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Abstract—By leveraging massive available data and hidden com-
munication patterns, deep learning (DL) has enabled diverse appli-
cations in wireless networks operations. In this paper, we consider
radar-aided beam prediction in multi-input multi-output (MIMO)
communication systems with federated transfer learning (FTL) to
preserve users’ location privacy. Specifically, we propose a novel
structure, i.e., radar-aided federated transfer beam prediction (RaFT-
BP), to achieve few samples-enabled distributed beam selection in
internet of vehicles (IoV) scenarios. Simulation results show that the
proposed RaFT-BP can achieve the 93.78% top-5 accuracy with 600
samples in the distributed node, enabling 11.9% to 33.2% beam
selection accuracy improvement compared with baseline schemes.

Index Terms—MIMO communications, beam prediction, federated
transfer learning, internet of vehicles.

I. INTRODUCTION

Recently, the sixth generation (6G) wireless systems have
attracted huge interest from both academia and industry, which can
enable new services such as space-air-ground integrated networks,
ubiquitous connectivity and smart cities [1], [2]. To support these
emerging services, it is pivotal for 6G networks to provide high
speed and dependable data transmission. Among many related
technologies, MIMO serves as the foundation 6G networks by
improving spectrum utilization efficiency in spatial domain with
beamformed transmission. Beam selection can enhance MIMO
systems’ capacity and signal to noise ratio (SNR) by directing or
dispersing the signal in a specific direction, which can be achieved
via adjusting the relative position and phase of antennas.

There have been massive beam selection works. For example,
Taranto er al. [3] utilized location information from both the base
station and the user terminal to select the optimal beam index
from a codebook. Pan et al. [4] established a mapping relationship
between the receiver’s position and the beam with the highest SNR
at the receiver end. Additionally, Lin et al. [5] proposed a beam
tracking algorithm that enhances tracking accuracy. However,
these methods are implemented in ideal scenarios and do not fully
leverage environmental information.

With increasing diversity and intelligent devices, different en-
vironmental data can be utilized for beamforming, which can
improve communication efficiency due to decreasing overhead. By
leveraging radar sensing information, radar-aided communication
aims to enhance the performance of wireless communication [6],
such as establishing secure and reliable communication links in
dynamic environments. Moreover, position-aided [7] and LiDAR-
aided methods [8] have been verified in real-world vehicle com-
munication scenarios [9], [10].

While environmental information can improve communication
performance, collecting location and motion may violate privacy
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regulations [11]. To address this concern, McMahan et al. [12]
proposed a federated learning (FL) architecture that adapts to
communication scenarios. Elbir ef al. [13] implemented a gradient
information policy to update the beamforming model. To reduce
beam search overhead, [14] considered that each user could train
a shared FL. model collaboratively for the distributed scenario.
Zhang et al. [15] investigated backdoor attacks in FL beam
selection systems and proposed corresponding defence strategies.
However, the above researches ignore the limited computation
power of nodes, which cannot match complex training models.

In this paper, we propose a radar-aided federated transfer
learning (FTL) architecture for implementing beam prediction in
MIMO communication systems, i.e., radar-aided federated transfer
beam prediction (RaFT-BP). By transferring model weights instead
of directly transmitting data, data privacy risks are eliminated
and security is strengthened. Specifically, the pre-trained model
in the edge computing unit (CU) is transmitted to the antenna
computing units (ACUs) with few samples, which can reduce data
dependency and computational energy consumption, conducting
real-time training and dynamic prediction. The contributions of
this paper can be summarized as follows.

o We propose a novel radar-aided federated transfer learning
network for beam prediction under MIMO communication
scenarios. Without local data sharing from the corresponding
radars, the model weights of each local node are updated to
achieve model migration.

o To reduce the model training overhead at each local node, the
DL-based model is pre-trained in an edge CU with adequate
data and the model weight is transmitted to ACU with few
samples. Then, transfer learning (TL) is implemented in each
ACU to reduce data reliance.

o Experimental results show that the proposed FTL-based al-
gorithm performs better than the centralized approach in
terms of beam prediction accuracy given imbalanced data.
Additionally, we demonstrate that freezing the first five layers
of neural networks yields optimal beam selection accuracy.

II. SYSTEM MODEL
A. Signal Model

1) Radar Signals: Assuming that the radar signal at the receiver
side FMCW radar by transmitting a linear chirp signal starting
from the initial frequency f. and ramping up linearly to f. + ut.
Through a Delay Spread Fading channel h(t) = Ael(9+27AS) .
p (t —7) with amplitude gain A and time delay fading function
p(t — 7), and the received signal is formulated as

R’r (t) = ACAteﬂ'j(Q,u‘rtJernq—,uTz) ’

where A€ and A’ denote channel and transmitter gains.

The received radar signal is sampled at the sampling rate of
fn, generating N samples per period. For a FMCW radar with
M receive antennas, a frame with B chirps of raw data can be
expressed as M x N x B, which contains distance, angle, and ve-
locity of moving objects. By applying the Fast Fourier Transform
(FFT) on the time samples, the linear frequency-modulated signal
is transformed into the frequency domain. Within this domain,
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Fig. 1. An illustration of the proposed RaFT-BP, which includes an edge CU with adequate data and various ACUs with few samples.

the linear frequency-modulated signal is shifted proportionally to
the round-trip duration, generating distance feature. Then, more
distinctive features are obtained by averaging out chirp samples.
The angle feature is obtained by applying FFT on angular samples.
Accordingly, the range-angle feature of radar signals can be
regarded as the primary factor for tracking vehicles, which are
calculated as

B
Ra :Z/ / Ry (m,n,b)e >t dmdn, (2)
b=1

where R, € """ is the range-angle feature.

2) Communication Signals: The mmWave communication sig-
nal at the transmitter end propagates through channel H, which is
denoted as

N Nray
NtNr - Y .. ..
= Nchy Z Z VB, 4)Br (1, 5),

i=1 j=1

H (3)
where N; denotes the number of transmitter antennas, /N, signifies
the number of receiver antennas, [V, is the scattering cluster, and
N4y indicates the number of propagation paths; v is the decay
factor; (; presents the normalized antenna array response vector
in the transmitter, and (3, in receiver. Consequently, the received
MIMO signal at the receiver end can be expressed as

Rs(t) = AHs(t,b) + n(t), “)

where A denotes the wireless channel gain; s(t,b) presents the
mmWave signal, and b is the received beam; n(t) signifies the
Additive White Gaussian Noise (AWGN). In this paper, the radar
data R, is processed to derive the feature R, for the selection of
the optimal radio beam b.

B. Problem Definition

The deployment of radar sensing at communication terminals
can provide critical information about transmitter/receiver position
and environment, which can reduce beam training overhead in
mmWave and MIMO communication systems, enabling low-
energy, low-latency applications. In real-world scenarios, various
radar sensing nodes are distributed in various parts of the city
block, each sensing node needs to have the ability to model
training, recognition, and processing. There can be significant
differences between nodes, such as varying amounts of training
data for each node and hardware limitations that prevent large-
scale training. Meanwhile, to ensure security, data islands exist
between various nodes, and the risk of leakage exists in direct

sensing data transmission. Besides, the few samples processed by
each node are prone to undesirable beam prediction accuracy.

Assuming that there are K’ ACUs with few samples and an edge
CU with adequate data, we aim to design an architecture M to
enable various nodes with few samples that implement distributed
beam prediction. The process can be expressed as

Fr +— M(F|E, Ay,
b+ ]:)C(Ra),

(&)
(6)

where FE; denotes the hardware with weak computing capacity.
A; indicates the data isolation environment. F' represents the
untrained CNN model, and Fj, signifies the trained model in the
ACU k, which can implement beam prediction; b is the optimal
beam in ACU &.

C. Proposed RaFT-BP Framework

Fig. 1 presents a novel distributed approach for radar-assisted
beam prediction, where the ML-based model is designed to predict
the optimal beam index from a predefined beam index using radar
data captured by a base station. The ML model aims to maximize
the received SNR for wireless communications by returning the
beam index from the code book with the highest probability of
achieving the design. Given the data isolation in distributed ACUs
and the risk of data eavesdropping in the channel, we propose a
method based on FTL to transfer model weights between nodes
to mitigate these issues. As shown in the multi-edge collaboration
part of Fig. 1, the multiple ACUs involved in collaborative training
are regarded as different nodes, and the cloud server controls
the interaction between CU and various ACUs. The proposed
architecture reduces the computational complexity and sample
dependency in distributed beam selection by means of FTL.
Signalling interactions between various base stations and the
core network in the communication network are not the main
subject of this work. Accordingly, the communication between
various base stations and the core network is virtualized into links,
mainly considering the transmission of training weights between
individual computing nodes and the cloud server.

Assuming the raw radar measurement data denoted by R =
{res,r;l,r;27 . ,T;K}, which is limited across each node due
to data isolation in various ACUs. To address this limitation, we
propose a solution that involves training a deep neural network
(DNN) model at the edge CU. This DNN model can be transferred
to meet beam prediction requirements of each ACU, reducing the
need for large amounts of training data. In this approach, we
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consider the source domain data at the edge CU, denoted as 7.5 =
{(r¢,y®)}Ne, and the client node data as r;k = {(«f, yé’)};vzbl

As shown in Fig. 1, the DNN-based model incorporates a multi-
layer convolutional module that reduces the complexity of the
data and extracts key features. The model’s weights, trained on
the edge CU’s data (source domain), are then transmitted to the
various electromagnetic environments where each ACU is located
(target domain). This approach alleviates the data dependence of
the DL model in ACU with limited samples by freezing specific
parameters (no re-training).

The process involves training the DNN model on edge CU and
transferring model weights to each sensing node. Fig. 2 depicts
the details of the fine-tuning of each node, and the details of the
CNN-based model are described in Table I. To solve complex
wireless environments, we utilized the appropriate AvgPooling and
resized convolutional kernels in the structure design. In detail,
the DNN model contains five convolutional layers and three
fully connected layers. Since radar image features have a large
background noise, the initial two layers do not use AvgPooling
operations, so channel noise and interference may persist. Filters
are increased from 8 to 16 and then gradually decreased to 2. As
the network gets deeper, gradually increasing the number of filters
enables the network to learn more diverse and complex features
from the raw radar signal. Then, decreasing the number of filters
reduces computational complexity. Excessive filters may require
more computational resources. In comparison, a few filters can
reduce the overfitting risk, and speed up convergence.

For the proposed mechanism, the structure of the model on
both CU and various ACUs is same. First, the CU implements
pre-training. Based on the pre-trained model received from CU,
TL is implemented on each ACU, fixing some parameters and
retraining some of them. The process of edge CU pre-training
and transferring to various ACUs can be formulated as

Edge CU : F, + M[F|res],
ACU 1: Fi < M[F|Fp, 1,7, ],
ACU 2: Fy + M[F|F,, 1,7, ],

Pr¥r " 8o

)

ACU K : Fi < MIF|F,,1,r, ],

pPr"r sk

where M is the proposed FTL architecture for beam prediction.
F' denotes the untrained CNN model, F, represents the edge
CU, and Fj signifies the trained model in the ACU k. Then,
each ACU uploads the model parameters to the cloud server and
performs averaging aggregation to yield aggregated model F, =
1/ i Fr. Next, F, is transmitted to each ACU, conducting TL.
From aggregation of global models to TL is one iteration. Multiple
iterations are performed until the model of each ACU converges.

As there is no direct data transfer and few sample requirements,
FTL-based beam prediction offers a more secure and reliable
approach for smart sensing applications. By allowing each ACU
to map its unique feature space during the TL process, the require-
ment for all nodes to use the same feature data is eliminated. This
ensures that each node can implement beam prediction based on
its own data. However, since the data is available at each node,
the DL-based model is susceptible to over-fitting. Additionally,
directing transfer data to each ACU may result in communication
overload and increase data leakage risk. To address these concerns,
the proposed RaFT-BP delivers the pre-trained model between
various nodes. The optimization objective is defined as

min loss(M(F|F,, R),Y), (3)

where F, signifies the pre-trained model from the edge CU; F
denotes the transferred model in various ACU. M(-) is the FL
algorithm. ) represents the true label of R. loss(-) is the cross
entropy function.
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Fig. 2. The TL process of beam prediction for each CU node.

TABLE 1
THE DETAILS OF CNN-BASED BEAM PREDICTION MODEL IN RAFT-BP
Module Layer Output
Input Layer / 1x256x64
Conv2D(filters 8, size 3x3, padding
2)+Relu 8x256x64
Conv2D(filters 16, size 33, padding
2)+Relu 16x256x 64
Conv2D(filters 8, size 3x3, padding
CNN Module | 2)+AvgPool2d(size 2, stride 2)+Relu | 5*128x32
Conv2D(filters 4, size 3 x3, padding
2)+AvgPool2d(size 2, stride 2)+Relu | 4X04x16
Conv2D(filters 2, size 3 %3, padding %3
2)+AvgPool2d(size 2, stride 2)+Relu x32x8
Flatten / 512
FC+Relu 512x256
FC+Relu 256x 128
FC Module FC 12864

For the scheduling of the proposed architecture, the process
of radar signal collection begins with pre-training on the Edge
CU. This pre-trained model implements beam prediction based
on Edge CU data. Once the data collected at ACUs reaches a
certain threshold, the pre-trained model is fine-tuned based on
the TL mechanism. In the dynamic environment of radar-assisted
beamforming, the approach relies on the periodic transmission of
radar signals by transmission units. Based on the codebook, the
raw data of radar echos is analyzed by the trained model, which
infers the optimal beam-index. The corresponding beamforming
matrix, along with the phase adjustments of the antenna array, is
then used to form the required beam direction.

D. Computational Complexity

Time complexity is used to represent the computational com-
plexity of an algorithm, which measures computational efficiency
and resource consumption. Floating point operations (FLOPs)
can evaluate the time complexity of the model [16]. For the
CNN structure in the proposed algorithm, it consists of five
convolutional layers and three fully connected layers. The time
complexity of convolutional layer and fully connected layer are
formulated as

T ~O((F"y - F%)-(H-W)-c1-a),
ch ~0 ((Flh71 CF2y) e Cl) )

(©))
(10)

where T signifies the time complexity of convolutional layer and
ch represents the time complexity of fully connected layer; H-W
denotes the kernel size; ¢;—; and ¢; are input and output channels
of [-th layer; (Flh - F¥) represents the feature map of [-th layer.
In this way, for the non-TL approach, the time complexity TNt
for k£ nodes is

Tnr =k (a T +b-T)) (11)
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TABLE II
THE DETAILS OF THE EXPERIMENTAL DATASET

Settings
Feature

Assignments
Range-Angle
[1x256x64]
2000

ACUI: 400, ACU2: 500, ACU3: 400,
ACU4: 400, ACUS5: 300

Edge CU & ACUs: 0.01 (Reduced by
half every 20 rounds)

Data format
Number of data in edge CU

Number of data for each ACU

Learning rate

where a and b are the number of convolutional layers and fully
connected layers. For the TL approach, the time complexity Tpry,
for k nodes is
T k(T +®-1)-T]), 0<1< b,
Y k((a—-b) T, 1> b
where [ signifies the number of re-trained layers. Accordingly, the
ratio of time complexity Pr is expressed as

12

—4—i—i———x1%%,0§l§h
a-TCerb-TCf

M x 100%,
a-TY +b-T!

Consequently, the gain from TL over the traditional FL approach
is (1 — Pr).

III. EXPERIMENTS AND DISCUSSIONS

Pr = 13)

>0

A. Dataset and Settings

The proposed RaFT-BP scheme is evaluated by conducting
experiments on the DeepSense Scenario 9 [17], where a 64-beam
code is considered, the number of training data is 4199, and test
data is 593. In this way, the beam prediction accuracy is defined as
a 64-classification issue. Additionally, the Range-Angle feature is
employed to conduct our experiments, which is computed by (2).
Table II provides the details of the experimental dataset. Dynamic
learning strategies are implemented in this experiment. In the early
stages of model training, a larger learning rate can help the model
escape from local optima and accelerate the gradient towards the
global optimum. As the model approaches the optimal solution,
a smaller learning rate can lead to a more stable convergence.
The experiments are conducted using an NVIDIA GeForce GTX
1080Ti GPU, and the PyTorch framework implements the pro-
posed scheme.

B. Prediction Performance

To evaluate the influence of wireless parameters on the con-
vergence of the proposed technique, Additive White Gaussian
Noise (AWGN) is added to the DeepSense dataset in order to
examine the effect of SNR on experimental convergence. In this
way, datasets with SNR= {0 dB, 5 dB, 10 dB} are obtained. Fig. 3
illustrates the change in accuracy and loss values during training.
Experimental results illustrate the effect of wireless channel noise
parameters on model convergence, where model convergence
becomes slower and the upper limit of accuracy decreases in a
lower SNR environment. After 20 rounds of training, accuracy and
loss of training set converge gradually. According to the results,
the proposed algorithm converges quickly in weak computational
power and resource-constrained environments, and implements TL
at various nodes in the federated architecture.

We present the performance of beam prediction in Fig. 4, where
the proposed scheme is compared with [6] (Baseline), the No-
FTL method, and the FTL approach. Specifically, the baseline
algorithm considers an architecture trained on the data from each
ACU. The No-FTL scheme represents a pre-trained model trained
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on the cloud server, which conducts beam prediction on each ACU.
The FTL approach implements TL based on the pre-trained model
to perform beam prediction on various ACUs.

Fig. 4 highlights the impact of different training approaches on
beam prediction accuracy. When DL models are trained solely
on isolated data from each node, the beam selection accuracy for
each ACU ranges from 36.7% to 38.7%. Whereas, by utilizing a
pre-trained model from the edge CU, the beam selection accuracy
improves from 45.1% to 48.2%. Furthermore, implementing TL
at each ACU node further enhances the beam prediction accuracy,
resulting in accuracy ranging from 51.3% to 56.2%. Compared
with the baseline mechanism, the No-FTL scheme achieves a 7.3%
to 11.5% improvement, while the FTL approach surpasses the
baseline mechanism by 13.1% to 19.5%. Notably, the proposed
approach effectively addresses the challenge of data isolation
by transmitting model parameters. Directly applying No-FTL
methods to each node, where the model is trained on a few
samples, results in limited inference and recognition capabili-
ties. Consequently, by implementing federated transfer learning,
FTL achieves a significant improvement over No-FTL, which is
achieved with much fewer weight parameters.

The performance of the model is measured using both top-1
accuracy and top-5 accuracy. Top-5 accuracy provides a better
assessment of beam assignment fault tolerance, where multiple
suitable beams may appear in a communication system rather than
one absolutely correct answer. It still makes sense to use the model
even if the first option is not the best beam and the correct beam
is in the first five options.

Fig. 5 displays the comparison of top-1 and top-5 accuracy
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of beam prediction for each ACU under different frozen layers.
We conducted TL in the experiments by freezing four, five,
six, and seven layers. When four layers were frozen, the top-1
accuracy for beam prediction ranged from 42.8% to 49.3% across
various nodes, while the top-5 accuracy varied from 86.48% to
87.36%. With five frozen layers, the top-1 accuracy ranged from
51.8% to 56.3%, and the top-5 accuracy was between 91.8% and
93.49%. For six frozen layers, the top-1 accuracy ranged from
46.0% to 51.4%, and the top-5 accuracy ranged from 87.01%
to 89.75%. When seven layers were frozen, indicating retraining
only the last layer of the fully connected layer, the maximum
top-1 accuracy achieved for beam prediction was 54.1%, and the
top-5 accuracy was 91.23%. These results demonstrate that the
best beam prediction performance is obtained when five layers
are frozen. On the other hand, freezing four layers led to poor
accuracy due to insufficient training data for the convolutional part
of the model. The findings emphasize the importance of selecting
the appropriate number of frozen layers to achieve optimal beam
prediction accuracy.

In Fig. 6, the proposed method is compared with several
baseline approaches, including LeNet, FPN, VGGNet, ResNet,
Transformer, LSTM, Look Table [7], and FLHB [13]. All algo-
rithms are implemented under the conditions of 200, 300, 400,
500, and 600 training samples, and the beam prediction accuracy
of each approach is shown in Fig. 6. Specifically, for 200 training
samples, the top-1 accuracy of baseline methods varies from
21.4% to 24.6%, and the max top-5 accuracy of beam prediction
reaches 51.61%. As the number of training samples increases,
the accuracy of the baseline methods also increases accordingly.
When the training sample equals 600, the accuracy of the baseline
methods ranges from 36.4% to 39.9%, and the max top-5 accuracy
of beam prediction is 60.88%. The top-1 beam prediction accuracy
of the proposed mechanism exceeds 54.6%, and the top-5 reaches
93.78%, exceeding that of the baseline methods by 6.2% to
32.9%. These experimental results demonstrate that the proposed
mechanism effectively addresses the issue of low beam prediction
accuracy under distributed conditions.

IV. CONCLUSION

In this paper, we propose the RaFT-BP architecture, which aims
to improve beam prediction accuracy under the constraints of few
samples and distributed conditions. The effectiveness of the pro-
posed RaFT-BP mechanism is verified on the DeepSense dataset.
Experimental results demonstrate that the proposed mechanism
achieves promising beam prediction accuracy, ranging from 51.8%
to 93.78%. Moreover, numerical experiments reveal that freezing
five layers yields superior beam prediction accuracy. The proposed
algorithm outperforms baseline schemes with an average improve-
ment ranging from 11.9% to 33.2%. These results demonstrate
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Fig. 6. The top-1 and top-5 accuracy of beam prediction for the proposed scheme
and baseline methods under different training samples.

that the proposed RaFT-BP mechanism effectively addresses the
challenge of low beam prediction accuracy in distributed settings
with data isolation.
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