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Abstract

Existing device scheduling works in wireless federated learning (FL) mainly focused on selecting the

devices with maximum gradient norm or loss function and require all devices to perform local training

in each round. This may produce extra training costs and schedule devices with similar data statistics,

thus degrading learning performance. To mitigate these problems, we first theoretically characterize the

convergence behaviour of the considered FL system, finding that the learning performance is degraded by

the difference between the aggregated gradient of scheduled devices and the full participation gradient.

Inspired by this, we propose to find a subset of representative devices and the corresponding pre-device

stepsizes to approximate the full participation aggregated gradient. Considering the limited wireless

bandwidth, we formulate a problem to capture the trade-off between representativity and latency by

optimizing device scheduling and bandwidth allocation policies. Our analysis reveals optimal bandwidth

allocation is achieved when all scheduled devices have the same latency. Then, by proving the non-

monotone submodularity of the problem, we develop a double greedy algorithm to solve the device

scheduling policy. To avoid the local training of unscheduled devices, we utilize the historical gradient

information of devices to estimate the current gradient for device scheduling design. Compared to

existing scheduling algorithms, the proposed representativity-aware device scheduling algorithm im-

proves 6.7% and 4.02% accuracies on two typical datasets under heterogeneous local data distributions,

i.e., MNIST and CIFAR-10, respectively. In addition, the proposed latency- and representativity-aware

scheduling algorithm saves over 16% and 12% training time for MNIST and CIFAR-10 datasets than

the scheduling algorithms based on either latency and representativity individually.
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I. INTRODUCTION

With the explosive growth of data at wireless network edges, machine learning (ML) approach-

es have attracted significant attention to serve diverse new applications in sixth-generation (6G)

wireless networks, such as autonomous driving, intelligent industry, and metaverse [2]. The

conventional centralized ML requires transmitting massive raw user data to the edge server,

which is inapplicable to support those emerging 6G applications due to high latency and privacy

concerns [3]. In addition, it is unaffordable to support centralized ML approaches in 6G with

limited spectrum resources. In this context, wireless federated learning (FL) becomes a promising

solution since it enables 6G devices to learn a global shared model while preserving data locally

[4]. In wireless FL, a parameter server orchestrates multiple devices via wireless channels to

engage in the training process that repeatedly performs the alternative optimization process of

device-local training and server-model aggregation [5]. Instead of transmitting raw user data,

wireless FL only shares the local model parameters of users. This unique property reduces the

wireless communication load and simultaneously protects the users’ privacy.

A. Related Works

In wireless FL, the main challenge is that the limited communication resource and stringent

training latency only allow a small proportion of devices to upload their local models in each

round for aggregation. Due to the few participant devices, the learning performance of wireless

FL may be drastically degraded [6]. From the perspective of wireless communication systems,

existing works focused on different aspects to alleviate this problem, such as over-the-air model

aggregation [7]–[9], asynchronous communication [10]–[12], and device scheduling [13]. Over-

the-air aggregation leverages the superposition property of wireless waveforms to compute the

desired function of the distributed local gradients, so it efficiently mitigates the pressure of limited

bandwidth and reduces the model aggregation latency [7]. The device selection and beamforming

design in [8] is able to accelerate the convergence speed for over-the-air FL. Considering

devices’ communication and computation energy limitations, an online device scheduling policy

for over-the-air FL has been developed in [9] to maximize the training performance. While

demonstrably effective, the over-the-air aggregation has strict requirements on synchronization

and channel state information, which slows down the speed of its implementation [14]. Moreover,

the parameter server has to wait for the slowest devices in this synchronous communication

protocol, leading to significant waiting time due to edge heterogeneity. To relax the straggler
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effect in FL, asynchronous communication is adopted to allow the central server conducts global

aggregation immediately when it collects a few local models, even if a training round is still

in progress [10]. By adaptively aggregating a certain number of local models by their arrival

order in each round and adjusting their learning rates, the asynchronous FL proposed in [11]

effectively reduces the training completion time. The centralized fusion algorithm in [12] that

determines the fusion weight of local models in asynchronous aggregation is able to achieve

fast and smooth convergence for FL. However, asynchronous FL approaches suffer from the

problem of delayed gradients, resulting in unexpected turbulence of the training trajectory [15].

Besides over-the-air model aggregation and asynchronous communication, device scheduling is

able to handle the straggler effect and asynchronous issues by selecting a subset of devices to

participate in the per-round training process [13].

Existing device scheduling works in FL mainly focused on channel-condition-aware scheduling

[16], [17], parameter-importance-aware scheduling [18]–[20], as well as their joint scheduling

[21]–[24]. Specifically, the joint device scheduling and bandwidth allocation scheme in [16]

that maximizes the scheduled data samples is efficient in improving learning performance. A

probabilistic device scheduling policy has been developed in [17] to minimize communication

time. Although channel-condition-aware scheduling algorithms increase the number of partici-

pating devices in the learning process, they may degrade the learning performance due to the

significant variance introduced in the device selection procedure. In the parameter-importance-

aware scheduling schemes, the selected probability of each device is determined proportionally to

its importance measured by the norm of gradients [18], loss function values [19], or test accuracy

[20]. Allocating larger scheduling probabilities to devices with higher gradient norms has been

proposed in [18], which is capable of accelerating the convergence for FL. It has been revealed in

[19] that scheduling the devices with higher local loss achieves faster convergence. Maximizing

the scheduling probability of clients with higher test accuracy in [20] has proven effective in

stateful FL. However, it is ineffective in stateless FL and requires pre-known testing accuracies

of devices. Although the above parameter-importance-aware scheduling schemes improve the

learning performance, they need all devices to perform local training in each round. To accelerate

the learning convergence of FL in practical wireless networks, several device scheduling works

considered both channel conditions and parameter importance. The scheduling policy based

on both devices’ channel conditions and gradient norms in [21] provides a better learning

performance than scheduling policies based on a single metric. The resource allocation and
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device selection problem is investigated in [22] to capture the trade-offs among the convergence

speed of FL, wall clock time, and energy consumption of devices in each round. A probabilistic

user selection scheme is proposed in [23] to minimize the training time, which allocates high

probabilities to the devices whose local models significantly affect the global FL model. The

diversity of local datasets is adopted in [24] to characterize the device scheduling priorities and

minimize completion time through resource optimization to speed up the learning process.

B. Motivations and Contributions

The motivations for this work mainly come from: Firstly, traditional device scheduling methods

do not utilize computing resources efficiently. Although the approaches in [21]–[24] consider

both device importance and communication conditions for device scheduling policy design,

they require all devices to perform local training in each round and upload corresponding

indicators, e.g., the gradient norm. This may produce extra training costs. To avoid the extra

local training of unscheduled devices, this work utilizes devices’ past gradient information to

estimate the current one for guiding the device scheduling design. Secondly, the previous device-

importance-aware scheduling policies may select a subset of devices that drift from the global

data distribution. The scheduling policies that measure device importance based on gradient norm

[21], [22], inner product [23], or the diversity of local dataset [24] trend to schedule devices

with similar gradient information in each round. This may exacerbate the global model bias

toward the scheduled devices and further degrade the learning performance in heterogeneous data

distribution scenarios. Particularly, our convergence analysis of the considered FL in this work

reveals that device scheduling policy affects the convergence through the difference between the

aggregated gradient of scheduled devices and the full participation gradient. This work uses that

gradient difference to characterize the representativity of the scheduled device set. Inspired by the

success of accelerating centralized ML algorithms by selecting a weighted subset of training data

points to approximate the full gradient of the whole dataset [25]. This work attempts to select a

subset of devices to approximate the full devices’ aggregated gradient for accelerating the FL.

Finally, the previous works only consider heterogeneous channel conditions when minimizing

the latency of FL. In this work, we propose a novel latency- and representativity-aware device

scheduling algorithm to accelerate the learning process of FL in bandwidth-limited wireless

networks, in which the heterogeneous communication, computation, and representativity among

devices are all taken into account. The main contributions of this paper are summarized as

follows:
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• To enable effective FL in bandwidth-limited wireless networks, we theoretically charac-

terize the convergence bound of the considered FL system under the general non-convex

loss function setting, finding a new metric, i.e., the difference between the aggregated

gradient of scheduled devices and the full participation gradient, which negatively affect

the convergence. By minimizing this metric, the convergence speed of FL can be improved.

• To minimize the difference between the scheduled devices’ gradient and the full participation

gradient, we aim to find a subset of devices and the corresponding pre-device step sizes

to approximate the full participation aggregated gradient. To this end, we characterize

the representativity of a device set as the approximation error of its aggregated gradient

for the full participation gradient. The small approximation error contributes to strong

representative. In addition, we utilize the past gradient information of devices to determine

the scheduling policy in each round, avoiding the unscheduled devices to perform local

training.

• To balance the representativity and latency for the device scheduling policy, we formulate

a problem to minimize the weighted sum of gradient approximation error and latency

through jointly optimizing the device scheduling and bandwidth allocation policy, which

is intractable to solve. Our analysis reveals that the optimal bandwidth allocation policy

is optimal when all scheduled devices have the same latency. Furthermore, by proving the

submodularity of the problem, we develop a double-greedy algorithm to obtain a sub-optimal

device scheduling policy.

• Experiments show that the proposed scheduling algorithm achieves faster convergence speed

and higher model accuracy than the benchmarks. Specifically, compared to other benchmark

algorithms, the proposed device representativity-aware schedule algorithm is able to boost

6.7% and 4.02% accuracies on MNIST and CIFAR-10 datasets1, respectively. The proposed

latency- and representativity-aware scheduling algorithm saves over 16% and 12% training

time for MNIST and CIFAR-10 datasets than the scheduling algorithms based on either

latency and representativity individually.

C. Organization and Notations

The rest of this paper is organized as follows: Section II introduces the FL system and the

training latency model. The convergence analysis of the considered FL algorithm and the problem

1MNIST: http://yann.lecun.com/exdb/mnist/, CIFAR-10: https://www.cs.toronto.edu/ kriz/cifar.html
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TABLE I
NOTATION SUMMARY

Notation Definition

K; K; Set of devices; size of K Dk; Dk Local dataset of device k; size of Dk

D; D Overall dataset in the system; size of D η; τ Learning rate; local iteration number

St; αk,t Scheduling policy in round t, i.e., the set

of scheduled devices; scheduling indicator of

device k in round t

g̃k,t; g̃t local gradient of device k in round t; aggre-

gated gradient of devices in St

gt; Lb aggregated gradient of all devices in K; local

batch size

fk; pk CPU frequency of device k; transmit power

of device k
Q; q Number of elements of each local gradient;

quantized bits of each gradient element

B; θt Wireless transmission bandwidth; the propor-

tion of B allocated to devices in round t
TL
k,t Computation time for device k in round t TC

k,t Communication time for device k in round t

formulation are illustrated In Section II. In Section IV, we develop three device scheduling algo-

rithms for FL. Section V verifies the effectiveness of the proposed device scheduling algorithms

by simulation. The conclusion is drawn in Section VI. For convenience, we use “
Δ
=” to denote

“is defined to be equal to”, |·| denote the size operation of a set, ∇(·) denote gradient operator,

〈·, ·〉 denote inner product operator, and “‖·‖” denote the �2 norm throughout this paper. The

main notations used in this paper are summarized in Table I.

II. SYSTEM MODEL

We consider a typical wireless federated learning (FL) system, in which one edge server

undertakes the role of the parameter server to coordinate K devices for training a machine

learning model. The server and all devices communicate via bandwidth-limited wireless channels.

The devices are indexed by K = {1, 2, · · · , K}. Each device k (k ∈ K) has a local dataset Dk

with Dk = |Dk| data samples. Without loss of generality, we assume there is no overlapping

for datasets from different devices, i.e., Dk ∩ Dh = ∅, (∀k, h ∈ K). Thus, the entire dataset is

denoted by D = ∪{Dk}Kk=1 with the total number of samples D =
∑K

k=1 Dk.

Let ζ = (x, y) denote a data sample in D, where x ∈ R
d is the d-dimensional input feature

vector of the sample, and y ∈ R is the corresponding ground-truth label. For a machine learning

model w, we use f(w; ζ) to denote its sample-wise loss function on the data sample ζ , which

quantifies the error between the ground-truth label y and its predicted output of x. Thus, the

local loss function of device k that measures the model error on its local dataset Dk can be

defined as Fk(w)
Δ
=

1

Dk

∑
ζ∈Dk

f (w; ζ). (1)

Accordingly, the global loss function associated with all distributed local datasets is given by
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Fig. 1. An implementation of FL via FDMA, where the scheduled devices perform τ local iterations and upload gradients to
the edge server.

F (w)
Δ
=

∑K

k=1
pkFk(w), (2)

where pk is the weight of device k such that
∑K

k=1 pk = 1. Similar to many existing works, e.g.,

[17], [26], [27], we set pk =
1
K

.

A. Federated Learning Algorithm

The goal of FL is to train a model w by leveraging the devices’ local datasets. To preserve the

data privacy of devices, the devices collaboratively learn w by only uploading local gradients

to the edge server for periodical aggregation, instead of transmitting the raw training data. The

edge server orchestrates the training process, by repeating the following steps until the model

converge:

1) The edge server selects a subset of devices from K to participate the training in the current

communication round, denoted by St. Let αk,t denote the schedule indicator of device k in

round t, we have St = {k : αk,t = 1, ∀k ∈ K}.
2) The edge server broadcasts the latest global model to the scheduled devices for local training.

It is worth mentioning that only the scheduled devices perform local training and upload

their local gradients to the edge server for the global model update. Thus, in the FL process,

the edge server only broadcasts the latest global model to scheduled devices instead of all

devices. After the FL process, the edge server broadcasts the trained global model to all

devices for serving them.

3) After receiving the global model, each selected device computes the local gradient gk,t by

running τ steps stochastic gradient descent (SGD) on its local dataset, according to

g̃k,t =
τ−1∑
l=0

∇Fk(wk,t,l;Bk,t,l), (3)
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where
∇Fk(wk,t,l;Bk,t,l) =

1

Lb

∑
ζ∈Bk,t,l

∇f(wk,t,l; ζ) (4)

is the gradient in iteration l (0 ≤ l ≤ τ − 1), Bk,t,l is a local mini-batch data uniformly

sampled from Dk with Lb = |Bk,t,l| data samples.

4) After all selected devices accomplish local gradients computing, they upload their gradients

to the edge server for aggregation as follows:

g̃t =
1

|St|
∑
k∈St

g̃k,t. (5)

Then, the edge server updates the global model as wt+1 = wt − ηg̃t, where η denotes the

learning rate. For ease of comparison in the following discussion, we use gt =
1
K

∑
k∈K g̃k,t

to denote the aggregated gradient for all devices, namely the full-participation stochastic

gradient (FP-SG).

B. Latency Model

In the following, we analyze the one-round latency for the FL process.

1) Computation latency: Denote Ck as the number of float-point operations (FLOPs) required

to process one data sample at device k. Let fk denote the computational capability (float-point

operations per second) of device k. Thus, the local gradient calculation latency of device k can

be expressed as

T L
k,t =

τLbCk

fk
, ∀t. (6)

2) Communication latency: Let Q denote the number of elements in each local gradient. Each

element is quantized by q bits. In this work, we consider that the frequency division multiple

access (FDMA) technique is deployed in the system with total B Hz wireless bandwidth for

devices to upload their local gradients. Let pk denote the transmit power of device k. We assume

that the channel gain, including both small-scale fading and path loss, between device k and

the edge server, i.e., hk,t, remains unchanged within one round but varies independently and

identically over rounds. Let θk,t ∈ [0, 1] denote the fraction of the overall bandwidth allocated to

device k in round t, and θt = (θ1,t, θ2,t, · · · , θK,t). The uplink rate of device k can be characterized

by rk,t = θk,tB log(1 +
pkhk,t

σ2 ), where σ2 is the variance of Gaussian additive noise. Thus, the

local gradient uploading latency of device k is

TC
k,t =

Qq

rk,t
=

Qq

θk,tB log
(
1 +

pkhk,t

σ2

) . (7)
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According to the above models, the completion time of each participating device k(k ∈ K)
includes the local computation time T L

k,t and communication time TC
k,t, as shown in Fig. 1. The

one round latency determined by the slowest device is given by

Tt(St) = max
k∈St

{
T L
k,t + TC

k,t

}
. (8)

Note that the above discussion ignored the global model broadcasting and updating latency,

because the broadcasting process occupies the entire bandwidth and the edge server has large

transmit power, the broadcasting latency is negligible. Moreover, the edge server is usually

computational powerful, and the global model update latency can be ignored compared to the

communication and computation latencies.

III. CONVERGENCE ANALYSIS AND PROBLEM FORMULATION

This section starts with the convergence analysis of the considered FL system under the

general non-convex loss function setting, finding a metric, i.e., device representativity, to guide

the device scheduling policy design. Then, we formulate an optimization problem for device

scheduling which balance the latency and representative ability in each round.

A. Convergence Analysis

To develop a concrete metric to evaluate the representativity of each local gradient, we

first analyze the convergence behavior of the FL system. To this end, we make the following

assumptions to the local loss function Fk(·):

Assumption 1. (Lipschitz gradient continuity): Each local loss functions Fk(·)(k ∈ K) is conti-

nously differentiable, and its gradient ∇Fk(w) is L-Lipschitz continuous, that is

‖∇Fk(w)−∇Fk(v)‖ ≤ L ‖w − v‖ . (9)

Assumption 2. (Unbiased stochastic gradient): For the mini-batch data samples Bk,t that uniformly

sampled from Dk on device k (k ∈ K), the resulting stochastic gradient is unbiased and variance

bounded, that is

E [∇Fk(wk,t;Bk,t)] = ∇Fk(wk,t), (10)

and

E ‖∇Fk(wk,t;Bk,t)−∇Fk(wk,t)‖2 ≤ G2. (11)
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Assumption 3. (Bounded stochastic gradient): The expected squared norm of stochastic gradients

is uniformly bounded, i.e., E ‖∇Fk(wk,t;Bk,t)‖2 ≤ χ2.

Assumption 1, 2, and 3 are widely used in the convergence analysis of FL systems and satisfied

by loss functions for widely used learning models, e.g., support vector machines (SVM), Logistic

regression, and most neural networks [28]. In particular, according to [29], a deep neural network

defined by a composition of functions is a Lipschitz neural network if the functions in all layers

are Lipschitz. It has been proved in [30] and [31] that the convolution layer, linear layer, some

nonlinear activation functions (e.g., Sigmoid, tanh, Leaky ReLU, and SoftPlus), and the widely

used cross-entropy function have Lipschitz smooth gradients. That is, the loss functions of most

neural networks that are consisted of Lipschitz layers and loss functions are Lipschitz continuous.

Based on this, we provide the one round convergence bound of the considered FL system in

Theorem 1, proved in Appendix A.

Theorem 1. Let Assumption 1, 2, and 3 hold, and the learning rate satisfy η ≤ 1
L

, we have

E [F (wt+1)−F (wt)] ≤ −
L

2
η2E‖∇F (wt)‖2 + Lη2(τ − 1)2χ2

+ Lη2(2τ 2 − 2τ + 1)G2 + Lη2‖−gt + g̃t‖2. (12)

According to Theorem 1, the expected gap of the loss function values between two global round

is bounded by four terms: 1) the squared norm of the ground-truth global gradient ‖∇F (wt)‖2;

2) the expected squared norm of stochastic gradients χ2, 3) the variance of stochastic gradient

G2, 4) the difference between the aggregated gradient of the scheduled devices and the FP-

SG that aggregates all devices’ stochastic gradients, i.e., ‖−gt + g̃t‖2. The first three terms are

independent with the device scheduling decision. The last term is an explicit form related to

the device scheduling policy. Thus, the learning performance can be improved by minimizing

the ‖−gt + g̃t‖2. Based on Theorem 1, we further characterize the convergence bound of the

considered FL system after T rounds training in Corollary 1, proved in Appendix B.

Corollary 1. Let Assumption 1, 2, and 3 hold, and the learning rate satisfy η ≤ 1
L

, the T -round

convergence is upper-bounded by

E[F (wT )− F (w∗)] ≤ (1−L2η2)T−1E[F (w0)− F (w∗)]

+
1−L2η2−(1−L2η2)T

L

(
(2τ 2−2τ + 1)G2 + (τ−1)2χ2

)
+

∑T−1

t=1
(1− L2η2)tLη2‖−gt + g̃t‖2. (13)
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Corollary 1 presents the expected gap between the global loss after T rounds and the optimal

loss training, which is bounded by the expected gap between the initial global loss and the optimal

one, the variance of SGD, the bounded norm of stochastic gradient, and the cumulative difference

of gradient between full participation and partial participation. By minimizing the difference in

gradient between full and partial participation in each round, the learning performance can be

improved.

B. Device Representativity Measurement

The previous works, e.g., [21], [32], prone to select the devices with maximum gradient

norm to minimize ‖−gt + g̃t‖2. To further minimize the ‖−gt + g̃t‖2 and accelerate the learning

convergence, we aim to find a subset of devices (i.e., St ⊆ K) and the corresponding pre-device

stepsizes γk (∀k ∈ St) in each global round t, such that the aggregated gradient approximate

the FP-SG (i.e., gt) that aggregated by all the K devices. Toward this end, we define a mapping

function ϕ : K → St, which maps each device k ∈ K to a scheduled device ϕ(k) ∈ St such that

the gradient ∇Fk(w) from device k is approximated by the gradient from ϕ(k). For each device

h ∈ St, let Ch = {k : k ∈ K, ϕ (k) = h} denote the set of devices approximated by device h,

and γh = |Ch|. Thus, we have∑K

k=1
g̃k,t =

∑K

k=1

(
g̃k,t − g̃ϕ(k),t + g̃ϕ(k),t

)
=

∑K

k=1

(
g̃k,t − g̃ϕ(k),t

)
+

∑
k∈St

γkg̃k,t. (14)

By rearranging (14) and then taking the norm of both sides, the approximation error of the

gradient aggregated from St (i.e.,
∑

k∈St
γkg̃k,t) on the FP-SG satisfies∥∥∥∑K

k=1
g̃k,t −

∑
k∈St

γkg̃k,t

∥∥∥ =
∥∥∥∑K

k=1

(
g̃k,t − g̃ϕ(k),t

)∥∥∥ ≤∑K

k=1

∥∥g̃k,t − g̃ϕ(k),t

∥∥ , (15)

where the inequality follows from the triangle inequality. The upper-bound in (15) is minimized

when ϕ maps each k ∈ K to an device in St with minimum Euclidean distance between their

gradient. That is, ϕ(k) = argminh∈St
‖g̃k,t − g̃h,t‖. Hence, the approximation error in (15)

satisfies ∥∥∥∑K

k=1
g̃k,t −

∑
k∈St

γkg̃k,t

∥∥∥ ≤∑K

k=1
min
h∈St

‖g̃k,t − g̃h,t‖ . (16)

Thus, the approximation error can be minimized by minimizing the right-hand side of (16).

Substituting (16) into (12), the one-round convergence bound can be expressed as:

E [F (wt+1)−F (wt)] ≤ −
L

2
η2E‖∇F (wt)‖2 + Lη2(τ − 1)2χ2
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+ Lη2(2τ 2 − 2τ + 1)G2 + Lη2
(∑K

k=1
min
h∈St

‖g̃k,t − g̃h,t‖
)2

. (17)

The convergence bound in (17) shows how the device scheduling policy affects the convergence

bound. According to (17), the learning performance can be improved by minimizing the upper

bound of the approximation error of the gradient aggregated from St on the FP-SG, i.e.,∑K
k=1 min

h∈St

‖g̃k,t − g̃h,t‖. We define H(St) =
∑K

k=1 min
h∈St

‖g̃k,t − g̃h,t‖ to quantify the approximate

error of a device scheduling decision St ⊆ K.

C. Problem Formulation

To accelerate the learning convergence, one should schedule the devices with the lowest

latency (implemented by good channel conditions and powerful computing capability) as well

as the smallest FP-SG approximation error. However, it rarely happens that a device always has

the lowest latency and smallest FP-SG approximation error simultaneously in a practical system.

Similar to many existing works, e.g., [22], [33], we aim to capture the trade-offs between device

representativity and latency for improving the learning performance of FL. Towards this end, we

define two weight factors ρ1 ≥ 0 and ρ2 ≥ 0 to capture the Pareto-optimal trade-offs among the

device representativity and latency, the values of which depend on specific scenarios. A large

ρ1 and small ρ2 emphasis more on device representativity, while a small ρ1 and large ρ2 pay

more attention to devices’ latency. In addition, similar to many existing works, e.g., [21]–[24],

we optimize the FL performance in each round since the available bandwidth and devices are

independent among rounds, instead of optimizing the FL performance over all rounds under long-

term resource constraints as the existing paper [5], [9], [16]. Thus, we formulate the problem as

follows:

P : min
St,θt

ρ1H(St) + ρ2T (St) (18)

s. t. αk,t ∈ {0, 1} , (18a)∑
k∈St

θk,t ≤ 1, (18b)

0 ≤ θk,t ≤ 1. (18c)

In problem P , (18a) indicates which devices are scheduled in each round. (18b) assures that

the wireless bandwidth resource allocated to all devices would not exceed the total available

bandwidth resource. (18c) imposes restrictions on the wireless bandwidth resource allocated

to each device. Notably, similar to [22], we can adapt to the problem with hard constraints
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13

on latency via setting “virtual devices”. According to Lemma 1 in Section IV-A, the optimal

bandwidth allocation policy is achieved when all scheduled devices have the same latency. Thus,

by setting a virtual device whose latency is the delay constraint into the scheduled device set, the

latency of devices can satisfy the delay constraint by adjusting the bandwidth allocation policy.

There are two major challenges in solving problem P:

1) Unknown gradient information of devices: Problem P requires devices’ gradient infor-

mation that can only be acquired after local gradient computing and uploading. However, the

device scheduling decision should be made before gradient computation.

2) Non-deterministic polynomial-time hard (NP-Hard): Problem P involves a combinato-

rial optimization over the multi-dimensional discrete and continuous space, which is challenging

to solve. In the following analysis, we show that two special cases of problem P , i.e., latency-

aware device scheduling problem and representativity-aware device scheduling problem are both

submodular maximization problem, which has been proven to be NP-Hard. Thus, Problem P is

NP-Hard in fact.

IV. DEVICE SCHEDULING POLICIES FOR FEDERATE LEARNING

In this section, we develop an efficient algorithm to solve the problem P within polynomial

time complexity. To facilitate the algorithm design, we first focus on analyzing two special

cases of problem P: 1) ρ1 = 0 and ρ2 = 1 for the latency aware device scheduling problem,

2) ρ1 = 1 and ρ2 = 0 for the device representativity aware scheduling problem. Then, based on

the obtained properties of these two special-case problems, we prove that problem P is a non-

monotone submodular minimization problem. Finally, we develop an efficient double greedy

algorithm to solve problem P and obtain the joint latency and device representativity aware

device scheduling policy.

A. Optimal Wireless Bandwidth Allocation

In this subsection, we solve the optimal bandwidth allocation policy for any given device

scheduling policy St. Given the scheduled device set St, the optimal bandwidth allocation

problem can be decomposed from P as follows:

P1 : min
θt

max
k∈St

{
T L
k,t + TC

k,t

}
(19)

s. t. (18b), (18c).
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Problem P1 is a typical convex optimization problem [34], we obtain its optimal solution by

using Lemma 1, proved in Appendix C.

Lemma 1. The optimal wireless bandwidth allocation solution for problem P1 satisfies the

following condition:
θk,t=

Qq(
T ∗t (St)− τLbCk

fk

)
B log

(
1+

pkhk,t

σ2

) , ∀k ∈ St, (20)

where T ∗t (St) is the optimal latency for device scheduling decision St in round t, its value is

determined by the equation
∑

k∈St
θk,t = 1.

In Lemma 1, there is still an unknown variable T ∗t (St) in the optimal expression of bandwidth

allocation policy. Since θk,t(Tt(St)) is a monotonically decreasing function with respect to Tt(St),

the bisection method can be deployed to obtain the optimal bandwidth allocation policy. To this

end, we derive the lower bound and upper bound of T (St) in the following. To derive the lower

bound of Tt(St), we have the minimal fraction of bandwidth allocated to devices in St should

less than 1
|St| , i.e., mink∈St θk,t(Tt(St)) ≤ 1

|St| . Hence,

min
k∈St

Qq

B log
(
1+

pkhk,t

σ2

)

max
(
Tt(St)− τLbCk

fk

) ≤ 1

|St|
. (21)

Thus, the lower bound of Tt(St) is

Tt,lb(St) = min
k∈St

|St|Qq

B log
(
1 +

pkhk,t

σ2

) +min
k∈St

τLbCk

fk
. (22)

Then, to derive the upper bound of Tt(St), we use maxk∈St θk,t(Tt(St)) ≥ 1
|St| . The derivation

of the upper bound is similar to that of lower bound, and thus omitted for brevity. The upper

bound of Tt(St) is

Tt,ub(St) = max
k∈St

|St|Qq

B log
(
1 +

pkhk,t

σ2

) +max
k∈St

τLbCk

fk
. (23)

According to the lower and upper bounds above, the bisection method is deployed to solve the

optimal T ∗t (St). For clarity, we summarize the detailed steps for solving the optimal bandwidth

allocation policy in Algorithm 1. The bisection process will halve the searching region in every

iteration and terminate when the given precision requirement (i.e., ε) is satisfied. Thus, the time

complexity of this bisection method is O
(
log2

Tt,ub(St)−Tt,lb(St)

ε

)
. Based on above analysis, we
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Algorithm 1 Optimal Wireless Bandwidth Allocation
1: Initialize St, the precision requirement ε > 0.

2: Initialize the lower bound (Tt,lb(St)) and upper bound (Tt,ub(St)) of the latency based on (22) and (23),

respectively.

3: repeat
4: Set T = (Tt,lb(St) + Tt,ub(St))/2.

5: For each device k ∈ St, compute the required bandwidth allocation ratio θk,t(T ) based on (20).

6: Compute the summation of required bandwidth allocation ratio
∑

k∈St
θk,t(T ).

7: if
∑

k∈St
θk,t(T ) > 1 then

8: Halve the searching region by setting Tt,lb(St) = T and Tt,ub(St) = Tt,ub(St).
9: else if 0 <

∑
k∈St

θk,t(T ) < 1− ε then
10: Halve the searching region by setting Tt,lb(St) = Tt,lb(St) and Tt,ub(St) = T .

11: else
12: Break the circulation.

13: end if
14: until |Tt,ub(St)− Tt,lb(St)|< ε
15: return The optimal latency T ∗

t (St) = T and the optimal bandwith allocation policy θt

have the following remark.

Remark 1. From (20), the proportion of the wireless bandwidth allocated to device k (k ∈ K),

i.e., θk,t, is monotonically decreasing with its CPU frequency fk and its channel gain hk,t. That

is, more bandwidth should be allocated to the devices with low computation capability and weak

channel conditions.

B. Latency-aware Device Scheduling Policy

In this subsection, we investigate a special case of problem P , i.e., the latency-aware device

scheduling problem. By setting ρ1 = 0 and ρ2 = 1 in problem P , we formulate the latency-aware

device scheduling problem as follows:

P2 : min
St,θt

T (St) (24)

s. t. |St| = N, (24a)

(18a), (18b), (18c).

Note that, we add a constraint (24a) into P2 since the objective function is monotone with respect

to device set size (as shown in the following Lemma 2). Without constraint (24a), the solution

of problem P2 is trivial simply taking the empty device scheduling set (i.e., St = ∅) as the

solution. However, by adding constraint (24a), the device scheduling problem P2 is non-trivial.

Problem P2 involving wireless bandwidth allocation and device scheduling is a typical mixed-

integer non-linear programming that is generally difficult to solve in polynomial time. Based on

the above analysis, the optimal bandwidth allocation policy for any device scheduling set St
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can be obtained by using Algorithm 1, the corresponding optimal latency is denoted as T ∗t (St).

Substituting T ∗t (St) into problem P2, we transform P2 into the following equivalent problem:

P̃2 : min
St

T ∗t (St) (25)

s. t. (18c), (24a).

For problem P̃2, an intuitive method to obtain the optimal device scheduling policy is to

compute the optimal latency for all the possible device scheduling policies and then select the

one with minimal latency. However, there are total CN
K possible device scheduling policies. In

the practical systems, the overall number of devices (i.e., K) is large while the participating

device number (i.e., N ) in each round is small, inducing a large number of possible scheduling

device set. Thus, computing the latency for all possible device scheduling policies is impractical

due to the high time complexity. In the following, we prove that problem P̃2 is a submodular set

cover problem. Based on this, we find a near-optimal solution for problem P̃2 by using greedy

algorithm with polynomial time complexity. To this end, we first introduce the definition of

submodular function as follows:

Definition 1. (Submodular function) [35]: A function φ : 2K → R is submodular if for every S1 ⊆
S2 ⊆ K and h ∈ K\S2, it holds Δ(h |S1 ) ≥ Δ(h |S2 ), where Δ(h |S1 ) = φ(S1 ∪{h})−φ(S1)

is the discrete derivative of φ at S1 with respect to h, also named as marginal gain.

According to Definition 1, we have the following lemma for the optimal latency function

T ∗t (St), proved in Appendix D.

Lemma 2. The optimal latency function T ∗t (St) is monotonically increasing with respect to the

device set St, i.e., for device set S1 ⊆ S2, we have T ∗t (S1) < T ∗t (S2). Moreover, the negative

of T ∗t (St), i.e., −T ∗t (St), is a monotonically decreasing submodular function with respect to the

device set St. That is, for device set S1 ⊆ S2 ⊆ K and h ∈ K\S2, we have

T ∗t ({h} ∪ S1)− T ∗t (S1) ≤ T ∗t ({h} ∪ S2)− T ∗t (S2). (26)

According to Lemma 2, problem P̃2 is a cardinality constraint submodular maximization

problem, which is general NP-Hard. Below we find a near-optimal solution of problem P̃2 by

using greedy algorithm [36], which starts from St = ∅, and adds one client k ∈ K\St with

the greatest marginal gain to St in every step, i.e. k = argmink∈K\St
(T ∗t (St ∪ {k})− T ∗t (St)).

For clarity, we summarize the detail steps for latency-aware device scheduling algorithm in
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Algorithm 2 Greedy Algorithm for Latency-aware Device Scheduling

1: Initialize St ← ∅ and T ∗
t (St) = 0, the number of selected devices N .

2: while |St|< N do
3: for k ∈ K\St do
4: Compute the optimal latency for device set St ∪ {k} as T ∗

t (St ∪ {k}) by using Algorithm 1.

5: end for
6: k∗ = argmink∈K\St

(T ∗
t (St ∪ {k})− T ∗

t (St)).
7: St ← St ∪ {k∗}.
8: end while
9: return The device scheduling set St.

Algorithm 2. Note that Algorithm 2 performs optimal bandwidth allocation (i.e., Algorithm

1) at most KN times for select N devices. Thus, the time complexity of Algorithm 2 is

O(KN log2
Tt,ub(St)−Tt,lb(St)

ε
). Based on the performance analysis in [36], the greedy device

scheduling algorithm is able to achieve a worst-case approximation factor of 1 − 1
e

for the

optimal solution, where e is the Euler’s number.

C. Device Representativity-aware Scheduling Policy

In this subsection, we investigate another special case of problem P , i.e., the device representativity-

aware scheduling problem which aims to find a subset of devices and the corresponding pre-

device stepsizes to approximate the FP-SG. By setting ρ1 = 1 and ρ2 = 0 in problem P , the

device representativity aware scheduling problem can be formulated as follows:

P3 : min
St

H(St) (27)

s. t. |St| = N. (27a)

Similar to the formulation of problem P2, we also add a scheduled device number constraint

in problem P3 since its objective function is monotone with respect to device set size. Without

constraint (27a), problem P3 is trivial simply taking all devices (i.e., St = K) to the solution.

However, problem P3 is still difficult to solve since the edge server requires the gradient

information of all devices. The gradient information can only be obtained after local gradient

computing and uploading by devices. If the edge server collected all the gradient information

for devices, it can directly aggregate all local gradients to minimize the convergence bound in

(12), and the device scheduling is meaningless. To tackle this challenge, there are two heuristics

in the following to estimate the gradient information at the start of each global round.
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1) Estimating by mini-batch gradient (E-MBG): Compute the gradient of devices with a

smaller mini-batch data (the batch size is less than Lb), and upload all local gradients to the

edge server. This method can only reduce part of the computation cost compared to the method

of uploading complete gradient information computed by Lb data samples at each device.

2) Estimate by past gradient information (E-PG): The edge server straightforwardly uses the

most recently received gradients from devices to approximate their current gradients for solving

the problem P3 for device scheduling.

In addition to the above two heuristics, there are some neural-network-based methods, e.g.,

[23], [37], to predict devices’ local gradients, which require collecting devices’ gradient infor-

mation to train extra machine learning models. This may produce extra training time and energy

consumption for the FL system. However, the two heuristics are convenient to implement. In

particular, the E-PG method simply uses the past gradients of devices to approximate the current

one and does not require extra computation and communication costs compared to the E-MBG

and neural network-based methods. In addition, the experimental results in Section V verify that

the use of past gradients can effectively approximate devices’ current gradients.

To evaluate the effectiveness of these two methods, we show in Fig. 2 in Section V the

difference between the recently received gradients at the edge server and the current one of an

arbitrary device, under the considered datasets. It is observed that E-MBG (Lb ∈ {4, 8, 16})
performs not well due to the high variance of the stochastic gradients, while E-PG has a more

accurate estimation of the current one. Note that, similar to many existing works in [21]–[24],

the E-MBG method requires all devices to compute their gradient with mini-bath data samples

and upload their gradient to the edge server. This produces extra computing and transmission

costs since the estimated gradients of devices are not used for the global model aggregation. In

contrast, the E-PG method only requires the edge server to save the past gradients information

for devices and does not require extra computation and transmission. Thus, E-PG is computation

and transmission-free compared to E-MBG.

In fact, the past gradient information has been successfully used in FL to estimate the current

gradient of devices. For example, replacing the lost gradient (induced by transmission error) in

decentralized SGD with the past gradients is able to achieve the same asymptotic convergence

rate as the decentralized SGD with no transmission error [38]. Using the most recent �2-norm

of the local gradient to estimate the current one at each device to decide the transmit power

has proved to be effective in the over-the-air FL system [9]. Motivated by this, we apply the
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most recent gradient information of devices uploaded to the edge server to compute the device

scheduling policy in the problem P3.

For problem P3, we have the following lemma, proved in appendix E.

Lemma 3. The objective function of problem P3, i.e., H(St) is monotonically decreasing with

respect to the device set St, i.e., for device set S1 ⊆ S2, we have H(S1) ≥ H(S2). The negative

of H(St), i.e., −H(St), is a monotonically increasing submodular function with respect to the

device set St, i.e., for device set S1 ⊆ S2 ⊆ K, and h ∈ K\S2, we have

H(S1 ∪ {h})−H(S1) ≤ H(S2 ∪ {h})−H(S2) (28)

According to Lemma 3, problem P3 is also a cardinality constraint submodular maximiza-

tion problem. Thus, the greedy algorithm [36] is deployed to obtain a suboptimal solution in

polynomial time complexity. Similarly, the greedy algorithm starts from St ← ∅, and adds one

device k with the maximum marginal gain, i.e., k = argminh∈K\St
(H(St ∪ {h})−H(St)) in

every iteration, until |St|= N . The detailed steps for finding the representativity-aware device

scheduling policy are similar to Algorithm 2, and thus omitted for brevity.

D. Latency and Representativity-aware Scheduling Policy

In the above subsections, we develop the latency-aware and representativity-aware device

scheduling policies. However, devices usually have different computing capabilities and channel

conditions in the practical system, as well as different representativity in the different global

rounds. Thus, the device scheduling policy should simultaneously consider the devices’ latency

and gradient representativity for accelerating the learning convergence. In this subsection, by

utilizing the properties of latency and device representativity obtained in the above discussions,

we develop an efficient algorithm to solve problem P , which balances devices’ latency and

gradient representativity.

According to Lemma 1, the optimal latency for any device scheduling set St ⊆ K can be

obtained by using Algorithm 1, denoted as T ∗t (St). Substituting T ∗t (St) into problem P , we

transform P into the following equivalent problem:

P̃ : min
St

R(St) = ρ1H(St) + ρ2T ∗t (St) (29)

s. t. (18a).

For problem P̃ , we have the following remark:
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Algorithm 3 Double Greedy Algorithm for Latency and Representativity-aware Device Schedul-
ing

1: Initialize S1 ← ∅ and S2 ← K
2: for k ∈ K do
3: Let ak ← (maxR(S1)−R(S1 ∪ {k}), 0)
4: Let bk ← (maxR(S2)−R(S2\{k}), 0)
5: If ak = bk = 0, let ak

ak+bk
= 1

6: With probability ak

ak+bk
do S1 ← S1 ∪ {k} and S2 ← S2

7: Otherwise S1 ← S1 and S2 ← S2\{k}
8: end for
9: Let St = S1 (or St = S2).

10: return The device scheduling set St.

Remark 2. According to Lemma 2 and Lemma 3, −T ∗t (St) is a monotonically decreasing

submodular function with respect to the device set St, while −H(St) is a monotonically in-

creasing submodular function. Consequently, the negative of the objective function of problem

P̃ , i.e., −ρ1T ∗t (St)− ρ2H(St) is a non-monotone submodular function. Thus, problem P̃ is an

unconstrained non-monotone submodular maximization problem, which is NP-Hard in general.

Base on Remark 2, we use the double greedy algorithm [39] to find a suboptimal solution

for problem P̃ . With regards to the implementation of the proposed algorithm, the edge server

requires to collect devices channel information for computing their optimal bandwidth allocation

policies and latency. After that, the edge server starts by initializing two device sets, i.e., S1 = ∅
and S2 = K, and then serially passes through the devices in K. When the algorithm passes device

k (k ∈ K), it determines online whether to add k into S1 or remove k from S2. This decision is

based on a probability that trades off the gains of adding device k to S1 and removing k from S2.

For clarity, we summarize the detailed steps of the double greedy algorithm for solving problem

P̃ in Algorithm 3, which requires solving 2K times bandwidth allocation problem for finding the

device scheduling set. Thus, the time complexity of Algorithm 3 is O(2K log2
Tt,ub(St)−Tt,lb(St)

ε
).

In addition, for any device ordering, many existing works, e.g., [39], [40], have proved that the

double greedy algorithm can achieve a tight 1/2 approximation of the optimal solution. Note that,

the achieved approximation ratio of the double greedy algorithm is lower than the approximation

ratio of Algorithm 2 (i.e., 1− 1
e
) for the optimal solution of the two special-case problems, i.e.,

latency-aware device scheduling problem and representativity-aware scheduling problem.

V. NUMERICAL RESULTS

In this section, we evaluate the proposed device scheduling algorithms for image classification

tasks. All codes are implemented in python 3.8 and Pytorch, running on a Linux server.

Page 28 of 40IEEE Transactions on Wireless Communications

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



21

A. Experiment Setting

Wireless setting: Unless specified, the default system settings are given as follows. We consider

that K = 100 devices are randomly distributed within a 500m × 500m cell, and the edge server is

located at the centre of this cell. The transmit power of devices is set to pk = 10 dBm (∀k ∈ K).

The system bandwidth and the variance of the complex white Gaussian channel noise are set

to B = 10 MHz and σ2 = 10−12 W. The quantitative bit number for each gradient element is

q = 16 bits. The channel gain is modelled as hk,t = h0ρk(t)d
−2
k [41], where h0 = −30 dBm

is the path loss constant; dk is the distance between device k and the PS; ρk(t) ∼ Exp(1) is

exponentially distributed with unit mean, which represents the small-scale fading channel power

gain from the device k to the PS in round t. The CPU frequency for all devices are random

selected from {0.8, 1.0, 1.2, 1.4, 1.6} GHz.

Datasets and Models: For the exposition, we evaluate the proposed device scheduling policies

under two classification learning tasks, i.e., the handwritten digits classification task on the

MNIST dataset and the image classification task on the CIFAR-10 dataset. For the MNIST

dataset, we train a multi-layer perceptron (MLP) model with a 784-units input layer, three hidden

layers with 512, 256, and 64 units, and a 10-unit softmax output layer. The input layer and three

hidden layers are all activated by the ReLU function. The MLP possesses 550346 parameters,

which equals the number of FLOPs required for one data sample for gradient calculation. For the

CIFAR-10 dataset, we train a convolutional neural network (CNN) with the following structure:

two 5× 5 convolution layers each with 64 channels and followed by a 2× 2 max-pooling layer;

three fully connected layers with 1600, 120, and 64 units, respectively; and a 10-unit softmax

output layer. Each convolution or fully connected layer is activated by the ReLU function. The

CNN possesses 307842 parameters, and the number of FLOPs required for dealing one data

sample is 28206904. For both MLP and CNN, the learning rate η is set to 0.05, a momentum

of 0.9 is adopted, the number of local iterations is set to τ = 8, the batch size is set to 64, and

cross entropy is adopted as the loss function. Besides, we first classify the training data samples

according to their labels, then randomly split each class of data samples into mK/10 shards,

finally randomly distribute m shards of data samples to each device.

B. Gradient Continuity

In Fig. 2, we evaluate the E-MBG and E-PG methods proposed in Section IV-C that estimate

the gradient information of arbitrary device k (k ∈ K). Fig. 2 provides the squared norm of the

Page 29 of 40 IEEE Transactions on Wireless Communications

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



22

0 50 100 150 200
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

(a)

0 50 100 150 200 250 300 350 400
0

1

2

3

4

5

6

7

8

9

(b)

Fig. 2. The �2 norm of the difference between the estimated gradient and the true gradient of device k: (a) on MNIST dataset;
(b) on CIFAR-10 dataset.

difference between the estimated gradient (ĝk,t) by E-MBG/E-PG and the true gradient of device

k on MNIST and CIFAR-10 datasets, respectively. The batch size used to compute the gradient

for device k is Lb = 64. In each round, device k further computes and records its local gradient

with smaller batch sizes Lb = 4, 8, and 16, which is used for E-MBG to estimate its local gradient

that is computed by Lb = 64. The E-PG method adapts the most recently received gradient at

the edge server from device k to estimate the current gradient information of device k. For both

MNIST and CIFAR-10 datasets, it is observed that E-PG outperforms the E-MBG method. In

addition, the gradient estimation errors of E-MBG with different batch sizes are highly varying,

and a smaller batch size produces a larger estimation error. Compared to E-MBG, the E-PG is

able to achieve more accurate estimation, as well as no extra computation and communication

cost. Thus, the E-PG method is embedded in the device scheduling algorithms in this work.

C. Performance of Representativity-aware Device Scheduling

To verify the effectiveness of the device representativity-aware scheduling policy proposed in

Section IV-C, we compare its performance with the following three benchmark device scheduling

schemes. Note that, we do not consider the computation latency and communication latency in

this subsection.

1) Random scheduling (RS): The edge server uniformly selects a subset of devices from all

devices to participate in the training in each round.

2) Power-of-Choice scheduling (PC) [19]: The edge server schedules a subset of devices with

larger local losses each round. Note that this scheme requires devices to compute the local loss
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functions and upload them to the edge server in each round, thus may result in extra computation

and transmission costs.

3) Maximum gradient norm scheduling (Max-GNS): The edge server schedules a subset of

devices with the maximum gradient norm in each round. The �2-norm of the gradients have been

widely used in existing works, e.g., [21], [32], to represent the significance of local gradients.

However, the existing works require all devices to perform local training and then upload their

gradient norm to the edge server for device scheduling. This may result in the unnecessary

energy consumption of the unscheduled devices. Based on the above analysis, we use the past

gradient norms of devices in this baseline to decide which devices are scheduled.

Based on the MNIST dataset, Fig. 3 compares the learning performance of the proposed

algorithm with the above-listed three scheduling schemes under different data heterogeneity and

scheduling ratios. In Fig. 3(a), we distribute at most two classes of data samples to each device.

The results show that our proposed algorithm outperforms the three benchmarks, converges faster,

and obtains higher accuracy. Specifically, when 10 devices participate in the learning process in

each round, the proposed algorithm achieves a 6.7% accuracy improvement compared with the

random scheduling policy. Although the proposed algorithm obtains a similar accuracy to the

random scheduling policy when 20 devices participate in each round, it has a faster convergence

speed.

Fig. 3(b) distributes at most three classes of data samples to each device, in which the data

heterogeneity between devices is lower than Fig. 3(a). It is observed that the learning accuracies

of all the scheduling schemes improved compared with Fig. 3(a). This is because high data

heterogeneity can weak the generalisation ability of the learned global model, further resulting

in poor learning performance. In addition, it is also observed that the proposed algorithm obtains

high accuracies than the three benchmarks. Compared with the random scheduling policy, the

proposed algorithm obtains a 4.73% accuracy improvement when |St| = 10 and a 4.4% accuracy

improvement when |St| = 20.

A similar evaluation is conducted on the CIFAR-10 dataset, as shown in Fig. 4. In Fig. 4(a),

we set the data heterogeneity related control parameter as m = 2. Compared with the random

scheduling policy, the proposed algorithm boosts 4.02% accuracy when |St| = 10 and improves

1.8% accuracy when |St| = 20. In Fig. 4(b), we set m = 3. A distinct accuracy improvement

for all scheduling schemes is observed compared with m = 2 on this more complicated dataset.

In addition, the proposed algorithm performs well compared to the three benchmarks, obtaining
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Fig. 3. Learning performance of different device scheduling algorithms on MNIST dataset: (a) m = 2; (b) m = 3.
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Fig. 4. Learning performance of different device scheduling algorithms on CIFAR-10 dataset: (a) m = 2; (b) m = 3.

2.06% and 1.44% accuracy improvement when |St| = 10 and |St| = 20, respectively.

D. Performance of Latency and Representativity-aware Device Scheduling

In this subsection, we evaluate the performance of the proposed device scheduling policies, i.e.,

1) latency-aware device scheduling (in Section IV-B), 2) representativity-aware device scheduling

(in Section IV-C), 3) latency- and representativity-aware device scheduling (L&R-aware) (in

Section IV-D). Note that for both latency-aware scheduling and representativity-aware scheduling

policies, we test their performance on |St| = 0.1K, 0.2K, · · · , 1.0K and then plot the best two

results. For the latency- and representativity-aware device scheduling scheme, the number of

participants is automatically decided by the algorithm to adapt the parameters ρ1 and ρ2. When

ρ1 is large and ρ2 is relatively small, |St| will increase to reduce the gradient approximation
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Fig. 5. Learning performance of different device scheduling algorithms on MNIST dataset: (a) m = 2; (b) m = 3.

error (H(St)) as much as possible. In contrast, when ρ1 is small while ρ2 is large, |St| would

decrease to reduce the latency (T (St)).

Fig. 5 shows the performance of the proposed three device scheduling algorithms on the

MNIST dataset. For both m = 2 and m = 3, we serially select ρ1 and ρ2 from {0.1, 0.2,

0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0} and plot the best and worst results. It is observed that the

proposed latency- and representativity-aware device algorithm always performs better than the

other two device scheduling algorithms. In addition, the proposed latency- and representativity-

aware device algorithm achieves better performance by setting ρ1 < ρ2.

Fig. 5 shows the performance of the proposed three device scheduling algorithms on the

MNIST dataset. For both m = 2 and m = 3, we set ρ1 = 0.3 and ρ2 = 1. In Fig. 5(a),

we evaluate the test accuracy with m = 2 which indicates that each device possesses at most

two classes of the data samples. Specifically, given the target accuracy is 80%, the latency-

and representativity-aware device scheduling algorithm only spends 53 seconds for achieving

the target, while the representativity-aware scheduling algorithm takes 81 seconds. That is,

compared with the representativity-aware scheduling algorithm, the latency- and representativity-

aware algorithm is able to save 34.5% training time to obtain 80% test accuracy. In addition,

when the target accuracy is 85%, the latency- and representativity-aware algorithm is able to

save at least 43% training time in comparison with other device scheduling algorithms.

Fig. 5(b) evaluates the performance of the proposed device scheduling algorithms in a less

heterogeneous scenario, i.e., m = 3. It is observed that all the algorithms perform well in

this situation compared to that in m = 2. Similar to the evaluation in m = 2, the latency-

Page 33 of 40 IEEE Transactions on Wireless Communications

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



26

200 400 600 800 1000 1200 1400
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

1200 1300 1400

0.6

0.62

0.64

0.66

(a)

200 400 600 800 1000 1200 1400
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

1200 1300 1400
0.64

0.66

0.68

0.7

0.72

(b)

Fig. 6. Learning performance of different device scheduling algorithms on CIFAR-10 dataset: (a) m = 2; (b) m = 3.

and representativity-aware algorithm obtains the best learning performance. Compared to other

device scheduling algorithms, the latency- and representativity-aware algorithm saves 18.8% and

16.3% training time when the target accuracy is 80% and 85%, respectively.

Fig. 6 presents the learning performance of the proposed three device scheduling algorithms

on the CIFAR-10 dataset. For the latency- and representativity-aware scheduling algorithm, we

evaluate its performance by selecting ρ1 from {0.01, 0.02, 0.03, 0.04, 0.05, 0.06, 0.07, 0.08,

0.09, 0.1} and ρ2 from {0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0} , then plot the best

and worst results. Similar to the results on the MNIST dataset, the latency- and representativity-

aware scheduling algorithm provides a better learning performance than the other two scheduling

policies based only on either of the two metrics individually. Fig. 6(a) presents the learning

performance of the device scheduling algorithms with m = 2. Specifically, when the target

accuracy is 60%, the latency- and representativity-aware scheduling algorithm require at most

88% training time of the other two scheduling schemes. In Fig. 6(b), the data heterogeneity

parameter is set to m = 3. It is observed that all the scheduling algorithms converge faster in this

situation than that in m = 2. When the target accuracy is 60%, the latency- and representativity-

aware scheduling algorithm is able to reduce 18.5% of the training time compared to the other

two benchmarks and save 18.4% time when the target accuracy is 65%.

VI. CONCLUSION

In this work, we proposed a novel latency- and representativity-aware device scheduling

algorithm to accelerate the learning process for FL. We first revealed that the device scheduling

policies affect learning convergence through the error between the scheduled devices’ aggregated
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gradient and full participation aggregated gradient. Then, by proving the submodularity of both

latency and representativity of the scheduled device set, we developed a double greedy algorithm

to capture the trade-off between latency and representativity in each round. To mitigate the

extra costs produced by local training of unscheduled devices, we utilized the past gradient

information to guide the device scheduling policy design in each round. The experiments verified

the effectiveness of the proposed device scheduling algorithm and the use of past gradient

information to schedule devices.

APPENDIX

A. Proof of Theorem 1

According to the L-Lipschitz continuous of loss gradients ∇Fk(w) in Assumption 1, we have

Fk(w) ≤ Fk(v)− 〈∇Fk(v),w − v〉+ L

2
‖w − v‖2 (30)

For ease of proof, we define ḡt =
1
K

∑K
k=1

∑τ−1
l=0 ∇Fk(wk,t,l). Thus,

E [F (wt+1)− F (wt)]

≤ E [〈∇F (wt),wt+1 −wt〉] +
L

2
E ‖wt+1 −wt‖2

= −ηE [〈∇F (wt), g̃t〉] +
L

2
η2E‖g̃t‖2

= −ηE [〈∇F (wt), g̃t〉] +
L

2
η2E ‖∇F (wt)−∇F (wt) + g̃t‖2

= −L

2
η2E‖∇F (wt)‖2 + (Lη2 − η)E [〈∇F (wt), g̃t〉] +

L

2
η2E‖−∇F (wt) + g̃t‖2

(a)

≤ −L

2
η2E‖∇F (wt)‖2 +

L

2
η2E‖−∇F (wt) + gt − gt + g̃t‖2

(b)

≤ −L

2
η2E‖∇F (wt)‖2 + Lη2E‖−gt + g̃t‖2 + Lη2E‖−∇F (wt) + gt‖2

= −L

2
η2E‖∇F (wt)‖2 + Lη2E‖−gt + g̃t‖2 + Lη2E‖−∇F (wt) + ḡt − ḡt + gt‖2

(c)
= −L

2
η2E‖∇F (wt)‖2 + Lη2E‖−gt + g̃t‖2 + Lη2E‖−∇F (wt) + ḡt‖2 + Lη2E‖−ḡt + gt‖2,

(31)

where (a) derived by Cauchy-Schwarz inequality and η ≤ 1
L

, (b) follows the triangle-inequality,

(c) is due to the unbiased stochastic gradient in Assumption 2.

Below we first bound E ‖−∇F (wt) + ḡt‖2.
E ‖−∇F (wt) + ḡt‖2

= E

∥∥∥∥∥ 1

K

K∑
k=1

τ−1∑
l=1

∇F (wk,t,l)

∥∥∥∥∥
2
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(a)

≤ 1

K

K∑
k=1

(τ − 1)
τ−1∑
l=1

E‖∇F (wk,t,l)‖2

=
1

K

K∑
k=1

(τ − 1)
τ−1∑
l=1

E

∥∥∥∥∇F (wk,t,l)−∇F (wk,t,l,Bk,t,l) +∇F (wk,t,l,Bk,t,l)

∥∥∥∥2

(b)
=

1

K

K∑
k=1

(τ − 1)
τ−1∑
l=1

{
E‖∇F (wk,t,l)−∇F (wk,t,l,Bk,t,l)‖2 + E‖∇F (wk,t,l,Bk,t,l)‖2

}
(c)

≤ (τ − 1)2(G2 + χ2) (32)

where (a) follows Jensen’s inequality, (b) is due to the unbiased gradient in Assumption 2,

(c) follows the Assumption 2 and Assumption 3. In the following, we bound E‖−ḡt + gt‖2 as

follows:
E‖−ḡt + gt‖2 = E

∥∥∥∥ 1

K

∑K

k=1

∑τ−1

l=0
(∇F (wk,t,l,Bk,t,l)−∇F (wt,l))

∥∥∥∥2

(a)

≤ 1

K

K∑
k=1

τ

τ−1∑
l=0

E‖(∇F (wk,t,l,Bk,t,l)−∇F (wt,l))‖2

(b)

≤ τ 2G2 (33)

where (a) follows Jensen’s inequality, (b) is due to Assumption 2. Substituting (32) and (33)

into (31), the proof is completed.

B. Proof of Corollary 1

For the sake of proof, we define an auxiliary function Lw(v) = F (v)−〈∇F (w),v〉, which has

a minimizer v∗ = w. In addition, let Ξ(v) = L
2
‖v‖2−Lw(v) =

L
2
‖v‖2−F (v) + 〈∇F (w),v〉.

According to the proof of Theorem 1 in Appendix A, L
2
‖v‖2 − F (v) is a convex function

with respect to v. Thus, Ξ(v) is a convex function with respect to v due to the convexity

of 〈∇F (w),v〉. Utilizing the first-order condition of convex function, i.e., Ξ(v) ≥ Ξ(u) +

〈∇Ξ(u),v − u〉, we have

Lw(v) ≤ Lw(u) + 〈∇Lw(u),v − u〉+ L

2
‖v − u‖2. (34)

Taking minimization with v on the both sides of the above inequation,

inf
v
Lw(v) = Lw(w) ≤ inf

v

{
Lw(u) + 〈∇Lw(u),v − u〉+ L

2
‖v − u‖2

}
= inf
‖x‖=1

inf
y

{
Lw(u) + y 〈∇Lw(u),x〉+

L

2
y2

}
= inf
‖x‖=1

{
Lw(u)−

‖〈∇Lw(u),x〉‖2
2L

}
= Lw(u)−

‖∇Lw(u)‖2
2L

. (35)
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Substituting Lw(w) and Lw(u) into (35), we have

F (u) ≥ F (w) + 〈∇F (w),u−w〉+ 1

2L
‖∇F (u)−∇F (w)‖2 . (36)

Since ∇F (w∗) = 0, we have

‖∇F (wt)‖2 ≤ 2L (F (wt)− F (w∗)) . (37)

By substracting F (w∗) for both F (wt+1) and F (wt) in the one-round convergence bound in

(12),

E(F (wt+1)− F (w∗)) ≤ E(F (wt)− F (w∗))− L

2
η2E ‖∇F (wt)‖2

+ Lη2
(
2τ 2 − 2τ + 1

)
G2 + Lη2(τ − 1)2χ2 + Lη2 ‖−gt + g̃t‖2 . (38)

Substituting (37) into (38), we have

F (wt+1)− F (w∗) ≤
(
1− L2η2

)
(F (wt)− F (w∗))

+ Lη2
(
2τ 2 − 2τ + 1

)
G2 + Lη2(τ − 1)2ε2 + Lη2 ‖−gt + g̃t‖2 . (39)

Telescoping the above equation, the convergence bound after T rounds can be derived as

Corollary 1. The proof is completed.

C. Proof of Lemma 1

From the definition of TC
k,t in (7), it is straightforward to see that TC

k,t is a monotonically

decreasing function with respect to θk,t. For any device that finished the local gradient computing

process earlier than other devices, we can reallocate some of its bandwidth to other slower

devices. As a result, the one-round latency determined by the slowest device can be reduced.

The bandwidth reallocation process will be performed until all devices simultaneously finish the

local gradient computing and uploading. Consequently, the optimal solution of P1 is achieved

when the entire bandwidth is allocated to all scheduled devices to have the same finishing time.

Thus, the optimal bandwidth allocation policy satisfies⎧⎨⎩ T L
k,t + TC

k,t = T ∗t (St), ∀k ∈ St∑
k∈St

θk = 1,
(40)

where T ∗t (St) is the optimal latency in round t. By solving (40), the proof is completed.

D. Proof of Lemma 2

For ease of presentation, we first denote the minimal gradient uploading latency for device

k (k ∈ K) as TC,min
k,t = Qq

B log
(
1+

pkhk,t

σ2

) , which is derived when device k occupies the entire

bandwidth to upload its gradient. Below we first prove that the optimal latency function T ∗t (S)
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is a monotonically increasing function with the device set S. Based on Lemma 1, for device set

S1 ⊆ S2 ⊆ K, we have∑
k∈S1

TC,min
k,t

T ∗t (S1)− T L
k,t

=
∑

k∈S2

TC,min
k,t

T ∗t (S2)− T L
k,t

= 1, (41)

which equivalent to∑
k∈S1

TC,min
k,t

T ∗t (S1)− T L
k,t

=
∑

k∈S1

TC,min
k,t

T ∗t (S2)− T L
k,t

+
∑

k∈S2\S1

TC,min
k,t

T ∗t (S2)− T L
k,t

. (42)

By rearranging the above equation, we have∑
k∈S1

(
TC,min
k,t

T ∗t (S1)− T L
k,t

−
TC,min
k,t

T ∗t (S2)− T L
k,t

)
=

∑
k∈S2\S1

TC,min
k,t

T ∗t (S2)− T L
k,t

> 0 (43)

Thus, we have T ∗t (S1) ≤ T ∗t (S2). That is, T ∗t (S) is a monotonically increasing function with

the device set S. Similarly, for device h ∈ K\S2, we have∑
k∈S1

(
TC,min
k,t

T ∗t (S1 + h)− T L
k,t

−
TC,min
k,t

T ∗t (S1)− T L
k,t

)
+

TC,min
h,t

T ∗t (S1 + h)− T L
h,t

= 0 (44)

By rearranging the above equation, we have

T ∗t (S1 + h)− T ∗t (S1) =
TC,min
h,t

1 +
∑
k∈S1

TC,min
k,t

T ∗
t (S1)−TL

k,t

TL
k,t−TL

h,t

T ∗
t (S1+h)−TL

k,t

(45)

Since T ∗t (S1 + h) < T ∗t (S2 + h), based on (41), we have T ∗t (S1 + h)−T ∗t (S1) ≤ T ∗t (S2 + h)−
T ∗t (S2), the proof is completed.

E. Proof of Lemma 3

For ease of presentation, we define two device sets, S1 and S2, such that S1 ⊆ S2 ⊆ K,

and a device h ∈ K\S2. Based on the definition of H(St), we have H(S1) ≥ H(S2) and

H(S1 ∪ {h}) ≥ H(S2 ∪ {h}). Moreover, we have

H(S1∪{h})−H(S1) =
K∑
k=1

min
e∈S1∪{h}

‖∇Fk(wt)−∇Fe(wt)‖−
K∑
k=1

min
e∈S1

‖∇Fk(wt)−∇Fe(wt)‖

=
K∑
k=1

min
(
0, ‖∇Fk(wt)−∇Fn(wt)‖ − min

h∈S1

‖∇Fk(wt)−∇Fh(wt)‖
)
. (46)

Since S1 ⊆ S2, we have min
h∈S1

‖∇Fk(wt)−∇Fh(wt)‖ ≥ min
h∈S2

‖∇Fk(wt)−∇Fh(wt)‖. Thus,

H(S1 ∪ {h})−H(S1) ≤ H(S2 ∪ {h})−H(S2), the proof is completed.
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