∀k ∈ K, ∀i ∈ I. (9)

To facilitate the analysis, we make the following standard as-
sumptions which are widely used in the existing FL literature,
e.g., [8]–[10], [31].

Assumption 1. All the local loss functions, Fk(w)
(∀k ∈ K), are L-smooth. That is, for all v and w,
∥∇Fk(w)−∇Fk(v)∥ ≤ L ∥w − v∥.

Assumption 2. All the local loss functions, Fk(w) (∀k ∈ K),
are µ-strongly convex. That is, for all v and w, Fk(v) ≥
Fk(w) + ⟨Fk(w),v −w⟩+ µ

2 ∥v −w∥2.

Assumption 3. For the mini-batch data Bk,t that uniformly
sampled from Dk on device k (k ∈ K), the resulting stochastic
gradient ∇̃Fk(wt) is an unbiased estimation of the full gradi-
ent ∇Fk(wt), i.e., E[∇̃Fk(wt)] = ∇Fk(wt), and its variance
is bounded by σ2, i.e., E∥∇̃Fk(wt)−∇Fk(wt)∥2≤ σ2.

Assumption 4. The expected squared norm of devices’ gradi-
ents is uniformly bounded by G2, i.e., ∥∇Fk(wt)∥2 ≤ G2,
for all k = 1, 2, · · · ,K and t = 0, 1, · · · , T − 1.

Before illustrating the convergence results of the proposed
AMP-FL, we introduce two lemmas in the following to assist
our convergence analysis.

Lemma 1. Let Assumption 1, 3, and 4 hold, and the learning
rate satisfies η ≤ 1

2λL , the averaged drift of the local models
from the global model after l iterations is bounded as

1

Kλ

∑K

k=1

∑λ−1

l=0

∑I

i=1
E∥w(i)

k,t−τ
(i)
k,t

−w
(i)

k,t−τ
(i)
k,t,l

∥2

≤ 4(λ− 1)I(2η2λG2 + η2σ2). (10)

Proof. Please see Appendix A.

Lemma 2. Let Assumption 1, 3, and 4 hold, the averaged dif-
ference between the global model parameters in two different
rounds is bounded as∑K

k=1

∑I

i=1
E∥w(i)

t −w
(i)

t−τ
(i)
k,t

∥2 ≤3η2
(
(λ2+(λ−1)I)σ2

+ (λ2 + 2λ(λ− 1)I)G2
)∑K

k=1

∑I

i=1
(τ

(i)
k,t)

2. (11)

Proof. Please see Appendix B.

Based on the above two lemmas, the one-round convergence
bound of AMP-FL is derived as:

Theorem 1. Let Assumption 1, 3, and 4 hold, and the learning
rate satisfies η ≤ 1

2λL , the one-round convergence bound is

E[F (wt+1)− F (wt)] ≤ (−1

2
η + Lη2λ)λ∥∇F (wt)∥2+c1

+
15η2Lc2

4K

K∑
k=1

I∑
i=1

(1− αk,tm
(i)
k,t)(τ

(i)
k,t−1 + 1)2, (12)

where c1 = 4η(λ− 1)IG2 +
(
4η2L(λ−1)I+ 3

4ηλ
)
σ2, c2 =

λ2(σ2+G2)+(λ−1)I(σ2+2λG2).

Proof. Please see Appendix C.

According to Theorem 1, the summation of the square of
each region’s AoI in the local gradients, i.e.,

∑K
k=1

∑I
i=1(1−

αk,tm
(i)
k,t)(τ

(i)
k,t−1+1)

2, is a crucial factor that negatively affects
the one-round convergence bound of AMP-FL. Minimizing∑K

k=1

∑I
i=1(1 − αk,tm

(i)
k,t)(τ

(i)
k,t−1+1)2 through carefully de-

signing the device scheduling and model pruning strategies is
capable of narrowing the convergence bound for improving
the learning performance. We have the following remark for
the device scheduling and model pruning design.

Remark 1. In practical wireless networks, only a small pro-
portion of devices can be scheduled in each round due to
the limited bandwidth resources. For device scheduling, one
should schedule the devices that have a large summation
of AoI over their model regions, i.e.,

∑I
i=1(τ

(i)
k,t−1 + 1)2,

since these devices are the main contributors for the term
of
∑K

k=1

∑I
i=1(1 − αk,tm

(i)
k,t)(τ

(i)
k,t−1+1)2. In addition, for a

scheduled device, one should preserve the model regions with
large AoI while pruning the regions with small AoI.

Based on Theorem 1, we further analyze the convergence
bound of AMP-FL after T -rounds as follows:

Corollary 1. Let Assumption 1-4 hold, the T -rounds conver-
gence bound of AMP-FL is

E[F (wT)−F (w∗)] ≤ (1−ηλµ+2Lη2λ2µ)TE[F (w0)−F (w∗)]

+
1−(1−ηλµ+2Lη2λ2µ)T

ηλµ−2Lη2λ2µ
c1

+
15

4
η2Lc2

∑T−1

t=0
(1− ηλµ+ 2Lη2λ2µ)T−1−t×

1

K

∑K

k=1

∑I

i=1
(1− αk,tm

(i)
k,t)(τ

(i)
k,t−1 + 1)2. (13)

7

Proof. Please see Appendix D.

From Corollary 1, the expected gap between F (wT) and
the optimal loss F (w∗) is bounded by three terms: 1) The
initial gap between the global loss and the optimal loss. 2)
A constant term related to the system hyperparameters caused
by multiple local iterations (λ > 1) and stochastic gradient
error. 3) The cumulative AoI of local gradients over T training
rounds. The last term is highly related to model pruning,
device scheduling, and wireless resource allocation policies.
To minimize the global loss function, one can minimize the
last term on the right-hand side (RHS) of (13) through jointly
designing the model pruning, device scheduling, and wireless
resource allocation strategies. However, directly minimizing
this term is impractical because it requires obtaining devices’
channel state information during the entire learning course at
the start of FL. To minimize the global loss, we have:

Remark 2. Similar to many existing works, e.g., [8]–[10],
the available wireless resource and devices are independent
across different rounds in problem P . Based on Theorem 1
and Corollary 1, we provide a reasonable objective function
by decoupling the long-term problem into the training round
level, i.e.,

∑K
k=1

∑I
i=1(1−αk,tm

(i)
k,t)(τ

(i)
k,t−1+1)

2, which directly
minimizes the upper bound on E[F (wt+1) − F (wt)] and
achieves global loss minimization.

B. Problem Transformation

According to the convergence analysis results in Remark
1 and Remark 2, we transform problem P into minimize∑K

k=1

∑I
i=1(1 − αk,tm

(i)
k,t)(τ

(i)
k,t−1+1)2 in each round (which

is equivalent to maximize
∑K

k=1

∑I
i=1 αk,tm

(i)
k,t(τ

(i)
k,t−1 +

1)2) for device scheduling, model pruning, and RB al-
location policies design. Since αk,t =

∑R
r=1 z

(r)
k,t ∈

{0, 1}, we have
∑K

k=1

∑I
i=1 αk,tm

(i)
k,t(τ

(i)
k,t−1 + 1)2 =∑K

k=1

∑I
i=1

∑R
r=1 z

(r)
k,tm

(i)
k,t(τ

(i)
k,t−1 + 1)2. In other words,

when the RB allocation policy is determined, the device
scheduling policy can be directly computed by αk,t =∑R

r=1 z
(r)
k,t . Therefore, we transform problem P into the fol-

lowing problem:

P̃ : max
Zt,mt

K∑
k=1

I∑
i=1

R∑
r=1

z
(r)
k,tm

(i)
k,t(τ

(i)
k,t−1 + 1)2 (14)

s. t. (8a), (8b), (8c), (8d), (8e), (8f), (8g).

Problem P̃ is a typical integer programming that is challenging
to solve. In the following section, we develop an effective
algorithm with polynomial time complexity to address its op-
timal solution. Note that problem P̃ is to maximize the overall
AoI across different devices and model regions. According to
the evolution of AoI in Eq. (9), the model regions or devices
are less frequently updated in the previous rounds have large
AoI and thus tend to be selected to be updated in the current
round. Thus, problem P̃ helps regulate the updating frequency
of diverse regions across devices, making each model region
evenly trained on different devices and improving the learning
performance.

IV. EFFICIENT ONLINE MODEL PRUNING AND RESOURCE
ALLOCATION

In this section, we develop an effective model pruning and
RB allocation algorithm that solves problem P̃ . To this end,
we first derive the optimal model pruning policy for devices
under any given RB allocation policy. Based on the optimal
pruning policy, we transform problem P̃ into an equivalent
linear programming problem which can be effectively solved.
After that, to improve the implementation feasibility of AMP-
FL in practical wireless networks, we propose a memory-
friendly AMP-FL that is equivalent to the proposed AMP-FL
in Section II-A but with a low memory requirement of the
edge server.

A. Optimal Model Pruning Policy

For any given RB allocation policy Zt, the model pruning
policies of devices do not affect each other and independently
contribute to the objective function. That is, the model pruning
policy of each device can be solely optimized. Motivated by
this, we decompose the model pruning optimization problem
for each scheduled device k (k ∈ St) from problem P̃ as
follows:

P1 : max
mk,t

∑R

r=1
z
(r)
k,t

∑I

i=1
m

(i)
k,t(τ

(i)
k,t−1 + 1)2 (15)

s. t. (8e), (8f), (8g),
λLb(1− βk,t)

2C
fknk

+
(1− βk,t)

2Qq

rk,t(zk,t)
≤ Tmax, (15a)

where constraint (15a) is obtained by rewrite constraint (8a).
Problem P1 is a typical unweighted knapsack problem. Based
on constraint (8e) and (15a), the pruning policy of device
k should satisfy 1

I

∑I
i=1 m

(i)
k,t ≤

√
Tmax/(

λLbC
fknk

+ Qq
rk,t(zk,t)

).
Moreover, based on constraint (8f) and (8g), the number of
preserved model regions, i.e.,

∑I
i=1 m

(i)
k,t, should be an integer

and not exceed total number regions of the global model,
i.e., I . According to (15), one should preserve model regions
as much as possible to increase the objective function value.
Thus, the optimal pruning policy of device k satisfy

1

I

I∑
i=1

m
(i)
k,t = min

(⌊√
Tmax

λLbC
fknk

+ Qq
rk,t(zk,t)

⌋
, 1

)
, (16)

where ⌊·⌋ is the floor function which outputs the largest integer
that does not exceed its input. From (16), when the RB
allocation policy is given, the number of preserved regions for
device k’s sub-model is fixed. For the optimal model pruning
policy of device k, we have the following remark:

Remark 3. The optimal pruning policy for device k (k ∈ St)
is to preserve the model regions with large AoI while pruning
the model regions with small AoI for maximizing the objective
function of problem P1.

Note that, similar to many existing works, e.g., [20]–[22],
this work adopts the width scaling approach to prune the global
model, which removes a certain number of filters or neurons
in each convolution layer or FC layer to generate a sub-model.
To avoid introducing layer-wise hyperparameters, we use the

8

Algorithm 1 Adaptive Model Pruning Algorithm
1: Initialization: The AoI of device k’s gradients in all model

regions, i.e., {τ (i)
k,t, ∀i ∈ I}. The RB allocation policy of device

k, zk,t.
2: Solve the optimal number of preserved model regions β̄k,t =∑I

i=1 m
(i)
k,t based on (16).

3: for each layer in the global model do
4: Sort the regions in this layer according to their AoI (i.e.,

τ
(i)
k,t,∀i ∈ I) in an descending order and then preserve the

first β̄k,t model regions and prune other regions.

same pruning ratio for every convolution or fully-connected
layer. For each convolution layer or FC layer, we sort the
filters or neurons based on their AoI in descending way, then
gradually select the corresponding ratio (computed as (16)) of
regions and remove the remaining regions. Let L denote the set
of layers in the global model. Here, for each layer. many sort-
ing algorithms can be utilized, e.g., Quicksort and Introsort,
with a meagre time complexity of O(Il log Il), where Il is
the number of filters or neurons in l-th layer of the global
model. Due to

∑
l∈L Il log Il ≤

∑
l∈L Il log(maxl∈L Il) =

I log(maxl∈L Il), the model pruning process has a meagre
time complexity of O(I log(maxl∈L Il)). We summarize the
detailed steps of model pruning in Algorithm 1.

B. Optimal Resource Block Allocation

According to the above analysis, the optimal pruning s-
trategy for each device k (k ∈ K) can be solved when it
accesses any RB r (r ∈ R) using Algorithm 1, denoted as
m∗

k,t,r = {m(i,∗)
k,t,r : ∀i ∈ I}. Based on this, we compute

the optimal model pruning policies for all devices when they
access any RB (i.e., {m∗

k,t,r : ∀r ∈ R, ∀k ∈ K}) and then
substitute them into problem P̃ . Thus, P̃ can be simplified as
the following equivalent RB allocation problem:

P2 : max
Zt

K∑
k=1

R∑
r=1

z
(r)
k,t

I∑
i=1

m
(i,∗)
k,t,r(τ

(i)
k,t−1 + 1)2 (17)

s. t. (8b), (8c), (8d).

Problem P2 is a typical integer programming which is difficult
to solve. Below we reformulate it as a maximum weight
bipartite matching problem and find its optimal solution. To
this end, we construct a complete and balanced bipartite graph
G = (V, E), where V = K∪R̄ is the vertex set, and E is the set
of edges that connect the vertices in K and R̄. In graph G, each
vertex k (k ∈ K) corresponds to a device k. R̄ = R∪Rv is an
extended set of R, where each vertex r (r ∈ R) corresponds
to r-th RB, Rv is the virtual vertex set used to construct a
balanced bipartite graph. The weight of edges is given by

Ωk,r=

I∑

i=1

m
(i,∗)
k,t,r(τ

(i)
k,t−1 + 1)2, if k ∈ K, r ∈ R,

0, else.
(18)

Based on the above defined bipartite graph G, problem P2 can
be transformed to find a maximum weight perfect matching of
graph G. Let θk,r ∈ {0, 1} be the edge connecting vertex k and
vertex r, where θk,r = 1 denotes RB r is assigned to device
k, and θk,r = 0 otherwise. Denote θk = {θk,1, θk,2, · · · , θk,R}

by the edge connection indicator of device k to all RBs. The
bipartite matching problem is given by:

P3 : max
θ1,θ2,···,θK

∑K

k=1

∑|R̄|

r=1
θk,rΩk,r (19)

s. t.
∑|R̄|

r=1
θk,r = 1, (19a)∑K

k=1
θk,r = 1, (19b)

θk,r ∈ {0, 1},∀k ∈ K, ∀r ∈ R̄. (19c)

Note that any solution of problem P3 corresponds to a perfect
matching of graph G. The constraints (19a), (19b), and (19c)
are corresponding to the constraints (8b), (8c), and (8d),
respectively. To find the optimal solution of problem P3,
an intuitive approach is to calculate the objective value of
all perfect matching of graph G, and let the matching with
maximum objective value as the final RB allocation policy.
However, this approach may be infeasible in practice since
there is a total of K! perfect matching of graph G, which has
an exponential time complexity since K!>

√
2πK(Ke)

K . By
relaxing the integrality constraint (19c), problem P3 can be
relaxed as the following linear programming:

P4 : max
θ1,θ2,···,θK

∑K

k=1

∑|R̄|

r=1
θk,rΩk,r (20)

s. t. (19a), (19b),
0 ≤ θk,r ≤ 1,∀k ∈ K, ∀r ∈ R̄. (20a)

It is worth mentioning that in problem P4, each row in
the coefficient matrix corresponding to (19a) and (19b) only
contains a ‘1’. This implements that each square submatrix
of this coefficient has determinant equal to 0, 1, or -1. Thus,
this coefficient matrix is a totally unimodular matrix. Based on
[32], the optimal solution of problem P4 is an integer solution.
That is, the optimal solution of P4 equals to the optimal
solution of problem P3. Therefore, we directly solve problem
P4 to obtain the optimal solution of P3. Since problem P4 is a
linear programming, we use the current matrix multiplication
time algorithm [33] to solve it with a time complexity of
O((K2+1/6)2).

C. Complexity Analysis and Implementation

In the above analysis, we first transform problem P̃ into
an equivalent maximum weight perfect bipartite matching
problem, i.e., problem P3. Then, we further transform problem
P3 into its equivalent linear programming P4. It is worth
mentioning that these are two equivalent transformations and
do not change the optimality of problem P̃ . Thus, the optimal
solution of problem P̃ can be addressed by first solving the
optimal solution of problem P4. When the optimal solution of
problem P4 is found, the optimal RB allocation is determined.
Furthermore, the optimal device scheduling policy can be
computed by α∗

k,t =
∑R

r=1 z
(r),∗
k,t (∀k ∈ K), and the optimal

model pruning policy of each device can be determined by
Algorithm 1. For clarity, we summarize the detailed steps
for solving problem P̃ in Algorithm 2. In Algorithm 2,
constructing the linear programming problem P4 requires
running K ×R times of Algorithm 1 to calculate the optimal

9

Algorithm 2 Efficient Device Scheduling, Model Pruning, and
RB Allocation Algorithm

1: Initialization: The AoI of devices’ gradients in all model regions,
{τ (i)

k,t,∀i ∈ I, ∀k ∈ K}.
2: Solve the optimal model pruning policy for each device k (k ∈

K) at each RB r (r ∈ R) using Algorithm 1.
3: Construct the linear programming problem P4.
4: Solve P4 by the current matrix multiplication time algorithm [33]

and obtain the optimal solution {θ∗k,r, ∀k ∈ K, ∀r ∈ R̄}.
5: Compute the RB allocation policy for each device k (k ∈ K) as

z∗
k,t = {z(r,∗)k,t ,∀r ∈ R} where z

(r,∗)
k,t = θ∗k,r .

6: Compute the device scheduling policy as S∗
t = {α∗

k,t = 1, ∀k ∈
K} where α∗

k,t =
∑R

r=1 z
(r,∗)
k,t .

7: Find the optimal model pruning policies for each scheduled
device k ∈ S∗

t , denoted as {m∗
k,t,∀k ∈ S∗

t }
8: return The device scheduling policy S∗

t , model pruning policy
m∗

k,t, and RB allocation policy z∗
k,t.

model pruning policy for each device k (k ∈ K) at each RB
r (r ∈ R). Thus the overall time complexity to solve the
problem P̃ is O

(
KRI log I + (K2+1/6)2

)
.

Algorithm 3 Memory-friendly AMP-FL
1: Initialization: The edge server initials its gradient array Ḡ−1 =

0 and the global model w0, each device k (k ∈ K) initial their
gradient array as Gk,−1 = 0

2: Server side:
3: for t = 0, 1, · · · , T − 1 do
4: Determine the scheduled devices and generate a sub-model

for each scheduled device through model pruning.
5: if Receive the gradient information from the selected devices

then
6: Update the gradient array Ḡt as

Ḡ
(i)
t = Ḡ

(i)
t−1 +

1
K

∑K
k=1 αk,tm

(i)
k,t(g̃

(i)
k,t −G

(i)
k,t−1)

7: Update the global model as w
(i)
t+1 = w

(i)
t − ηḠ

(i)
t .

8: else
9: wt+1 = wt

10: Device side:
11: if Device k is scheduled then
12: Download its corresponding sub-model from the edge server;
13: for l = 0, 1, · · · , λ− 1 do
14: Perform local training according to (1);
15: Compute the cumulative stochastic gradient g̃(i)

k,t =
1
η
(w

(i)
t −

w
(i)
k,t,λ)

16: Upload the g̃k,t −Gk,t−1 to the edge server.
17: Update the gradient array Gk,t according to (2).

In practical wireless networks, implementing the proposed
AMP-FL in Section II-A requires the edge server to maintain
the gradient information for all devices. Thus, the memory size
requirement of the edge server scales with the model size and
the number of devices. With the increase in device number,
the memory space of the edge server may be exhausted and
thus restrict the scale of the FL system and the global model.
To tackle this issue, we distribute the memory requirement
to devices for forming a memory-friendly AMP-FL which is
equivalent to the proposed AMP-FL in Section II-A. As a
result, the edge server only need to maintain a single gradient
array, Ḡt, to cache the aggregated local gradient information,
and each device maintains a gradient array Gk,t, to cache its
previous latest gradient. Then we replace step 4) and step 5)
in Section II-A with the following steps:

• Replace step 4) in Section II-A with: After finishing the
local training process, each scheduled device k (k ∈ St)

uploads the difference between its current and previous
gradient, i.e., Ḡ(i)

k,t = g̃
(i)
k,t −G

(i)
k,t−1, to the edge server.

• Replace step 5) in Section II-A with: After receiving
devices’ gradient information, the edge server updates
the maintained gradient according to Ḡ

(i)
t = Ḡ

(i)
t−1 +

1
K

∑K
k=1 Ḡ

(i)
k,t. Then, the edge server updates the global

model as w
(i)
t+1 = w

(i)
t − ηḠ

(i)
t .

By replacing step 4) and step 5) in Section II-A with the above
two steps, the edge server distributes the memory requirement
to the devices. We summarise the steps of implementing this
memory-friendly AMP-FL in Algorithm 3.

In the following theorem, we prove the equivalence of
Algorithm 3 and the proposed AMP-FL in Section II-A.

Theorem 2. Algorithm 3 is equivalent to the proposed AMP-
FL in Section II-A.
Proof. We prove Theorem 2 by mathematical induction ap-
proach. Firstly, the maintained gradient array Ḡt at the edge
server satisfies:

Ḡ
(i)
t = Ḡ

(i)
t−1 +

1

K

∑K

k=1
αk,tm

(i)
k,tḠ

(i)
k,t

= Ḡ
(i)
t−1 +

1

K

∑K

k=1
αk,tm

(i)
k,t

(
g̃
(i)
k,t −G

(i)
k,t−1

)
= Ḡ

(i)
t−1 +

1

K

∑K

k=1

(
G

(i)
k,t −G

(i)
k,t−1

)
. (21)

Note that at the beginning of the learning process, the devices’
gradient array Gk,−1 and the server’s gradient array G−1 are
all initialized with 0. Thus, when t = 0, we have

Ḡ
(i)
0 = Ḡ

(i)
−1 +

1

K

∑K

k=1

(
G

(i)
k,0 −G

(i)
k,−1

)
=

1

K

∑K

k=1
G

(i)
k,0. (22)

When t = 1,

Ḡ
(i)
1 = Ḡ

(i)
0 +

1

K

∑K

k=1

(
G

(i)
k,1 −G

(i)
k,0

)
=

1

K

K∑
k=1

G
(i)
k,1 + Ḡ

(i)
0 − 1

K

K∑
k=1

G
(i)
k,0 =

1

K

K∑
k=1

G
(i)
k,1. (23)

Similarly, for t > 1, Ḡ(i)
t = 1

K

∑K
k=1 G

(i)
k,t. Thus, the updated

global model through Algorithm 3 is w
(i)
t+1 = w

(i)
t − ηḠ

(i)
t =

w
(i)
t −η 1

K

∑K
k=1 G

(i)
k,t, which equals the updated global model

by the proposed AMP-FL in Section II-A. Thus, Algorithm 3
is equivalent to the AMP-FL algorithm in Section II-A.

TABLE I
SYSTEM PARAMETERS

Parameter Value Parameter Value
K 100 R 10
B 1MHz N0 -174dBm
nk (∀k ∈ K) 4 h0 -30dBm
q 32bits η 0.05
τ 8 Lb 64
Q(CNN) 36,758 Ck(CNN) 782,816
Tmax (CNN) 0.1s Q(VGG-11) 9,287,434
Ck(VGG-11) 362,285,568 Tmax (VGG-11) 20s
pk(∀k ∈ K) 30dBm

10

V. SIMULATION RESULTS

In this section, simulations are conducted to evaluate the
performance of the proposed AMP-FL algorithm and device
scheduling approach. If not specified, the default system set-
tings are given as Table I. We consider an edge server situated
at the centre of a circular area with a radius of 500m serving
K randomly distributed devices. The channel gain is modelled
as hk,t = h0ρk,td

−2
k , where dk is the distance from device

k to the edge server, ρk,t ∼ Exp(1) is the Rayleigh fading
channel gain [6], [34]. For each device, its CPU frequency
is uniformly selected from {0.85, 1.12, 1.2, 1.3}GHz. Similar
to [9], [10], we do not compute the exact value of the
interference (Im, ∀r ∈ R) since we mainly focus on FL system
instead of other service areas. The inter-cell interference at
each RB r, i.e., Ir, is randomly selected from the range
of
[
102BN0, 10

5BN0

]
. For each device, we set its transmit

power to pk = 30dBm, and its CPU frequency is uniformly
selected from {0.85, 1.12, 1.2, 1.3}GHz, and each CPU cycle
can process 4 FLOPs.

We evaluate the proposed approaches on two typical clas-
sification tasks using MNIST and CIFAR-10 datasets. For the
MNIST dataset, we train a convolution neural network (CNN)
with the following structure: two 5×5 convolution layers with
6 and 16 channels, respectively, and each of them is followed
by a 2 × 2 max-pooling layer; a 128-neuron FC layer; and a
10-unit softmax output layer. For CIFAR-10, we train a VGG-
11 model [23]. Note that the original VGG-11 has 1000 output
units. To adapt VGG-11 to the CIFAR-10 dataset, we remove
its last max-pooling layer, then replace its FC layers as the
following structure: two FC layers with 512 and 128 neurons; a
10-unit softmax output layer. We utilize a typical non-IID data
partitioning method for both the above datasets as follows: we
sort all data samples according to the label, then divide them
into sK/10 shards and assign each device with s shard. By
this means, each device obtains at most s types of data in the
dataset. If not specified, s = 2. For all the above-illustrated
two models, cross-entropy is used as the loss function.

A. Comparison of Model Pruning Strategies

In this subsection, we evaluate the proposed model pruning
approach by comparing it with the following approaches
under different device schedule numbers and pruning ratios: 1)
The proposed model pruning without gradient compensation
(Proposed-wGC): The edge server utilizes the proposed model
pruning approach (i.e., Algorithm 1) to generate sub-models.
However, the server only uses the received sub-model gra-
dients from devices for global model updating without com-
pensating the pruned model regions’ gradients. The gradients
of the pruned model regions of devices are set to zero for
aligning the model architecture. That is, all devices’ gradients
have the same structure as the global model. 2) Importance-
aware model pruning: In each round, the edge server removes
the less important filters and neurons in the global model
to generate sub-models. The importance score of each filter
in the convolution layers is computed as the kernel weights
summation. The importance score of each neuron in the FC
layer is calculated as its connected input weights summation

0.2 0.4 0.6 0.8
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Fig. 3. Comparison of the final test accuracy of FL after 300 rounds of
training with different pruning strategies on the MNIST dataset.

[35]. 3) Random pruning [18]: In each round, the server
randomly prunes the global model to generate sub-models for
devices based on their pruning ratios.

0.2 0.4 0.6 0.8
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Fig. 5. Comparison of the final test accuracy of FL after 1000 rounds of
training with different pruning strategies on the CIFAR-10 dataset.

Fig. 2 compares the learning performance of FL with
different model pruning policies on the MNIST dataset. By
setting the pruning ratio of all devices to 0.1, Fig. 2(a)
and Fig. 2(b) test the performance of all the model pruning
policies under |St|= 5, Fig. 2(c) and Fig. 2(d) shown the
learning performance under |St|= 10. It is observed that the
proposed approach achieves better learning performance than
the benchmarks in terms of test accuracy and training loss.
Compared to the benchmarks, the proposed approach improves
over 10.9% and 3.3% accuracy when |St|= 5 and |St|= 10,
respectively. In addition, the proposed pruning approach with
gradient compensation performs better than that without gra-
dient compensation. This demonstrates the effectiveness of
the proposed gradient compensation mechanism. Fig. 3 shows
how the pruning ratio affects the final accuracy of the global
model trained under different pruning policies. Note that all the
accuracy results in Fig. 3 are obtained by training the global
model under corresponding pruning policies with 300 rounds.

11

(a) (b) (c) (d)

Fig. 2. Comparison of the learning performance of FL with different pruning strategies on the MNIST dataset: (a) Test accuracy, |St|= 5, βk,t = 0.1, (b)
Training loss, |St|= 5, βk,t = 0.1, (c) Test accuracy, |St|= 10, βk,t = 0.1, (d) Training loss, |St|= 10, βk,t = 0.1.

(a) (b) (c) (d)

Fig. 4. Comparison of the learning performance of FL with different pruning strategies on the CIFAR-10 dataset: (a) Test accuracy, |St|= 5, βk,t = 0.1,
(b) Training loss, |St|= 5, βk,t = 0.1, (c) Test accuracy, |St|= 10, βk,t = 0.1, (d) Training loss, |St|= 10, βk,t = 0.1.

We can see that the proposed pruning approach outperforms
the benchmarks under different pruning ratios and participant
numbers. Moreover, for all pruning policies, the final accuracy
under |St|= 10 is higher than that under |St|= 5. This
indicates scheduling more devices in each round improves
the learning performance of AMP-FL. In addition, the final
model accuracy under all pruning policies decreases with the
increase in the pruning ratio. This is because a larger pruning
ratio induces that the sub-models have fewer parameters, and
more filters and neurons have been trained fewer times. It
is observed from Fig. 3 that a relatively small pruning ratio
does not significantly hurt the global model accuracy while
substantially reducing the communication costs. Under the
given time, the pruned model can be trained for more rounds
than the original model, resulting in better accuracy, which
has been verified in Fig. 8 in Section V-C.

A similar comparison is conducted on the CIFAR-10 dataset
in Fig. 4. It is observed the same conclusion as the results on
MNIST, i.e., the proposed approach achieves better learning
performance than the benchmarks in terms of test accuracy and
training loss. When the pruning ratios of all approaches are
set to be 0.1, the proposed approach is capable of boosting
5.13% and 3.56% accuracy under |St|= 5 and |St|= 10,
respectively. It is worth mentioning that the proposed ap-
proach with gradient compensation outperforms that without
gradient compensation. In addition, the proposed-wGC ap-
proach remains performs better than the other two benchmarks.
This demonstrated the effectiveness of the proposed gradient

compensation mechanism and model pruning approach. In
addition, it is also observed that a small pruning ratio may not
significantly hurt the global model accuracy. Thus, properly
pruning the global model for devices allows more training
rounds and achieves better learning performance than training
the original model on devices, as shown in Fig. 9 in Section
V-C.

The above results on MNIST and CIFAR-10 datasets
demonstrate the effectiveness of the proposed adaptive model
pruning approach and gradient compensation mechanism. For
the practical implementation in wireless networks, these results
suggest adaptively pruning the global model to enable each
region of the model to be evenly trained across different
devices, and utilizing the proposed gradient compensation
mechanism helps enhance the learning performance of FL.

B. Comparison of Device Scheduling Policies

In this section, we evaluate the effectiveness of the pro-
posed device scheduling and resource allocation approach by
comparing it with: 1) Pruning ratio minimization-aware device
scheduling (PR-scheduling) [17], [19]: In each round, the edge
server selects a subset of devices that satisfies the latency
constraint and has the minimal sum of the pruning ratio. 2)
Channel gain-aware device scheduling (C-scheduling) [10]:
The edge server schedules the devices with maximal channel
gain and satisfies the latency constraint to perform training
in each round. 3) Random scheduling. In each round, the

12

(a) (b)

Fig. 6. Comparison of learning performance for different device scheduling
approaches on MNIST dataset.

(a) (b)

Fig. 7. Comparison of learning performance for different device scheduling
approaches on CIFAR-10 dataset.

edge server randomly selects a subset of devices and their
corresponding RBs that satisfy the latency constraint.

Fig. 6 compares the proposed scheduling approach with the
above three approaches on MNIST dataset. From Fig. 6(a),
compared to the benchmarks, the proposed device schedul-
ing achieves higher accuracy and faster convergence speed.
Specifically, the proposed device scheduling approach boosts
at least 3.97% accuracy than the benchmarks. Given the target
accuracy is 85%, the proposed device scheduling approach
only takes 10.42 seconds to achieve the target, while the
best benchmark, i.e., the PR-scheduling scheme, requires
15.3 seconds. Compared to the benchmarks, the proposed
approach is able to save 31.9% training time to obtain 85%
test accuracy. The latent reason why the proposed device
scheduling approach outperforms the benchmarks is illustrated
in Fig. 6(b), which plots the average AoI of devices’ local
gradients. We find that the proposed method possesses the
lowest average AoI of local gradients. In addition, for all the
device scheduling algorithms, the one with lower AoI obtains
higher learning accuracy. This phenomenon demonstrated the
convergence results in Remark 1, which suggests minimizing
the average AoI of local gradients to enhance the learning
performance.

Fig. 7 evaluates the learning performance of all the device
scheduling approaches on the CIFAR-10 dataset and shows
the same conclusion as MNIST. From Fig. 7(a), the proposed
approach achieves 2.1% accuracy improvement after 3× 104

seconds of training. Given the target accuracy is 70%, the
proposed device scheduling approach saves at least 15.87%

(a) (b)

Fig. 8. Learning performance of different FL algorithms on the MNIST
dataset: (a) s = 2, (b) s = 3.

(a) (b)

Fig. 9. Learning performance for different FL algorithms on the CIFAR-10
dataset: (a) s = 2, (b) s = 3.

training time compared to the benchmarks. In addition, Fig.
7(b) shows that the proposed device scheduling approach
has the lowest average AoI of gradients compared to the
benchmarks. This further demonstrated the correctness of the
convergence results in Remark 1.

C. Overall Effectiveness

This subsection evaluates AMP-FL by comparing it to
three FL algorithms as follows: 1) Synchronous FL [8]–
[10]: The scheduled devices train the entire global model and
upload the trained model to the edge server for aggregation.
2) Regularized FL [36]: Regularized FL utilizes a weight-
based proximal term to limit the impact of local updates
to tackle the data heterogeneity among devices. 3) Adaptive
personalized FL (APFL) [37]: The selected devices train their
local models and the received global model. After that, APFL
integrates devices’ local models and global model to create a
personalized model for each device.

Fig. 8 shows the learning performance of AMP-FL and
three benchmarks on MNIST dataset. Fig. 8(a) sets the data
heterogeneity-related parameter to s = 2, i.e., each device
in the system has at most two types of data samples of
the MNIST dataset. We can see that AMP-FL significantly
outperforms Synchronous FL and Regularized FL, i.e., it
improves around 4.3% test accuracy compared to these two
benchmarks. Although AMP-FL only obtains a slight accuracy
improvement to the APFL approach, it converges fast than
APFL. AMP-FL only takes 17.5s to achieve 90% accuracy,

13

while APFL takes 29.5s. That is, AMP-FL provides a 1.7x
speed up compared to APFL. Fig. 8(b) compares the learning
performance of all the FL algorithms under s = 3, drawing a
similar conclusion to the setting of s = 2. Specifically, AMP-
FL boosts 3.63% accuracy compared to Synchronous FL and
Regularized FL and achieves a 1.9x speed up when the target
accuracy is 90% compared to APFL. In addition, for all the
FL algorithms, their learning performance under s = 3 is
better than that under s = 2. This is because the high data
heterogeneity would introduce higher variance in the global
model update and degrade the learning performance.

Fig. 9 conducts a similar comparison on the CIFAR-10
dataset. From Fig. 9(a) with setting s = 2, when the target
accuracy is 70% and 75%, the proposed AMP-FL is capable
of providing a 1.6x and 1.5x speed up compared to the bench-
marks, respectively. In Fig. 9(b), we set the data heterogeneity-
related parameter to s = 3. It is observed that AMP-FL
achieves a 1.75x and 1.7x speed up when the target accuracy
is 70% and 75%, respectively. Moreover, we can see that the
learning process of AMP-FL is more stable than that of the
benchmarks since the shadow band of AMP-FL is slim than
the benchmarks. The benefits come from the proposed gradient
compensation mechanism and model pruning approach, which
prevents the global model from being biased toward devices
with high communication and computation capabilities. From
the results in Fig. 8 and Fig. 9, dynamically adjusting the local
models to adapt devices’ computation and communication
capabilities is an efficient approach to mitigate the straggler
effects in practical wireless FL systems.

D. Impact of Wireless Resource on Learning Performance

In this subsection, we evaluate the impacts of the number of
RBs on the learning performance of AMP-FL, including test
accuracy and Average AoI of devices’ gradients. Note that in
this section, the results on MNIST and CIFAR-10 are achieved
after 50 and 3× 104 seconds of training, respectively.

In Fig. 10, we evaluate the effects of the number of RBs on
the test accuracy and average AoI. From the results on MNIST
dataset in Fig. 10(a), it is observed that the test accuracy
of AMP-FL keeps increasing along with the increase in the
number of RBs. This is because the increasing number of RBs
allows more devices to participate in the learning process in
each round. In addition, the average AoI of devices’ gradients
decreases with the increase in the number of RBs. According
to the definition of AoI in (9), the AoI of a model region
increases when the corresponding device is not selected or the
model region is pruned. Increasing the number of resource
blocks would increase the number of selected devices in each
round, and thus more model regions are selected in each round.
Consequently, the average AoI across devices would be re-
duced. The results on the CIFAR-10 dataset in Fig. 10(b) show
a similar conclusion to Fig. 10(a), indicating that increasing
the number of RBs helps improve test accuracy and reduce the
average AoI of devices’ gradients. These simulation results
further verifies our theoretical analysis results in Remark 1,
which suggests minimizing the average AoI of local gradients
to enhance the learning performance.

5 10 15 20 25 30 35
0.86

0.88

0.9

0.92

0.94

0.96

5 10 15 20 25 30 35
20

25

30

35

40

45

50

55

(a)

5 10 15 20 25 30 35
0.7

0.72

0.74

0.76

0.78

0.8

0.82

5 10 15 20 25 30 35
20

30

40

50

60

70

80

90

(b)

Fig. 10. Learning performance of the proposed AMP-FL under different
number of RBs: (a) on MNIST dataset, (b) on CIFAR-10 dataset.

VI. CONCLUSION

In this work, we developed a novel AMP-FL framework
which dynamically prunes the global model to generate sub-
models adapted to devices’ communication and computation
capabilities. This framework is capable of simultaneously
reducing communication and computation overhead for de-
vices to enable efficient FL among heterogeneous devices. To
prevent the diverse structures of pruned local models from
affecting the training convergence, we proposed a gradient
compensation mechanism to compensate for the gradients of
pruned model regions by devices’ historical gradients. We
introduced an AoI metric to characterize the staleness of local
gradients and analyzed the convergence bound of AMP-FL.
The convergence bound suggests scheduling devices with large
AoI and pruning the model regions with small AoI for devices
in the per-round learning process. Based on this, we develop an
effective device scheduling, model pruning, and RB allocation
approach to enhance the learning performance of AMP-FL in
wireless networks. Experimental results show that compared
to the benchmark FL algorithms, the proposed AMP-FL is
capable of achieving 1.9x and 1.6x speed up on MNIST and
CIFAR-10 datasets, respectively.

APPENDIX

A. Proof of Lemma 1

If λ = 1, the inequality is trivially satisfied since w
(i)
k,t,0 =

w
(i)
k,t. For λ > 1, we have

E∥w(i)
k,t,l −w

(i)
t ∥2= E

∥∥∥w(i)
k,t,l−1 − η∇F̃k(w

(i)
k,t,l−1)−w

(i)
t

∥∥∥2
≤ E

∥∥∥w(i)
k,t,l−1 −w

(i)
t − η∇Fk(w

(i)
k,t,l−1)

∥∥∥2 + η2σ2, (24)

where the last inequality comes from adding and subtracting
∇Fk(w

(i)
k,t,l−1) into ∇F̃k(w

(i)
k,t,l−1), then using the triangle

inequality and Assumption 3. Below we bound the first term
in the above inequaltion as

E
∥∥∥w(i)

k,t,l−1 −w
(i)
t − η∇Fk(w

(i)
k,t,l−1)

∥∥∥2
= E∥w(i)

k,t,l−1−w
(i)
t ∥2+η2E∥∇Fk(w

(i)
k,t,l−1)∥

2

− 2E
⟨ 1√

λ−1
(w

(i)
k,t,l−1−w

(i)
t), η

√
λ−1∇Fk(w

(i)
k,t,l−1)

⟩

14

(a)

≤ (1+
1

λ−1
)E∥w(i)

k,t,l−1−w
(i)
t ∥2+η2λE∥∇Fk(w

(i)
k,t,l−1)∥

2

≤ (1+
1

λ−1
)E∥w(i)

k,t,l−1−w
(i)
t ∥2+2η2λE∥∇Fk(w

(i)
k,t)∥

2

+2η2λE∥∇Fk(w
(i)
k,t,l−1)−∇Fk(w

(i)
k,t)∥

2

(b)

≤ (1 +
1

λ− 1
+ 2η2λL2)E∥w(i)

k,t,l−1 −w
(i)
t ∥2

+ 2η2λE∥∇Fk(w
(i)
k,t)∥

2

(c)

≤(1+
3

2(λ−1)
)E∥w(i)

k,t,l−1−w
(i)
t ∥2+2η2λE∥∇Fk(w

(i)
k,t)∥

2,

(25)

where (a) comes from the triangle inequality, (b) comes from
the L-smooth of loss functions, (c) is due to η < 1

2λL . Thus,
we have

E∥w(i)
k,t,l −w

(i)
t ∥2≤ (1 +

3

2(λ− 1)
)E∥w(i)

k,t,l−1 −w
(i)
t ∥2

+ 2η2λE∥∇Fk(w
(i)
k,t)∥

2+η2σ2. (26)

By telescoping the above inequality, we have

E∥w(i)
k,t,l −w

(i)
t ∥2

≤
(
2η2λE∥∇Fk(w

(i)
t)∥2+η2σ2

) (1+ 3
2(λ−1))

λ−1−1

3
2(λ−1)

. (27)

Since (1 + 3
2(λ−1))

λ−1 = (1 + 3
2(λ−1))

2(λ−1)
3

3
2 ≤ e

3
2 < 5 and

2(λ−1)
3 < λ− 1, we have

E∥w(i)
k,t,l −w

(i)
t ∥2≤ 4(λ− 1)(2η2λG2 + η2σ2). (28)

By substituting the above inequality into the left-hand-side of
(10), the proof is completed.

B. Proof of Lemma 2

For t1 > t2, let η̃ = ηλ, we have

E∥w(i)
t1 −w

(i)
t2 ∥

2= E
∥∥∥∑t1−1

t=t2
(w

(i)
t+1 −w

(i)
t)
∥∥∥2

= η̃2E
∥∥∥∑t1−1

t=t2

1

Kλ

∑K

k=1

∑λ−1

l=0
∇F̃k(w

(i)

k,t−τ
(i)
k,t,l

)
∥∥∥2

(a)

≤ 3η̃2(t1−t2)

t1−1∑
t=t2

1

Kλ

K∑
k=1

λ−1∑
l=0

E
∥∥∥∇F̃k(w

(i)

k,t−τ
(i)
k,t,l

)

−∇Fk(w
(i)

k,t−τ
(i)
k,t,l

)
∥∥∥2

+ 3η̃2(t1−t2)

t1−1∑
t=t2

1

Kλ

K∑
k=1

λ−1∑
l=0

E
∥∥∥∇Fk(w

(i)

k,t−τ
(i)
k,t,l

)

−∇Fk(w
(i)

k,t−τ
(i)
k,t

)
∥∥∥2

+ 3η̃2(t1−t2)
∑t1−1

t=t2
E∥∇F (w

(i)

t−τ
(i)
k,t

)∥2

(b)

≤ 3η̃2(t1−t2)

t1−1∑
t=t2

1

Kλ

K∑
k=1

λ−1∑
l=0

L2E
∥∥∥w(i)

k,t−τ
(i)
k,t,l

−w
(i)

k,t−τ
(i)
k,t

∥∥∥2
+ 3η̃2(t1 − t2)

2(σ2 +G2), (29)

where (a) is derived by adding and subtracting
∇Fk(w

(i)

k,t−τ
(i)
k,t,l

) and ∇Fk(w
(i)

k,t−τ
(i)
k,t

) into ∇F̃k(w
(i)

k,t−τ
(i)
k,t,l

),

(b) is due to Assumption 3 and 4. Based on Lemma 1, by
substituting (10) into the above inequality, we have

E
∥∥∥w(i)

t −w
(i)

t−τ
(i)
k,t

∥∥∥2 ≤ 3η2(τ
(i)
k,t)

2
(
(λ2 + (λ− 1)I)σ2

+ (λ2 + 2λ(λ− 1)I)G2
)
. (30)

Substituting the above inequation into the left-hand-side of
(11), the proof is completed.

C. Proof of Theorem 1

Using the L-smooth property of local loss function, we
have E[F (wt+1)− F (wt)] ≤ E⟨∇F (wt), wt+1 − wt⟩ +
L
2E ∥wt+1 −wt∥2. It is worth mentioning that both the inner
product and norm can be broken down and reformulated as the
sum of inner products and norms over all parameter regions,
respectively. Thus, we have

E [F (wt+1)− F (wt)] ≤
I∑

i=1

E
⟨
∇F (w

(i)
t),w

(i)
t+1 −w

(i)
t

⟩
+

L

2

∑I

i=1
E∥w(i)

t+1 −w
(i)
t ∥2

= −η̃
I∑

i=1

E
⟨
∇F (w

(i)
t),

1

Kλ

K∑
k=1

λ−1∑
l=0

∇F̃k(w
(i)

k,t−τ
(i)
k,t,l

)
⟩

+
L

2
η̃2
∑I

i=1
E
∥∥∥ 1

Kλ

∑K

k=1

∑λ−1

l=0
∇F̃k(w

(i)

k,t−τ
(i)
k,t,l

)
∥∥∥2

= −η̃

I∑
i=1

E
⟨
∇F (w

(i)
t),

1

Kλ

K∑
k=1

λ−1∑
l=0

∇Fk(w
(i)

k,t−τ
(i)
k,t,l

)
⟩

︸ ︷︷ ︸
A1

+
L

2
η̃2
∑I

i=1
E
∥∥∥ 1

Kλ

∑K

k=1

∑λ−1

l=0
∇F̃k(w

(i)

k,t−τ
(i)
k,t,l

)
∥∥∥2︸ ︷︷ ︸

A2

−η̃
I∑

i=1

1
Kλ

K∑
k=1

λ−1∑
l=0

E
⟨
∇F (w

(i)
t),∇F̃k(w

(i)

k,t−τ
(i)
k,t,l

)

−∇Fk(w
(i)

k,t−τ
(i)
k,t,l

)
⟩

︸ ︷︷ ︸
A3

, (31)

where the last step is derived by adding and subtracting
∇Fk(w

(i)

k,t−τ
(i)
k,t,l

) into ∇F̃k(w
(i)

k,t−τ
(i)
k,t,l

). Below we bound the

three terms in (31). For A1,

A1 = −η̃
∑I

i=1
E
⟨
∇F (w

(i)
t),∇F (w

(i)
t)−∇F (w

(i)
t)

+
1

Kλ

∑K

k=1

∑λ−1

l=0
∇Fk(w

(i)

k,t−τ
(i)
k,t,l

)
⟩

(a)
= −η̃E ∥∇F (wt)∥2+η̃

∑I

i=1
E
⟨
∇F (w

(i)
t),

∇F (w
(i)
t)− 1

Kλ

∑K

k=1

∑λ−1

l=0
∇Fk(w

(i)

k,t−τ
(i)
k,t,l

)
⟩

(b)

≤ −1

2
η̃E ∥∇F (wt)∥2

15

+
1

2
η̃

I∑
i=1

E
∥∥∥ 1

Kλ

K∑
k=1

λ−1∑
l=0

(
∇Fk(w

(i)
t)−∇Fk(w

(i)

k,t−τ
(i)
k,t,l

)
)∥∥∥2,
(32)

where (a) is due to ∥∇F (wt)∥2=
∑I

i=1∥∇F (w
(i)
t)∥2, (b)

follows the triangle inequality. For the last term on the RHS
of (32), we have

1

2
η̃

I∑
i=1

E
∥∥∥ 1

Kλ

K∑
k=1

λ−1∑
l=0

(
∇Fk(w

(i)
t)−∇Fk(w

(i)

k,t−τ
(i)
k,t,l

)
)∥∥∥2

(a)

≤ 1

2
η̃

I∑
i=1

1

Kλ

K∑
k=1

λ−1∑
l=0

E
∥∥∥∇Fk(w

(i)
t)−∇Fk(w

(i)

k,t−τ
(i)
k,t,l

)
∥∥∥2

(b)

≤ η̃
∑I

i=1

1

K

∑K

k=1
E
∥∥∥∇Fk(w

(i)
t)−∇Fk(w

(i)

k,t−τ
(i)
k,t

)
∥∥∥2

+η̃

I∑
i=1

1

Kλ

K∑
k=1

λ−1∑
l=0

E
∥∥∥∇Fk(w

(i)

k,t−τ
(i)
k,t

)−∇Fk(w
(i)

k,t−τ
(i)
k,t,l

)
∥∥∥2

(c)

≤ η̃
∑I

i=1

1

K

∑K

k=1
L2E

∥∥∥w(i)
t −w

(i)

k,t−τ
(i)
k,t

∥∥∥2
+ η̃

I∑
i=1

1

Kλ

K∑
k=1

λ−1∑
l=0

L2E
∥∥∥w(i)

k,t−τ
(i)
k,t,l

−w
(i)

k,t−τ
(i)
k,t

∥∥∥2, (33)

where (a) follows Jensen’s inequality, (b) comes from adding
and subtracting ∇Fk(w

(i)

k,t−τ
(i)
k,t

) into ∇Fk(w
(i)
t), (c) is due to

the L-smooth of loss functions in Assumption 1. Substituting
(33) into (32), we have

A1≤−1

2
η̃E ∥∇F(wt)∥2+η̃L2

I∑
i=1

1

K

K∑
k=1

E
∥∥∥w(i)

t −w(i)

k,t−τ
(i)
k,t

∥∥∥2
+ η̃L2

I∑
i=1

1

Kλ

K∑
k=1

λ−1∑
l=0

E
∥∥∥w(i)

k,t−τ
(i)
k,t,l

−w
(i)

k,t−τ
(i)
k,t

∥∥∥2. (34)

Now we focus on bounding A2 as follows:

A2 =
L

2
η̃2
∑I

i=1
E
∥∥∥ 1

Kλ

∑K

k=1

∑λ−1

l=0

(
∇F̃k(w

(i)

k,t−τ
(i)
k,t,l

)

−∇Fk(w
(i)

k,t−τ
(i)
k,t,l

)+∇Fk(w
(i)

k,t−τ
(i)
k,t,l

)
)∥∥∥2

(a)

≤ L

2
η̃2

I∑
i=1

E
∥∥∥ 1

Kλ

K∑
k=1

λ−1∑
l=0

∇Fk(w
(i)

k,t−τ
(i)
k,t,l

)
∥∥∥2 + L

2
η̃2σ2

(b)

≤ Lη̃2
∑I

i=1
E∥∇F (w

(i)
t)∥2+L

2
η̃2σ2

+Lη̃2
I∑

i=1

E
∥∥∥ 1

Kλ

K∑
k=1

λ−1∑
l=0

(
∇Fk(w

(i)

k,t−τ
(i)
k,t,l

)−∇Fk(w
(i)
k,t)
)∥∥∥2︸ ︷︷ ︸

A2,2

,

(35)

where (a) follows the triangle inequality and the bounded
noise of SGD in Assumption 3, (b) is derived by adding and
subtracting ∇F (w

(i)
t) into ∇Fk(w

(i)

k,t−τ
(i)
k,t,l

), then using the

triangle inequality. Now we bound the second term on the

RHS of (35) as

A2,2

(a)

≤ 2Lη̃2
I∑

i=1

E
∥∥∥ 1

Kλ

K∑
k=1

λ−1∑
l=0

(
∇Fk(w

(i)

k,t−τ
(i)
k,t,l

)

−∇Fk(w
(i)

k,t−τ
(i)
k,t

)
)∥∥∥2

+ 2Lη̃2
I∑

i=1

E
∥∥∥ 1

K

K∑
k=1

(
∇Fk(w

(i)

k,t−τ
(i)
k,t

)−∇Fk(w
(i)
k,t)
)∥∥∥2

(b)

≤ 2η̃2L3
I∑

i=1

1

Kλ

K∑
k=1

λ−1∑
l=0

E
∥∥∥w(i)

k,t−τ
(i)
k,t,l

−w
(i)

k,t−τ
(i)
k,t

∥∥∥2
+ 2η̃2L3

∑I

i=1

1

K

∑K

k=1
E∥w(i)

k,t−τ
(i)
k,t

−w
(i)
t ∥2, (36)

where (a) is derived by adding and subtracting ∇Fk(w
(i)

k,t−τ
(i)
k,t

)

into ∇Fk(w
(i)

k,t−τ
(i)
k,t,l

), (b) follows Assumption 1. Thus,

A2 ≤ Lη̃2
∑I

i=1
E∥∇F (w

(i)
t)∥2

+ 2η̃2L3
I∑

i=1

1

Kλ

K∑
k=1

λ−1∑
l=0

E
∥∥∥w(i)

k,t−τ
(i)
k,t,l

−w
(i)

k,t−τ
(i)
k,t

∥∥∥2
+ 2η̃2L3

I∑
i=1

1

K

K∑
k=1

E∥w(i)

k,t−τ
(i)
k,t

−w
(i)
t ∥2+L

2
η̃2σ2. (37)

For A3, we have

A3
(a)
= −η̃

I∑
i=1

1

Kλ

K∑
k=1

λ−1∑
l=0

E
⟨
∇F (w

(i)
t)−∇F (w

(i)

k,t−τ
(i)
k,t

),

∇F̃k(w
(i)

k,t−τ
(i)
k,t,l

)−∇Fk(w
(i)

k,t−τ
(i)
k,t,l

)
⟩

(b)

≤ 1

2
η̃

I∑
i=1

1

K

K∑
k=1

E
∥∥∥∇F (w

(i)
t)−∇F (w

(i)

k,t−τ
(i)
k,t

)
∥∥∥2 + 1

2
η̃σ2

(c)

≤ 1

2
η̃L2

I∑
i=1

1

K

K∑
k=1

E
∥∥∥w(i)

t −w
(i)

k,t−τ
(i)
k,t

∥∥∥2 + 1

2
η̃σ2, (38)

where (a) is derived by adding and subtracting ∇F (w
(i)

k,t−τ
(i)
k,t

)

into ∇F (w
(i)
t), then using Assumption 3, (b) follow the

triangle inequality and the bounded noise of SGD, (c) is due
to the L-smooth of loss functions. Substituting (34), (37), (38)
into (31), and let η̃ < 1

2L , we have

E [F (wt+1)− F (wt)] ≤ (−1

2
η̃ + Lη̃2)E ∥∇F (wt)∥2

+
5

2
η̃L2

I∑
i=1

1

K

K∑
k=1

E
∥∥∥w(i)

t −w
(i)

k,t−τ
(i)
k,t

∥∥∥2 + 3

4
η̃σ2

+ 2η̃L2
I∑

i=1

1

Kλ

K∑
k=1

λ−1∑
l=0

E
∥∥∥w(i)

k,t−τ
(i)
k,t,l

−w
(i)

k,t−τ
(i)
k,t

∥∥∥2. (39)

Based on Lemma 1 and Lemma 2, by substituting (10) and
(11) into the above inequality and assuming η̃ < 1

2L ,

E[F (wt+1)− F (wt)] ≤ (−1

2
η + Lη2λ)λ ∥∇F (wt)∥2

16

+ c1 +
15η2L

4
c2

1

K

∑K

k=1

∑I

i=1
(τ

(i)
k,t)

2, (40)

where c1 = 4η(λ − 1)IG2 +
(
4η2L(λ− 1)I + 3

4ηλ
)
σ2 and

c2 = λ2(σ2 +G2) + (λ− 1)I(σ2 + 2λG2). According to the
evolution of the AoI of local gradients, we have

(τ
(i)
k,t)

2 = (1− αk,tm
(i)
k,t)

2(τ
(i)
k,t−1 + 1)2

= (1− αk,tm
(i)
k,t)(τ

(i)
k,t−1 + 1)2. (41)

Substituting the (41) into (40), the proof is completed.
D. Proof of Corollary 1

By the µ-strongly convex of loss functions, we have
∥∇F (wt)∥2 ≥ 2µ(F (wt)−F (w∗)). Substituting this inequal-
ity into (12), then adding and subtracting F (w∗) into (12), we
have

E[F (wt+1)− F (w∗)]

≤ (1− ηλµ+ 2Lη2λ2µ)E[F (wt)− F (w∗)] + c1

+
15

4
η2Lc2

1

K

K∑
k=1

I∑
i=1

(τ
(i)
k,t)

2, (42)

By telescoping the above inequality, the proof is completed.

REFERENCES

[1] Z. Chen, W. Yi, and A. Nallanathan, “Efficient wireless federated
learning with adaptive model pruning.” accepted to IEEE Global
Communications Conference (GLOBECOM) 2023.

[2] L. U. Khan, W. Saad, Z. Han, E. Hossain, and C. S. Hong, “Federated
learning for internet of things: Recent advances, taxonomy, and open
challenges,” IEEE Commun. Surveys Tuts., vol. 23, no. 3, pp. 1759–
1799, 2021.

[3] Z. Yang, M. Chen, K.-K. Wong, H. V. Poor, and S. Cui, “Federated
learning for 6G: Applications, challenges, and opportunities,” Engineer-
ing, vol. 8, pp. 33–41, 2022.

[4] W. Xu, Z. Yang, D. W. K. Ng, M. Levorato, Y. C. Eldar, and M. Debbah,
“Edge learning for B5G networks with distributed signal processing:
Semantic communication, edge computing, and wireless sensing,” IEEE
J. Sel. Topics Signal Process., vol. 17, no. 1, pp. 9–39, 2023.

[5] Z. Chen, W. Yi, Y. Deng, and A. Nallanathan, “Device scheduling
for wireless federated learning with latency and representativity,” in
Proc.Int. Conf. Electrical, Computer, Commun. and Mechatronics Engi-
neering (ICECCME), 2022, pp. 1–6.

[6] Z. Chen, W. Yi, Y. Liu, and A. Nallanathan, “Knowledge-aided federated
learning for energy-limited wireless networks,” IEEE Trans. Commun.,
vol. 71, no. 6, pp. 3368–3386, 2023.

[7] A. Li, J. Sun, X. Zeng, M. Zhang, H. Li, and Y. Chen, “Fedmask:
Joint computation and communication-efficient personalized federated
learning via heterogeneous masking,” in Proc. ACM Conf. Embedded
Networked Sensor Systems, 2021, pp. 42–55.

[8] Z. Yang, M. Chen, W. Saad, C. S. Hong, and M. Shikh-Bahaei, “Energy
efficient federated learning over wireless communication networks,”
IEEE Trans. Wireless Commun., vol. 20, no. 3, pp. 1935–1949, 2021.

[9] M. Chen, H. V. Poor, W. Saad, and S. Cui, “Convergence time opti-
mization for federated learning over wireless networks,” IEEE Trans.
Wireless Commun., vol. 20, no. 4, pp. 2457–2471, 2021.

[10] M. Chen, Z. Yang, W. Saad, C. Yin, H. V. Poor, and S. Cui, “A joint
learning and communications framework for federated learning over
wireless networks,” IEEE Trans. Wireless Commun., vol. 20, no. 1, pp.
269–283, 2021.

[11] Y. Oh, N. Lee, Y.-S. Jeon, and H. V. Poor, “Communication-efficient
federated learning via quantized compressed sensing,” IEEE Trans.
Wireless Commun., vol. 22, no. 2, pp. 1087–1100, 2023.

[12] M. M. Amiri and D. Gündüz, “Federated learning over wireless fading
channels,” IEEE Trans. Wireless Commun., vol. 19, no. 5, pp. 3546–
3557, 2020.

[13] P. S. Bouzinis, P. D. Diamantoulakis, and G. K. Karagiannidis, “Wireless
quantized federated learning: A joint computation and communication
design,” IEEE Trans. Commun., vol. 71, no. 5, pp. 2756–2770, 2023.

[14] A. R. Elkordy and A. S. Avestimehr, “Heterosag: Secure aggregation
with heterogeneous quantization in federated learning,” IEEE Trans.
Commun., vol. 70, no. 4, pp. 2372–2386, 2022.

[15] C. Wu, F. Wu, L. Lyu, Y. Huang, and X. Xie, “Communication-efficient
federated learning via knowledge distillation,” Nature communications,
vol. 13, no. 1, pp. 1–8, 2022.

[16] S. Oh, J. Park, E. Jeong, H. Kim, M. Bennis, and S.-L. Kim, “Mix2fld:
Downlink federated learning after uplink federated distillation with two-
way mixup,” IEEE Commun. Letters, vol. 24, no. 10, pp. 2211–2215,
2020.

[17] S. Liu, G. Yu, R. Yin, J. Yuan, L. Shen, and C. Liu, “Joint model
pruning and device selection for communication-efficient federated edge
learning,” IEEE Trans. Commun., vol. 70, no. 1, pp. 231–244, 2022.

[18] D. Wen, K.-J. Jeon, and K. Huang, “Federated dropout-a simple ap-
proach for enabling federated learning on resource constrained devices,”
IEEE Wireless Commun. Letters, vol. 11, no. 5, pp. 923–927, 2022.

[19] S. Liu, G. Yu, R. Yin, and J. Yuan, “Adaptive network pruning for
wireless federated learning,” IEEE Wireless Commun. Letters, vol. 10,
no. 7, pp. 1572–1576, 2021.

[20] S. Caldas, J. Konečny, H. B. McMahan, and A. Talwalkar, “Expanding
the reach of federated learning by reducing client resource require-
ments,” arXiv preprint arXiv:1812.07210, 2018.

[21] E. Diao, J. Ding, and V. Tarokh, “Heterofl: Computation and commu-
nication efficient federated learning for heterogeneous clients,” arXiv
preprint arXiv:2010.01264, 2020.

[22] Y. Jiang, S. Wang, V. Valls, B. J. Ko, W.-H. Lee, K. K. Leung, and
L. Tassiulas, “Model pruning enables efficient federated learning on edge
devices,” IEEE Trans. Neural Networks and Learning Systems, pp. 1–13,
2022.

[23] K. Simonyan and A. Zisserman, “Very deep convolutional networks for
large-scale image recognition,” in Proc. Int. Conf. Learning Represen-
tations (ICLR), 2015.

[24] H. Li, A. Kadav, I. Durdanovic, H. Samet, and H. P. Graf, “Pruning filters
for efficient convnets,” in Proc. Int. Conf. Learning Representations
(ICLR), 2017.

[25] F. Ilhan, G. Su, and L. Liu, “Scalefl: Resource-adaptive federated learn-
ing with heterogeneous clients,” in Proc. IEEE/CVF Conf. Computer
Vision and Pattern Recognition (CVPR), June 2023, pp. 24 532–24 541.

[26] P. Li, G. Cheng, X. Huang, J. Kang, R. Yu, Y. Wu, and M. Pan,
“Anycostfl: Efficient on-demand federated learning over heterogeneous
edge devices,” arXiv preprint arXiv:2301.03062, 2023.

[27] S. Lin, R. Ji, Y. Li, C. Deng, and X. Li, “Toward compact convnets
via structure-sparsity regularized filter pruning,” IEEE Trans. Neural
Networks and Learning Systems, vol. 31, no. 2, pp. 574–588, 2020.

[28] Y. Mei, P. Guo, M. Zhou, and V. Patel, “Resource-adaptive federated
learning with all-in-one neural composition,” in Advances in Neural
Information Processing Systems, vol. 35, 2022, pp. 4270–4284.

[29] Z. Chen, W. Yi, and A. Nallanathan, “Exploring representativity in
device scheduling for wireless federated learning,” IEEE Trans. Wireless
Commun., pp. 1–1, 2023.

[30] P. Molchanov, S. Tyree, T. Karras, T. Aila, and J. Kautz, “Pruning
convolutional neural networks for resource efficient inference,” in Proc.
Int. Conf. Learning Representations (ICLR), April, 2017.

[31] Z. Chen, W. Yi, A. Nallanathan, and G. Y. Li, “Efficient wireless
federated learning with partial model aggregation,” arXiv preprint arX-
iv:2204.09746, 2022.

[32] A. Schrijver et al., Combinatorial optimization: polyhedra and efficien-
cy. Springer, 2003, vol. 24.

[33] M. B. Cohen, Y. T. Lee, and Z. Song, “Solving linear programs in the
current matrix multiplication time,” J. ACM, vol. 68, no. 1, jan 2021.

[34] Z. Chen, W. Yi, A. S. Alam, and A. Nallanathan, “Dynamic task
software caching-assisted computation offloading for multi-access edge
computing,” IEEE Trans. Commun., vol. 70, no. 10, pp. 6950–6965,
2022.

[35] S. Han, J. Pool, J. Tran, and W. Dally, “Learning both weights and con-
nections for efficient neural network,” in Advances in Neural Information
Processing Systems. Curran Associates, Inc., 2015.

[36] V.-D. Nguyen, S. K. Sharma, T. X. Vu, S. Chatzinotas, and B. Ottersten,
“Efficient federated learning algorithm for resource allocation in wireless
iot networks,” IEEE Internet Things J., vol. 8, no. 5, pp. 3394–3409,
2021.

[37] Y. Deng, M. M. Kamani, and M. Mahdavi, “Adaptive personalized
federated learning,” arXiv preprint arXiv:2003.13461, 2020.

