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Abstract—In order to meet the requirements of massively
connected devices, different quality of services (QoSs), various
transmit rates and ultra-reliable and low latency communications
(URLLC) in vehicle to everything (V2X) communications, we
introduce a full duplex non-orthogonal multiple access (FD-
NOMA)-based decentralized V2X system model. We then classify
the V2X communications into two scenarios and give their
exact capacity expressions. To solve the computation complicated
problems of the involved exponential integral functions, we give the
approximate closed-form expressions with arbitrary small errors.
Numerical results indicate the validness of our derivations. Our
analysis has that the accuracy of our approximate expressions
is controlled by the division of π

2
in the urban and crowded

scenario, and the truncation point T in the suburban and remote
scenario. Numerical results manifest 1) Increasing the number of
V2X device, NOMA power and Rician factor value yields better
capacity performance. 2) Effect of FD-NOMA is determined by
the FD self-interference and the channel noise. 3) FD-NOMA has
better latency performance compared to other schemes.

Index Terms—Vehicle communications, V2X, full duplex, non-
orthogonal multiple access, capacity analysis.

I. INTRODUCTION

A. Background

There are two distinct regimes in vehicle to everything (V2X)
communications, i.e., the dedicated short-range communica-
tions (DSRC) [1], [2] and the cellular-V2X (C-V2X) [3], [4].
DSRC was popular in the past decades. Recently, C-V2X
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has received much attention with explosively growing devices
connecting to the wireless networks. With the help of cellular
network, C-V2X can connect more V2X devices [5], [6]; it
can establish the link among vehicles, smart infrastructures
and pedestrians. C-V2X operates in two modes. First, in the
direct communications (DC) mode, V2X devices can directly
communicate with each other. Well-known examples include
vehicle to vehicle (V2V), vehicle to pedestrian (V2P) commu-
nications. Second, in the network-based communications (NC)
mode, cellular base station (BS) is playing the dominant role,
and the V2X devices communicate with (or with the help of)
the cellular, for instance, vehicle to network (V2N), vehicle
to infrastructure (V2I) communications. However, the current
version of C-V2X (i.e., the long term evolution V2X (LTE-
V2X)) cannot fully satisfy the requirements of low latency,
various quality of services (QoSs) and different transmit rates
[6], [7].

In addition, the existing orthogonal frequency division mul-
tiple access (OFDMA)-basced LTE-V2X systems need or-
thogonality. Different from the static or non-mobility wireless
communications, moving vehicle caused Doppler effect is a
vital problem for OFDMA-based LTE-V2X systems [8]. As is
known, carrier frequency offset (CFO) caused by the Doppler
effect will lead to inter-carrier interference (ICI) to the OFDM-
based wireless communications [9]. In literature, there have
been various studies to solve the CFO compensation, see,
e.g., [9], [10]. However, because the oscillators can never be
oscillating at the identical frequency, in OFDMA-based wireless
communications, CFO side-effect always exists even for non-
moving circumstance [9].

It is noticed that besides the OFDMA, some fifth genera-
tion (5G) technologies can be used to address the issues of
low latency [11], various QoS and different transmit rates in
V2X communications. From the upper layer perspective, the
software-defined networks (SDNs) with its centralized control
plan and distributed multiple nodes are more suitable for vehicle
communications. With the aid of machine learning and big data
analysis, we can monitor all types of events and maintain a
global network status [12]. From the physical layer perspective,
under the equal frequency resources constraint, NOMA can
accommodate more users comparing to the orthogonal mul-
tiple access (OMA) scheme. Besides, these users can be with
different QoS requirements [13], [14]. In addition, NOMA is
insensitive to CFO effect caused by moving vehicles because
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of its non-orthogonal frequency. NOMA employs the same
resource block (RB) for multiple user’s transmission, which can
alleviate the spectrum bottleneck of wireless communications
[15]–[17]. NOMA can pair users with different transmit rates
for simultaneous transmission [18]–[20]. On the other hand,
while simultaneously transmitting and receiving information,
full duplex (FD) can provide faster speed and better spectrum
efficiency (SE) performances [13]. Moreover, FD can offer reli-
able communications [21], which is useful for V2X applications
such as navigation and emergency message broadcasting.

B. Related Works and Motivations

Some antecedent works has been done on FD-NOMA.
For instance, it was found that FD-NOMA can significant-
ly suppress the co-channel interferences and achieve better
performance gains compared to half duplex NOMA (HD-
NOMA) and orthogonal multiple access (OMA) [22]. Analysis
and simulation results in [23] demonstrated that rate region
performance of FD-NOMA outperforms the one with NOMA.
Analysis and simulation results in [24] indicates that FD-
NOMA improves the 5G’s system performance compared to
HD-NOMA. Based on the relaying system model, analysis and
simulation results in [13] indicated that FD-NOMA outperforms
HD-NOMA in terms of outage probability and ergodic sum
rate in low signal to noise ratio (SNR) region, but displays an
inferior performance in high SNR region.

In V2X communications, there are some existing works on
NOMA-V2X and FD-V2X [25]–[27]. Based on the NOMA,
the authors in [26] proposed the graph-based practical encoding
and joint belief propagation (BP) decoding techniques, which
can achieve any rate pair close to the capacity region. B. Di
et al. in [25] employed NOMA for URLLC communications
while proposing a NOMA-based mixed centralized/distributed
(NOMA-MCD) scheme to reduce the resource collision. In
[27], an optimal blind interference alignment scheme was
proposed for the coexisting of FD and HD modes. This scheme
can improve the sum rate performance in the finite SNR
regime. However, most of these studies on NOMA-V2X and
FD-V2X communications are based on the NC mode, which
is a challenge for connecting massive V2X devices because
of the cellular throughput restriction. Although the authors
investigated the decentralized NOMA-V2X systems in [25],
there has been no capacity analysis for such a system. To the
best of our knowledge, a study investigating the impact of FD-
NOMA techniques on V2X systems is rare, which motivates
us to develop this treatise.

In literature, various channel models are used for the ergodic
capacity analysis, for instance, the κ − µ channel model [28],
[29] and the η − µ channel model [28]. However, obtaining
the closed-form capacity expression in these channel models
is difficult because of the involved infinity series operations.
Authors thus employed some special conditions and methods to
give the closed-form expressions, e.g., µ with positive integer
values [29] and the approximate method [30]. On the other
hand, the difficulty to obtain a closed-form expression with

Rayleigh or Rician channel model lies in the involved expo-
nential integral functions. In order to solve this problem, some
approximate methods and algorithms have been proposed, for
instance, the Swamee and Ohija method for exponential integral
function [31] and the fast and accurate algorithm for generalized
exponential integral function [32]. However, these methods are
based on some special conditions (e.g., [32]), or with low
accuracies (e.g., [31]). In this paper, we give the approximate
closed-form capacity expressions for both Rayleigh and Rician
channel models while taming the troublesome exponential
integral functions.

In this work, we propose the FD-NOMA-based decentralized
V2X system model, and also provide the capacity analysis to
obtain the approximate closed-form capacity expressions with
high accuracy. We try to answer the following key questions.
• Can we use one solution to meet the requirements of

V2X communications? If it is not possible, what about a
combination of FD-NOMA techniques?

• If the combination is feasible to satisfy the requirements
of V2X communications, what about the capacity and
throughput performance of the V2X systems?

• Is there any approximate expressions for the capacity
expressions with arbitrary small error and low compu-
tational complexity?

C. Contributions

The main contributions of this work can be summarized as
follows:
• The FD-NOMA-based decentralized V2X systems can

partly offload the cellular network1. Compared to OFD-
MA, NOMA is insensitive to Doppler effect caused by
moving vehicles. In addition, FD-NOMA can accommo-
date more users with different QoSs and transmit rates for
simultaneous transmission and reception.

• Based on the system model, we derive the exact system
ergodic capacity expressions and their approximate closed-
form expressions for both scenarios. These approximate
closed-form expressions are with low computational com-
plexity and controllable arbitrary small errors compared
to the existing approximate expressions. Insights from our
analysis has 1) the accuracy of our simplified approximate
expression in urban and crowded scenario is controlled
by the associated division of π

2 (with respect to the
exponential integral function E1(x)). 2) The accuracy of
our simplified approximate expression in suburban and
remote scenario is controlled by the truncation point T
(with respect to the exponential integral function En(x)).

• It is observed from our numerical results that: 1) the
analytical results coincide with the Monte-Carlo based
simulation results perfectly, which demonstrates the va-
lidity of our derivations. 2) The system capacity increases
with the increasing allocated power value, SNR and Rician
factor values. 3) The FD self-interference and the channel

1Besides C-V2X communications, there are other types of cellular commu-
nications, our work can not offload all the cellular network load
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noise determine the effect of FD-NOMA. 4) FD-NOMA
has better latency performance compared to HD-NOMA
and HD-orthogonal multiple access (HD-OMA) schemes.

D. Notations and Organization

Notations: In this article, we use upper case boldface letters
to denote matrices (e.g., A), and we use lower case boldface
letters to denote vectors (e.g., a). In addition, we use AT as
the transpose of A, a • b to denote the multiply by position
operation for two vector a and b. On the other hand, A ↔
B means a transmit-receive pair with A and B transceivers
on each side working on FD mode, A → B the transmission
procedure from A to B, vice versa.

The remainder of the paper is organized as follows. In section
II, the FD-NOMA-based decentralized V2X system model is
proposed. We divide the V2X communications into different
scenarios in this section. We analysis the system capacity of
different scenarios in section III. The numerical simulations
are given by section IV, and conclusion is given in section V.

II. THE FD-NOMA-BASED DECENTRALIZED V2X
SYSTEMS

A. System Model

The FD-NOMA-based decentralized V2X system model is
given in Fig. 1. This system is slightly different from the
existing ones in the following respects. A) Different from the
existing studies on FD-NOMA, no relaying systems are used
because of the vehicle’s limited energy. B) V2X devices can
directly communicate with each other through DC mode with-
out the cellular’s help, and the required contents are obtained
from neighboring V2X caches [33]. This system model thus has
shorter transmission distance and better latency performance
[33]. The cellular network load can be reduced too.

Once can notice that to simplify the analysis, only V2V
and V2I communications are considered in the existing V2X
studies, see, e.g., [25]–[27], [34]–[36]. As discussed, not only
the vehicles, V2X aims to connect everything on the road.
In order to cope with this trend, in our FD-NOMA-based
decentralized V2X systems, all V2X devices (vehicle, pedes-
trian, traffic lights, etc.) are comprehensively included. The
massive connected devices and their various applications are
making the V2X communications more complicated. To deal
with this intractable problem, in this work, we classify the V2X
communications into two scenarios: 1) the urban and crowded
scenario and 2) the suburban and remote scenario.

In urban and crowded scenario, Rayleigh fading can be used
as the channel model. This is due to the abundant reflection and
refraction links between source and destination [37]. In contrast,
Rician channel model is suitable for the suburban and remote
scenario because of the less obstacles, where we can always
establish a dominant light of sight (LoS) path from source to
destination [38].

V2V V2V

V2V V2V

P2P P2P

P2PP2P

Vehicle Pedestrian Infrastructure
Moving

direction
FD-NOMA 

links

Fig. 1: The M ↔ N FD-NOMA-based decentralized V2X
system model. The communications among V2X devices can
be accomplished by FD-NOMA working on the DC mode.

B. Received Signal and Power Allocation Scheme

In the FD-NOMA-based decentralized V2X systems, the
channel matrix from M sources to N destinations is

H =


h1

h2

h3

...
hN

 =


h1,1 h1,2 . . . h1,M

h2,1 h2,2 . . . h2,M

...
...

. . .
...

hN,1 hN,2 . . . hN,M

 ∈ CN×M , (1)

where hi,j is the channel between source i and destination j.
In this case, the received signal can be given as

y = H
√
p • x + n, (2)

where
√
p ∈ CM×1, is the allocated downlink NOMA power

matrix, x ∈ CM×1 is the downlink transmit signal and
n ∼ CN (0, σ2IN ) is the downlink channel noise. Under the
condition that Ĥ = HT is the uplink channel with FD mode,
uplink transmit information with FD mode will be

ŷ = Ĥ
√

p̂ • z + n̂, (3)

where z ∈ CN×1 is the uplink information. NOMA power and
channel noise vectors thus can be given as p̂ = pT , n̂ = nT .
The total power received by destination n from all M sources
is given by

pn = p1,n + p2,n + ...+ pM,n. (4)

Similarly,
p̂n = p̂n,1 + p̂n,2 + ...+ p̂n,M , (5)

is the self-interference power when transmitting information to
M destinations from source n.

Remark 1: The received signal is composed of the received
downlink information and its self-interference from the FD
uplink. (1.10) On the other hand, transmission and reception
processes in the FD-NOMA-based decentralized V2X systems
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are different from the centralized cellular-based communi-
cations, i.e., each V2X destination can receive information
with different NOMA power vectors from multiple distributed
sources. By invoking the FD-NOMA techniques for simul-
taneous transmission and reception, the power received and
transmitted by each V2X device are pn, p̂n.

III. ERGODIC CAPACITY ANALYSIS IN DIFFERENT
SCENARIOS

In literature, capacity analysis is to reveal the intuitive and
simple-to-compute capacity expressions for the wireless sys-
tems [39], [40]. In this regard, closed-form capacity expression
is of great importance. Generally, capacity can be classified into
two different types, i.e., the ergodic (Shannon) capacity and the
outage capacity [41]. In time varying channels, on condition
that the channel state information (CSI) is known at the receiver
but not the transmitter, i.e., γ (signal to interference plus noise
ratio (SINR)) is known for every time slot. On condition that the
CSI cannot be perfectly obtained because of the feedback delay
or channel estimation error [42]–[44], the system performance
is reduced. The hardware impairment (HI) is another issue that
reduce the system performance. The impacts of imperfect CSI
and HI to the NOMA-based systems have been investigated in
prior works, see, e.g., [45], [46]. In literature, there are some
methods to alleviate the side-effects of imperfect CSI and HI,
for instance, the deep learning-based CSI prediction [47]. In
addition, some transmission methods without CSI have been
investigated, see, e.g., [48].

On condition that the distribution of γ is known at both
the transmitter and receiver. Ergodic capacity is defined by
data transmission going through all fading states, which is also
called the Shannon capacity since it is the average of instan-
taneous capacity over all states. In contrast, outage capacity is
used to describe the system performance under slowly varying
channels with a constant instantaneous γ [41], [49]. Here in
this study, we adopt the ergodic capacity since V2X channels
are generally the time varying channels.

In the decentralized FD-NOMA V2X systems, transmission
channels are uncorrelated. In this case, the considered multiple
input multiple output NOMA (MIMO-NOMA) can be treated
as a sum of additive single input single output NOMA (SISO-
NOMA) links. Moreover, similar to prior works [13], [50], we
adopt an increasing order of the channel response, which means
|hi,1|2 ≤, ..., |hi,j |2 ≤, ...,≤ |hi,N |2,∀i ∈ [1,M ], j ∈ [1, N ],
vice versa. In this case, after successive interference cancella-
tion (SIC), NOMA co-channel interference of the i-th user are
from the (i+ 1)-th user to the N -th user [50].

According to Shannon theory [19], achievable capacity of
each destination can be given by (6), see the equation in
the top of next page. Here

∑N
l=i+1 pi,l yields the co-channel

interference from neighboring users after SIC, ηp̂i,k is the self-
interference by FD uplink, σ2 is the channel noise power, re-
spectively. Additionally, η is the coefficient of self-interference
with η ∈ [0, 1], which makes our expressions versatile to
describe different schemes. For instance, in FD-NOMA scheme,

large value of η denotes the strong FD self-interference, and
small value denotes the weak FD self-interference. On condition
that η = 0, the expression reduces to the pure NOMA
expression. On the basis of (6), normalizing the channel noise
power value will give (7). Here ρ is the SNR, and we use
αi,j , αi,l, αi,k to denote the allocated NOMA power coefficient
with FD transmission in line with a normalized channel noise
power value. In the sequel, we adopt the normalized noise
power.

A. Ergodic Capacity Analysis in Urban and Crowded Scenario

We first analyze the achievable sum capacity in urban and
crowded scenario. Note that we use the superscript a and c to
distinguish different scenarios. In urban and crowded scenario,
PDF of instantaneous signal to interference plus noise ratio
(SINR) in each time slot, say, γi,j , is given by

fa(γi,j) =
1

γ̄i,j
e
−
γi,j
γ̄i,j , (8)

where
γ̄i,j =

ραi,j

ρ(
∑N
l=i+1 αi,l + ηαi,k) + 1

, (9)

is the averaged channel power gain of each destination. As is
well known, ergodic capacity is achieved by experiencing all
the channel fading states, which means

Cai,j = E [log2(1 + γi,j)]

=

∫ +∞

0

log2(1 + γi,j)f
a(γi,j)dγi,j

=

∫ +∞

0

log2(1 + γi,j)
1

γ̄i,j
e
−
γi,j
γ̄i,j dγi,j .

(10)

In the following theorem, we provide the exact ergodic capacity
expression of the FD-NOMA-based decentralized V2X system-
s.

Theorem 1: In urban and crowded scenario, the exac-
t achievable sum ergodic capacity of the FD-NOMA-based
decentralized V2X systems is

Casum =
M∑
i=1

N∑
j=1

e
1
γ̄i,j E1[

1

γ̄i,j
] log2 e, (11)

where E1(x) is the exponential integral function that defined
as

E1(x) =

∫ ∞
x

e−t

t
dt. (12)

Additionally, we have γ̄i,j given as (9).
Proof: See Appendix A.

Exact ergodic capacity expression in urban and crowded
scenario is provided in Theorem 1. Since the exponential
integral function is involved, this expression thus is not given in
closed-form. We thereby further pursue an approximate closed-
form expression of the achievable capacity. As noticed, in (11),
the only expression not given by closed-form is the generalized
exponential integral functions. In this case, our main focus is
to find out a closed-form expression of E1(x).



0090-6778 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCOMM.2019.2904499, IEEE
Transactions on Communications

5

Csum =
M∑
i=1

N∑
j=1

log2

(
1 +

pi,j |hi,j |2∑N
l=j+1 pi,l + ηp̂i,k + σ2

)
, (6)

Csum =
M∑
i=1

N∑
j=1

log2

[
1 +

ραi,j |hi,j |2

ρ(
∑N
l=j+1 αi,l + ηαi,k) + 1

]
, (7)

Lemma 1: Closed-form expression (lower bound) of the
generalized exponential integral function is given by

E1(x) ≤ 4π
n+1∑
k=1

t+1∑
s=1

ak
√
bkase

−bkbsx, (13)

where ak, bk are defined as

ak =
θk − θk−1

π
, (14)

bk =
cot θk−1 − cot θk

θk − θk−1
. (15)

In addition, θk, k ∈ [0, n + 1] is given by 0 ≤ θ0 < θ1 <
...θk < ... < θn+1 = π

2 . Besides, as, bs, θs are defined with the
same method, i.e.,

as =
θs − θs−1

π
, (16)

bs =
cot θs−1 − cot θs

θs − θs−1
, (17)

and 0 ≤ θ0 < θ1 < ...θs < ... < θt+1 = π
2 . It is also worth

noting that the approximation accuracy is controlled by the
division of π

2 with θk and θs (associate with as, bs)2.
Proof: See Appendix B.

In order to verify the tightness of this expression, we compare
the performances of the exact expression, the approximate ex-
pression and the well known Swamee and Ohija approximation.
Note that the Swamee and Ohija approximation expression is
given by [31]

E1(x) = (A−7.7 +B)−0.13, (18)

where

A = ln

(
0.56146

x
+ 0.65

)
, (19)

B = x4e7.7x(2 + x)3.7. (20)

Here while using the approximate expression in Lemma 1,
we divide the π

2 with 1000 segments, which means, θk−θk−1 =
π

2000 . The simulation results are given by Fig. 2. As noticed,
the gap between the approximation and the exact form curves
is large. Although this approximation method is better than the
Swamee and Ohija approximation method, it is still unsuitable
to be adopted directly.

We notice from Appendix B that in our derivations, the only
issue that might bring in difference is the Jensen’s inequality,

2It is worth noting that here in our analysis, the equal division of π
2

is used.

i.e., in the derivations of Q(x)-function’s closed-form expres-
sion, we use

∫ θk
θk−1

e(− x2

2 sin2 θ
)1dθ∫ θk

θk−1
1dθ

≥ e

 ∫ θk
θk−1

− x2

2 sin2 θ
1dθ∫ θk

θk−1
1dθ


. (21)

Additionally, one can see from Fig. 2 that the approximation
curve displays a similar curvature to the exact curve. We can
expect that a coefficient factor to the closed-form expression
might improve the accuracy, i.e.,

E′1(x) = q4π
n+1∑
k=1

t+1∑
s=1

ak
√
bkase

−bkbsx. (22)

Consequently, our task is to find out a q satisfying

|E′1(x)− E1(x)| ≤ ε. (23)

Here we use ε = 0.00001. After some manipulations, we notice
that when q = 1

4 , the above condition is met (e.g., |E′1(1) −
E1(1)| = |0.2193827−0.2193839| = 1.2187×10−6). We thus
have an approximate closed-form expression of E1(x) as

E1(x) ≈ π
n+1∑
k=1

t+1∑
s=1

ak
√
bkase

−bkbsx. (24)

We further give the comparison results of the exact, improved
and approximate expressions, which is shown in Fig. 3. Com-
pared to the approximate results, the improved approximate
results coincide with the exact results perfectly, which indicates
the validity of our hypothesis. Closed-form expression of CRaysum

is given by the following corollary.
Corollary 1: By substituting (24) into (11), we obtain the

approximate closed-form expression of the achievable capacity
in urban and crowded scenario

Casum ≈ π log2 e
M∑
i=1

N∑
j=1

n+1∑
k=1

t+1∑
s=1

e
( 1
γ̄i,j

)
ak
√
bkase

(−bkbs 1
γ̄i,j

)
.

(25)

Remark 2: Insights from Corollary 1 is that the system
ergodic capacity in urban and crowded scenario is determined
by M,N , γ̄i,j . The system capacity increases with M,N .
The accuracy of this approximate closed-form expression is
determined by n, t. That is, the divisions of π

2 . The validity of
this approximate expression will be verified by the following
numerical results.
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B. Ergodic Capacity Analysis in Suburban and Remote Sce-
nario

In the subsection III. A, we have obtained both exact and
approximate forms of the capacity of the FD-NOMA-based
decentralized V2X systems in urban and crowded scenario. In
this subsection, we focus on the system capacity analysis in the
suburban and remote scenario. We use K as the Rician factor
(which is the ratio between the deterministic and random fast-
fading component). It is noticed that in Rician channel, we have

K =
r2

2ω2
. (26)

where r2 yields the channel gain of LoS component, 2ω2 is
the average channel power gain of all NLoS components. By

defining the total average power gain as γ̄ and following the
prior work in [51], PDF of γi,j can be given as

f c(γi,j) =
K + 1

γ̄i,j
e

[
−K−

(K+1)γi,j
γ̄i,j

]
I0

(
2

√
K(K + 1)γi,j

γ̄i,j

)
.

(27)
Here I0(·) is the first kind modified Bessel function with zeroth
order. By following a similar procedure of the previous analysis,
we can obtain Theorem 2.

Theorem 2: Exact ergodic capacity expression of the FD-
NOMA-based decentralized V2X systems in suburban and
remote scenario is given by

Ccsum =
M∑
i=1

N∑
j=1

e−K

ln 2
e
K+1
γ̄i,j

∞∑
m=0

Km

m!

m+1∑
l=1

Em−l+2(
K + 1

γ̄i,j
).

(28)
Here En(x) is the generalized exponential integral function
defined as [52]

En(x) =

∫ ∞
1

e−xt

tn
dt (Re(x) > 0), (29)

where Re(x) yields the real part of x.
Proof: See Appendix C.

This expression is still intractable to use directly because
of the involved infinite factorial and generalized exponential
integral expressions. In order to tame this troublesome problem,
we give one approximate expression with arbitrary small error
by invoking the truncation method in the sequel.

We find that the following expression
∞∑
m=0

Km

m!

m+1∑
q=1

Em−q+2(
K + 1

γ̄i,j
) (30)

has an upper ceiling approximation, as shown by Corollary 2.
In this case, the system capacity can be given by an approxi-
mate expression with much lower computation complexity and
arbitrary small error, ε.

Corollary 2: By truncating the infinite series with regard to
T , the capacity expression is approximately given as

Ccsum ≈
M∑
i=1

N∑
j=1

e−K

ln 2
e
K+1
γ̄i,j

T∑
m=0

Km

m!

m+1∑
q=1

Em−q+2(
K + 1

γ̄i,j
),

(31)
The truncation error is

M∑
i=1

N∑
j=1

e−K

ln 2
e
K+1
γ̄i,j

∞∑
m=T+1

Km

m!

m+1∑
q=1

Em−q+2(
K + 1

γ̄i,j
). (32)

Proof: See Appendix D.
Remark 3: One can notice that the accuracy of the approxi-

mate expression in (31) is controlled by T . In other words, we
may obtain an approximate expression with an arbitrary small
error when

M∑
i=1

N∑
j=1

e−K

ln 2
e
K+1
γ̄i,j

∞∑
m=T+1

Km

m!

m+1∑
q=1

Em−q+2(
K + 1

γ̄i,j
) < ε.

(33)



0090-6778 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCOMM.2019.2904499, IEEE
Transactions on Communications

7

Insight from Corollary 2 has that the system capacity expres-
sion is determined by M,N , γ̄i,j and K. With M,N increasing,
the system capacity always increases. The precise effects of
γ̄i,j ,K to the capacity are still nonintuitive, which will be
discussed in the following section.

IV. NUMERICAL RESULTS

In this section, we perform the Monte Carlo simulations to
verify the validity of our analysis. We also perform simulations
to exposit the effects of different parameters to the system
capacity, and compare the performance between FD-NOMA
and NOMA schemes based on the decentralized FD-NOMA-
enabled V2X systems. Due to variable parameters, we separate-
ly explain them and their values in the following simulations.

We first check the validity of the derived capacity expres-
sions in (25) and (31). In these simulations, for the sake of
compactness, one source with multiple destinations are used,
where the source employs the FD-NOMA scheme to serve
these destinations. We also assume that the allocated NOMA
power variance is growing linearly with a normalized noise
variance value (e.g., with 4 users, the NOMA power vector
is ai = [4, 3, 2, 1]), where ai = [αi,1, ..., αi,N ]). Additionally,
η = 0.1, αi,k = 5 are used. As clearly shown by Fig. 4 and
Fig. 5, our analytical results3 and the MC results almost exactly
coincide, which demonstrates the validity of our analysis. For
instance, in Fig. 4, with ρ = 15 dB, 1 ↔ 4, the MC and
App results are respectively 3.6865, 3.6866 Bit/S/Hz. Under the
same condition, as shown in Fig. 5, MC result and App result
are 3.8458, 3.8455 Bit/S/Hz, respectively. The differences are
less than 0.001 Bit/S/Hz in both scenarios. We also observe
that as the values of N, ρ increases, the system capacity always
increases. By comparing Fig. 4 and Fig. 5, we notice that under
the same condition, capacities in suburban and remote scenario
always outperform the ones in urban and crowded scenario (for
instance, in 1 ↔ 3 case, SNR = 0 dB, Ccsum = 125%Casum;
SNR = 30 dB, Ccsum = 103%Casum). This is because of the
less propagation loss with a dominant LoS path between source
and destination in the suburban and remote scenario.

In order to verify the benefits of our analytical expressions,
we compare the consumed time of App and MC simulations in
Table I with ρ = 15 dB as an example. In these simulations,
eight-core 3.4 GHz processors, 16 GB memory and windows
10 64-bit operating system are used. The results are rounded
off to four decimal places. As shown in Table I, the consumed
time of our analytical expressions are about 106 times shorter
than the MC simulations.

In the next step, we check the effect of Rician factor K to
the system capacity in suburban and remote scenario. In order
to keep K as the only variable, we do some manipulations
as follows: 1) we keep all variables consistent except K; 2)
with normalized noise power value and 3 destinations, we set
ai = [1, 2, 3]. The simulation results of the system capacity vs
the destination number in suburban and remote scenario is given
in Fig. 6. We notice that as the K increases, system capacity

3App: approximate, MC: Monte Carlo.
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(25).
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performances with App and MC results in suburban and remote
scenario. The analytical results are obtained according to (31).

also increases. This is because the higher K brings in a stronger
LoS component and a weaker multi-path propagation loss.

Besides the effects of N, ρ,K, the effects of M and ai
to the system capacity are also checked with: 1) a linearly
growing power value with M = 1 (i.e., a1 = [0.5, 1, 1.5],a2 =
[1, 2, 3],a3 = [2, 4, 6]); 2) different NOMA power vectors
with M = 2 (i.e., 2 ↔ 3,a1,a3 denote that two sources
are transmitting information to 3 destinations with FD-NOMA,
where the NOMA power vector are a1,a2, respectively). The
simulation results are given by Fig. 7 and Fig. 8. As shown by
the solid lines in both figures, increasing the power values leads
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TABLE I: Consumed time (second) of App and MC simulations with ρ = 15 dB.

Urban and crowded scenario
App 0.0002 0.0001 0.0001 0.0001 0.0004 0.0000 0.0000 0.0000
MC 83.0272 89.2913 83.0986 80.8462 81.7240 87.6330 91.5975 87.3378

Suburban and remote scenario App 0.0781 0.0153 0.0036 0.0034 0.0066 0.0035 0.4032 0.06056
MC 92.9720 89.8830 89.6005 92.4459 95.3015 97.2475 95.9309 94.8763

0 5 10 15 20 25 30 35

SNR (dB)

2.6

2.7

2.8

2.9

3

3.1

3.2

3.3

3.4

3.5

S
y
s
te

m
 a

c
h

ie
v
a

b
le

 s
u

m
 c

a
p

a
c
it
y
 (

B
it
/S

/H
z
)

1  3, K = 1

1  3, K = 2
1  3, K = 3

1  3, K = 4
1  3, K = 5

Fig. 6: Comparison of the capacities with different power values
and source numbers.

0 5 10 15 20 25 30 35

SNR (dB)

1

2

3

4

5

6

7

8

S
y
s
te

m
 a

c
h

ie
v
a

b
le

 s
u

m
 c

a
p

a
c
it
y
 (

B
it
/S

/H
z
) 1  3, a

1
 = [0.5, 1, 1.5]

1  3, a
2
 = [1, 2, 3]

1  3, a
3
 = [2, 4, 6]

2  3, a
1
, a

1

2  3, a
1
, a

2

2  3, a
2
, a

3

Fig. 7: Comparison of the capacities with different power values
and source numbers.

to better capacity performance, which is due to the increased
SNR value. For instance, in 1 ↔ 3 case and SNR = 20 dB,
we have Casum(a2) = 131%Casum(a1). We can also confirm
from both figures that as M increases, the system capacities
also increase.

Finally, we compare the achievable throughputs with FD-
NOMA, NOMA, FD-OMA and HD-OMA schemes in different
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Fig. 8: Comparison of the capacities with different power values
and source numbers.

scenarios. The results are given in Fig. 9 and Fig. 10. In
these simulations, carrier bandwidth B = 100 MHz, ai =
[3, 2, 1], η = 0.1 and αi,k = 0.1, 1, 10 are used. In order to be
fair, we average the allocated power in FD-OMA and HD-OMA
schemes. As shown in both figures, NOMA scheme has a better
throughput performance compared to OMA scheme. Moreover,
with a smaller value of αi,k, FD-NOMA always outperforms
the other schemes (HD-NOMA, FD-OMA, HD-OMA). How-
ever, the benefit of FD-NOMA decreases while αi,k increasing.
This is mainly due to the increased FD self-interferences. We
also notice that even with a higher FD self-interference value,
FD-NOMA outperforms NOMA in low SNR scenario (i.e.,
ρ ∈ [0, 5] dB). This is because in low SNR scenario, channel
noise is the dominant factor compared to FD self-interference.
In contrast, FD-NOMA self-interference becomes the dominant
factor in high SNR scenario, NOMA scheme without FD self-
interference thus has a better throughput performance. It is
also worth noting that the effective transmission time is limited
because of the fast moving V2X devices. FD-NOMA enabled
bidirectional transmission can greatly reduce the transmission
latency compared to other schemes. For example, compared
to HD-NOMA and HD-OMA, FD-NOMA only needs a half
latency time to transmit the same amount of data by its
simultaneous transmission and reception scheme.

V. CONCLUSION

In this article, we proposed the FD-NOMA-based decen-
tralized V2X systems. We classified the V2X communications
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Fig. 9: System achievable throughput comparisons with FD-
NOMA, NOMA, FD-OMA and HD-OMA schemes in urban
and crowded scenario.
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Fig. 10: System achievable throughput comparisons with FD-
NOMA, NOMA, FD-OMA and HD-OMA schemes in suburban
and remote scenario.

into two typical scenarios, i.e., the urban and crowd scenario
and the suburban and remote scenario, and then derived the
exact system capacity expressions in both scenarios. To tackle
down the capacity expression’s intractable calculations in both
scenarios, we further obtained their simplified approximate
expressions. Insights of our analysis are that the accuracy of
our simplified approximate expression in urban and crowded
scenario is determined by the associated division of π

2 (with
respect to exponential integral function (E1(x)), and the ac-
curacy of simplified approximate expression in suburban and
remote scenario is determined by the truncation point T (with
respect to generalized exponential integral function (En(x)).
Numerical results demonstrate the validity and effectiveness of

our analytical results. Compared to MC method, the consumed
time is greatly reduced by our Approximation expressions.
Simulation results also demonstrated that the system capacity
performance can be enhanced by increasing the number of V2X
devices, NOMA power and Rician factor (suburban and remote
scenario), and the effectiveness of FD-NOMA is determined
by the FD self-interference and the channel noise. In addition,
FD-NOMA can greatly reduce the system latency compared to
other schemes.

APPENDIX A: PROOF OF THEOREM 1
Firstly, according to the integration by parts method, we have∫ +∞

0

log2(1 + γi,j)
1

γ̄i,j
e
−
γi,j
γ̄i,j dγi,j

= −
∫ +∞

0

log2(1 + γi,j)(e
−
γi,j
γ̄i,j )′dγi,j

= log2(1 + γi,j)e
−
γi,j
γ̄i,j |+∞0 +

∫ +∞

0

1

ln 2(1 + γi,j)
e
−
γi,j
γ̄i,j dγi,j

=
1

ln 2

∫ +∞

0

1

(1 + γi,j)
e
−
γi,j
γ̄i,j dγi,j

=
1

ln 2

∫ +∞

0

1
γ̄i,j

(e
−
γi,j
γ̄i,j )

( 1
γ̄i,j

+
γi,j
γ̄i,j

)
dγi,j

=
e

1
γ̄i,j

ln 2γ̄i,j

∫ +∞

0

e
−(

γi,j
γ̄i,j

+ 1
γ̄i,j

)

( 1
γ̄i,j

+
γi,j
γ̄i,j

)
dγi,j

(A.1)
So far the expression is still intractable. In the next step, we
recall the alternative generalized exponential integral expression
[52]

En(x) ,
∫ ∞

1

e−xt

tn
dt

=

∫ 1

0

e−
x
t tn−2dt

= xn−1

∫ ∞
x

e−t

t
dt, x > 0,

(A.2)

By substituting (A.2) into (A.1), and further summarizing the
result with M sources and N destinations, we can safely arrive
the final expression.

This completes the proof.
APPENDIX B: PROOF OF LEMMA 1

As noticed, E1(x) can be rewritten as

E1(x) =

∫ ∞
x

e−t√
t

1√
t
dt. (B.1)

It is also noticed that the following equality holds [53]

e−t√
t

= −
√

2e−t
d
√

2t

dt

= −2
√
π
d

dt

1√
2π

∫ ∞
√

2t

e
−t2

2 dt

= −2
√
π
d

dt
{Q(
√

2t)}.

(B.2)
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Thus in the next step, our work is to seek a closed-form ex-
pression for the Q-function. Actually, there are various closed-
form expressions to capture the lower or upper bounds of the
Q-function, for instance, the chernoff bound

Q(x) ≤ e− x
2

2 , x > 0, (B.3)

the improved exponential bound

Q(x) ≤ 1

4
e−x

2

+
1

4
e−

x2

2 ≤
1
2 e

− x2

2 , x > 0. (B.4)

However, the integral is still intractable while substituting
those expressions into (B.1), an alternative method is needed.
According to prior work, by adopting the Craig’s form, we have
[53]

Q(x) =
1√
2π

∫ ∞
x

e
−t2

2 dt

Craig’s form
========

1

π

∫ π/2

0

e−
x2

2 sin2 θ dθ

=
1

π

n+1∑
k=1

∫ θk

θk−1

e−
x2

2 sin2 θ dθ

=
θk − θk−1

π

n+1∑
k=1

∫ θk
θk−1

e−
x2

2 sin2 θ 1dθ∫ θk
θk−1

1dθ

(B.5)

with ak, bk are defined as ak = θk−θk−1

π , bk = cot θk−1−cot θk
θk−θk−1

.
Then by substituting the Jensen’s inequality [54] to (B.5), we
have the lower bound expression of Q-function as

Q(x) ≥ θk − θk−1

π

n+1∑
k=1

e

∫ θk
θk−1

− x2

2 sin2 θ
1dθ∫ θk

θk−1
1dθ

=
θk − θk−1

π

n+1∑
k=1

ake
−
(

x2

2(θk−θk−1)

∫ θk
θk−1

1
sin2 θ

dθ
) (B.6)

Additionally, it is worth noting that θk, k ∈ [0, n+ 1] is given
by 0 ≤ θ0 < θ1 < ...θk < ... < θn+1 = π

2 [53], [54].
The approximate accuracy of this lower bound expression is
controlled by the interval gap between each pair of [θk−1, θk].
Moreover, it is known that the following equality holds∫

sin−2 xdx = − cotx+ C. (B.7)

Substituting it into (B.6), we thus have

Q(x) ≈
n+1∑
k=1

ake
− x

2bk
2 . (B.8)

Finally, by substituting (B.2) into (B.1), E1(x) can be given as

E1(x) = −2
√
π

∫ ∞
x

d

dt
{Q(
√

2t)} 1√
t
dt

≈ 2
√
π
n+1∑
k=1

akbk

∫ ∞
x

e−bkt√
t
dt

= 2
√
π
n+1∑
k=1

akbk

∫ ∞
x

√
bke
−bkt

√
bkt

dt

= 4π
n+1∑
k=1

ak
√
bkQ(

√
2bkx)

≈ 4π
n+1∑
k=1

t+1∑
s=1

ak
√
bkase

−bkbsx.

(B.9)

As the final inequality is obtained while substituting the ap-
proximate expression of Q(

√
2bkx), definitions of as, bs, θs

thus are similar as prior definitions of ak, bk, θk, i.e., as =
θs−θs−1

π , bs = cot θs−1−cot θs
θs−θs−1

and 0 ≤ θ0 < θ1 < ...θs < ... <
θt+1 = π

2 .

This completes the proof.

APPENDIX C: PROOF OF THEOREM 2

It is noticed that the PDF of γi,j in Rician channel condition
can be given by [51]

f c(γi,j) =
K + 1

γ̄i,j
e

[
−K−

(K+1)γi,j
γ̄i,j

]
I0

(
2

√
K(K + 1)γi,j

γ̄i,j

)
,

(C.1)
By following a similar derivation procedure as in Theorem 1,
we have the following equation

Cci,j = E [log2(1 + γ̄i,j)]

=

∫ +∞

0

log2(1 + γi,j)f
c(γi,j)dγi,j .

(C.2)

and substituting equations (C.4) and (C.5) into this expression,
the derivations of capacity expression of the FD-NOMA-based
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decentralized V2X systems can be given as:

Cci,j =

∫ +∞

0

log2(1 + γi,j)f
c(γi,j)dγi,j

=

∫ ∞
0

ln(1 + γi,j)

ln 2

K + 1

γ̄i,j
e

[
−K−

(K+1)γi,j
γ̄i,j

]

I0

(
2

√
K(K + 1)γi,j

γ̄i,j

)
dγi,j

=
(K + 1)e−K

γ̄i,j ln 2

∞∑
m=0

[
K(K+1)
γ̄i,j

]m
(m!)2∫ ∞

0

ln(1 + γi,j)
γm+1−1
i,j

e
(K+1)γi,j

γ̄i,j

dγi,j

=
(K + 1)e−K

γ̄i,j ln 2

∞∑
m=0

[
K(K+1)
γ̄i,j

]m
(m!)2

Γ(m+ 1)e
K+1
γ̄i,j(

K+1
γ̄i,j

)m+1

m+1∑
q=1

Em−q+2(
K + 1

γ̄i,j
)

=
e−K

ln 2
e
K+1
γ̄i,j
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m=0

Km

m!

m+1∑
q=1

Em−q+2(
K + 1

γ̄i,j
).

(C.3)

Here the second equality is due to the modified Bessel function
of the zeroth order expression [55]

I0(x) =
∞∑
m=0

(
x
2

)2m
m!Γ(m+ 1)

. (C.4)

Additionally, the third equality is because [55]∫ ∞
0

ln(1 + κx)
xz−1

eβx
dx =

Γ(z)e
β
κ

βz

z∑
l=1

Ez−l+1(
β

κ
). (C.5)

By further summarizing this expression with M sources and N
destinations, we can finally arrive at (31).

This completes the proof.

APPENDIX D: PROOF OF COROLLARY 2

The remaining section after a truncation with regard to T is

M∑
i=1

M∑
j=1

e−K

ln 2
e
K+1
γ̄i,j

∞∑
m=T+1

Km

m!

m+1∑
q=1

Em−q+2(
K + 1

γ̄i,j
). (D.1)

As shown here, approximate error mainly comes from the
infinite expression series with regard to m. According to prior
work in [56], [57], En(x) monotonically decreasing in n giving

equal x. In this case, by putting
∑M
i=1

∑M
j=1

e−K

ln 2 e
K+1
γ̄i,j part

aside, we have the following expression

∞∑
m=T+1

Km

m!

m+1∑
q=1

Em−q+2(
K + 1

γ̄i,j
) <

∞∑
m=T+1

Km

m!

(m+ 1)(m+ 2)

2
E1(

K + 1

γ̄i,j
).

(D.2)

It is noticed that giving constant values of ¯γi,j and K, E1(K+1
γ̄i,j

)
then becomes a constant coefficient. Consequently, we focus on
the function

f(x) =
Kx

x!

(x+ 1)(x+ 2)

2
. (D.3)

By some mathematical manipulations, it is found that there
existing x′, so that f ′(x′) = 0 with f ′′(x′−) > 0, f ′′(x′+) <
0. Additionally, observation has that f(x) rapidly converges
to 0 after x′ (e.g., f(100) = 6.9966 × 10−125). This gives
approximate capacity expression of (31) with an arbitrary small
error ε.

This completes the proof.
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