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Abstract

Intelligent reflecting surface (IRS) is a promising technology that provides high throughput in

future communication systems and is compatible with various communication techniques, such as non-

orthogonal multiple-access (NOMA). This paper studies the downlink transmission of the IRS-assisted

NOMA communication, considering the practical case of imperfect channel state information (CSI).

Aiming to maximize the system sum rate, a robust IRS-aided NOMA design is proposed to jointly find

the optimal beamforming vectors for the access point and the passive reflection matrix for the IRS.

This robust design is realised using the penalty dual decomposition (PDD) scheme, and it is shown that

the results have a close performance to their upper bound obtained from the corresponding perfect CSI

scenario. The presented method is compatible with both continuous and discrete phase shift elements

of the IRS. Our findings show that the proposed algorithms, for both continuous and discrete IRS, have

low computational complexity compared to other schemes in the literature. Furthermore, we conduct a

performance comparison between the IRS-aided NOMA and the IRS-aided orthogonal multiple access

(OMA). This comparison shows that robust beamforming techniques are crucial for the system to reap

the advantages of IRS-aided NOMA communication in the presence of channel uncertainty.
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Index Terms

Intelligent Reflecting Surface, Reconfigurable Intelligent Surface, Robust Design, NOMA, OMA.

I. INTRODUCTION

ONE of the most recognized multiple-access techniques for future communication systems

is the non-orthogonal multiple access (NOMA), which enables multiple users to share

the same resource block. These resource blocks could be orthogonal bandwidths, different time

slots or orthogonal spatial directions, when the system contains multiple-antenna access points

(AP). Contrary to NOMA, in the orthogonal multiple access (OMA) techniques, each resource

block is dedicated to only one user. Thus, by using NOMA, the system’s spectral efficiency is

potentially improved by a factor of K compared to OMA systems, where K is the number of

users served on each resource block. Despite all its benefits, the application of NOMA is limited

to the case where the directions of users’ channel vectors are similar [1]. Therefore, to broaden

the application of NOMA and improve its performance, intelligent reflecting surfaces (IRS) can

be utilized to manipulate the direction of the users’ channel vectors [2].

IRS is a promising technology for the next generation of wireless networks, improving both

spectral and energy efficiency through passive phase shifters that reconfigure the wireless propa-

gation environment [3]–[5]. IRS is compatible with numerous communication techniques, such as

millimeter-wave, Terahertz, physical layer security, simultaneous wireless information and power

transfer (SWIPT), unmanned aerial vehicle networks (UAV), MIMO, and NOMA [6]–[9]. Most

IRS-assisted system designs assume that cascaded AP-IRS-user channels are available at the AP,

as the estimation of IRS-related channels separately is difficult without active elements. Recent

works have addressed the issue of channel estimation error in IRS-aided systems, proposing

robust solutions [10]–[12]. Thus, in this paper, we focus on designing a robust IRS-aided NOMA

communication system.

A. Prior Work Regarding IRS-Aided NOMA

The application of the IRS for NOMA communication has attracted extensive research atten-

tion. In [2], the authors proposed a simple IRS-assisted NOMA downlink transmission. First,

they employed spatial-division multiple-access (SDMA) at the AP to generate orthogonal beams
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by using the spatial directions of nearby user channels. Then, the IRS-assisted NOMA was used

to ensure that additional cell-edge users can also be served on these beams by aligning the

effective channels of cell-edge users with the predetermined beams. In [13], the performance

comparison between NOMA and two types of OMA, namely frequency-division multiple-access

(FDMA) and time-division multiple-access (TDMA) was studied in an IRS-aided downlink

communication network. The transmit power minimization problem was solved for discrete

phase shifters at the IRS. It was shown that TDMA is always more power-efficient than FDMA,

but the power consumption of TDMA compared to NOMA depends upon the target rate and

the location of the users. The authors of [14] investigated the spectral efficiency improvement

of NOMA networks by considering an IRS-aided single-input single-output (SISO) network.

Specifically, they attempted to enhance the performance of the user with the best channel gain,

while all other users depended on the IRS. The authors of [15] considered the downlink transmit

power minimization problem for the IRS-aided NOMA system. They addressed the resulting

intractable non-convex bi-quadratic problem by solving the non-convex quadratic problems

alternately, and to solve the non-convex quadratic problems, they employed a difference-of-

convex (DC) programming algorithm. In [16], for the first time, the sum rate maximization

problem was addressed for a MISO IRS-aided NOMA system in the downlink transmission.

By using the alternating optimization technique, they designed the passive phase shifts of the

IRS and the active AP beamforming vector, alternately, for two cases of ideal and non-ideal

IRS phase shifters. In addition, the authors of [17] introduced a fairness-driven solution for

optimizing the rate performance in an IRS-assisted system, where a max-min problem was

defined and solved for target decoding signal-to-interference-plus-noise-ratio (SINR) among all

users by employing a combined-channel- strength (CCS) based user-ordering method, resulting

in readily decoupling the problem. In [18], the downlink transmission of an IRS-aided NOMA

system was investigated in terms of the energy efficiency/spectral efficiency trade-off. A multi-

objective optimization problem was formulated for jointly optimizing the power allocation, active

precoding and passive beamforming. Then, the weighted sum method was used to transform

this problem into a single objective problem which was then solved via an iterative alternating

optimization algorithm, where in each iteration a convex optimization was solved by CVX. In

[19], [20], the authors aimed to maximize the sum rate in the uplink transmission of an IRS-aided

NOMA system, and they proposed a semi-definite relaxation (SDR)-based algorithm that reached

near-optimal solutions. The authors of [19] showed that the IRS-aided NOMA outperforms
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the IRS-aided OMA in terms of the sum rate. The authors of [21], studied both uplink and

downlink transmission of IRS-aided NOMA and OMA systems. In [22], the authors investigated

the situations in vehicular communications where IRS-aided NOMA outperforms its counterparts

realized by OMA, and consequently presented an IRS deployment policy in hybrid access-assisted

vehicular networks. In [23], IRS-aided convert communications in the downlink and uplink

transmission were studied where the legitimate transmitter assisted NOMA in communicating

with a covert user terminal and a public user through leveraging the uncertainty appeared in

the wireless environments, whereas the legitimate transmitter-covert user link remained hidden.

Authors of [24], studied the performance of IRS-aided NOMA systems with a particular focus

on 1-bit coding while taking the residual interference into account within successive interference

cancellation (SIC) scheme to avoid error propagation and quantization error and consequently

decoding errors. In [25], an IRS-aided backscatter NOMA system with only two user terminals

was studied and the closed-form outage probability expressions were derived and validated in

terms of the power allocation, the number of IRS reflectors, the IRS coefficients and the rate

thresholds. In [26], the power optimization of a secure RIS-aided NOMA communication system

was investigated to mitigate the information leakage to the eavesdroppers while the legitimate

users’ reception quality vulnerability was minimized. However, this study considered the channel

uncertainty only for the eavesdropper and assumed that the perfect CSI of the legitimate users

were available at the AP through some channel estimation methods. The authors in [27], presented

a detailed overview of the IRS-aided NOMA communication systems in the literature.

B. Motivations and Contributions

All of the aforementioned contributions have considered the availability of perfect CSI, while

due to the passive nature of the IRS, channel acquisition in IRS-aided systems is quite challeng-

ing, especially for IRS-related channels. Although, some papers have presented robust beamform-

ing designs for IRS-aided MIMO systems [10]–[12], [28], [29], to the best of our knowledge,

no one has ever considered the effect of channel uncertainty entirely in IRS-assisted NOMA

and IRS-aided OMA systems. To address this issue, a robust design for an IRS-assisted NOMA

communication system is devised in this paper. To better clarify, the contributions of this paper

are summarized as follows:

• In this paper, for the first time, the channel estimation error is considered in the IRS-aided
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NOMA communication, and a robust design for IRS-assisted NOMA is presented. To do so,

an approximation for the channel estimation error is derived and the rates of the users are

formulated based on the channel uncertainty. Then, using the block successive upper bound

minimization/maximization (BSUM) [30], we calculate a tractable lower bound for the sum

rate. The penalty dual decomposition (PDD) technique [31] is utilised to design a joint

beamforming technique for the IRS and the AP that is robust to the channel uncertainty.

We maximize the lower bound of the sum rate through a low-complexity iterative algorithm,

where in each step closed-form solutions are calculated for the optimization variables. The

performance of the robust IRS-aided NOMA is compared with that of the non-robust and

the perfect CSI scenarios.

• We establish a comparison benchmark by providing a solution for the sum rate maximization

problem in an IRS-aided OMA system. To this end, we present a robust IRS-aided OMA

design using FDMA and TDMA. By comparing NOMA and OMA in three cases of perfect

CSI, imperfect CSI with robust design and imperfect CSI with non-robust design, we

provide a new understanding of IRS-aided OMA and IRS-aided NOMA systems and their

performance in different situations.

• We consider both discrete and continuous IRS, and we present optimal solutions for pas-

sive beamforming in both cases, without increasing the computational complexity. These

passive beamforming methods are used for both IRS-aided NOMA and IRS-aided OMA

communication systems.

• Based on our results we can claim that: i) the proposed method is robust to channel

estimation error, ii) the computational complexity of the proposed algorithm is very low

compared to other methods in the literature, iii) IRS-assisted NOMA outperforms IRS-

assisted OMA in terms of spectral efficiency under perfect CSI scenario, and iv) in the

imperfect CSI scenario, the IRS-aided NOMA undergoes a critical performance loss and

in severe channel uncertainties, it performs inferior to IRS-aided OMA unless the robust

beamforming design is used. Thus, according to our findings, it can be claimed that con-

sideration of channel uncertainty is crucial in IRS-aided NOMA systems, and the necessity

of a robust beamforming design is then highlighted.

The rest of this paper is organized as follows. The system model is presented in section

II. Section III is dedicated to the problem formulation of IRS-aided NOMA and section IV
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provides the PDD-based algorithm as a solution. In Section V the IRS-assisted OMA system

is presented and the sum rate maximization problem is solved for FDMA and TDMA modes.

Section VI provides a complexity analysis for the IRS-aided NOMA and OMA designs. Section

VII includes the simulation results, and finally, section VIII concludes this paper. Throughout

the paper, the variables, constants, vectors and matrices are represented by small italic letters,

capital italic letters, small bold letters and capital bold letters, respectively. If A represents a

matrix, the element in its ith row and jth column is represented by aij , and its ith column is

referred to by ai. The notation |.| denotes the absolute of a variable, the notation ||.|| stands for

the norm of a vector or the Frobenius norm of a matrix, depending on the argument, and ||.||∞
stands for the infinity norm of a matrix. Also, Re{.}, (.)∗ and (.)H stand for the real part of a

complex variable, the conjugate of a complex variable and the conjugate transpose of a complex

vector/matrix, respectively.

II. SYSTEM MODEL

Consider the downlink transmission of an AP with N antennas to 2Z single-antenna users. This

transmission is aided by an IRS equipped with M phase shifters. A smart controller in the AP

is responsible for managing the IRS by sharing information and coordinating the transmission.

The power of the signals being reflected by the IRS multiple times is much smaller than that of

the signal reflected once, and thus it can be ignored [32]. We investigate an indoor application

undergoing a rich scattering propagation environment; hence, we consider only non-line-of-sight

(NLOS) channels in our model [33]–[37]. As shown in Fig. 1, the users are uniformly distributed

in a disc Do with the radius ro, where the AP is located at the centre. In addition, we assume

that this disc is broken down into two zones, i.e. a smaller disc Di with radius ri and the same

origin is located inside the disc Do. Specifically, the radius of Di is smaller than that of the Do,
that is ro > ri. Furthermore, L primary users are assumed to be randomly distributed in Di,
while K secondary users are uniformly distributed in the rest of Do outside Di, i.e. {Do −Di}.
Hence, user l ∈ {1, ..., L} and user k ∈ {1, ..., K} are randomly scheduled and matched together

in a cluster. As the users in distinct clusters are allocated with orthogonal resource blocks owing

to employing frequency division multiplexing (OFDM), and consequently they might hardly

interfere each other, we aim to investigate the effects of intra-cluster interference rather than

inter-cluster interference.The clusters here refer to a classification of effective channels into
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Figure 1: The system model and cluster design [38].

superior and inferior channels in a NOMA system. For simplicity, we assume L = K, thus we

have Z clusters in the system, where Z = L = K. According to Fig. 1, the channel vectors from

the AP to the l-th primary user and the k-th secondary user, and from the IRS to these users are

denoted by h
[l]
AU,p ∈ C

1×N , h
[k]
AU,s ∈ C

1×N , h
[l]
IU,p ∈ C

1×M and h
[k]
IU,s ∈ C

1×M , respectively, while

each element of these vectors undergoes the Rayleigh flat fading, i.e. h
[l]
AU,p ∼ CN (0, β

[l]
AU,pI),

h
[k]
AU,s ∼ CN (0, β

[k]
AU,sI), h

[l]
IU,p ∼ CN (0, β

[l]
IU,pI) and h

[k]
IU,s ∼ CN (0, β

[k]
IU,sI), where β

[l]
AU,p, β

[k]
AU,s,

β
[l]
IU,p and β

[k]
IU,s represent the large-scale fading coefficients of their respective channels. The

channel matrix between the AP and the IRS is represented by GAI ∈ C
M×N which also follows

the complex normal distribution as vec(GAI) ∼ CN (0, βAII), with βAI being its large-scale

fading coefficient. It is assumed that the cascaded AP-IRS-user channels are available at the AP

imperfectly, and the source of this imperfection is the mobility of the users. Hence, we can assume

h
[l]
AU,p = ĥ

[l]
AU,p + h̃

[l]
AU,p, h

[k]
AU,s = ĥ

[k]
AU,s + h̃

[k]
AU,s, h

[l]
IU,p = ĥ

[l]
IU,p + h̃

[l]
IU,p and h

[k]
IU,s = ĥ

[k]
IU,s + h̃

[k]
IU,s,

where ĥ
[l]
AU,p, ĥ

[k]
AU,s, ĥ

[l]
IU,p and ĥ

[k]
IU,s represent the estimated channel vectors, and h̃

[l]
AU,p, h̃

[k]
AU,s,

h̃
[l]
IU,p and h̃

[k]
IU,s stand for the channel estimation error vectors with the following distributions

h̃
[l]
AU,p , h̃

[k]
AU,s ∼ CN

(
0, σ2

AUI
)
, (1)

and

h̃
[l]
IU,p , h̃

[k]
IU,s ∼ CN

(
0, σ2

IUI
)
. (2)

We assume only the distribution of channel estimation error caused by the users’ mobility with

respect to the AP and IRS, the estimated cascaded AP-IRS-user channels, and the estimated

AP-user channels are needed for the beamforming design [10]. Therefore, by defining an error
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distribution as the estimation error threshold, we aim to compensate for a tolerated estimation

error together with optimizing joint AP-IRS elements. Note that the superscripts in the notation

of channels demonstrate the number of the user, and the subscripts inform us about the two

nodes of the channel and the type of the user, i.e. primary (p) or secondary (s). For example,

the subscript AU means that the channel in question is between the AP and a user. For the rest

of this paper, all superscripts in [.] represent the number of a user, the letter p in the subscripts

refers to a primary user, and the letter s in the subscripts refers to a secondary user.

Prior to optimizing IRS-AP elements, we should consider a user pairing policy for applying

NOMA to the users with the same dedicated resource blocks. The users are initially categorized

into primary and secondary users, located at the center and edge of a cell defined by the disk

Do. The pairing process involves selecting a primary user from those within Di and a secondary

user from those in Do −Di for each primary-secondary user pair. This paper investigates the

use of both continuous and discrete phase shifters for IRS:

• Continuous IRS: In an ideal case, the IRS phase shifters are continuous, i.e. the set of

phase shifts can be expressed as ΨI = {θi|θi = ejψi , ψi ∈ [0, 2π]}.
• Discrete IRS: In a non-ideal scenario, the phase shifts are selected from a discrete set of

phases, i.e. ΨN = {θi|θi = ejψi , ψi ∈ B}, where B = { 2πm
MIRS

,m = 1, ...,MIRS} and MIRS

denotes the number of possible phases that can be selected by each phase shifter of the

IRS. In other words, MIRS implies the resolution of the phase shifters.

III. IRS-AIDED NOMA

We assume the information-bearing vector s ∈ C
(L+K)×1 is expressed as

s =
[
s[1]p , . . . , s

[L]
p , s[1]s , . . . , s

[K]
s

]T
, (3)

where s
[l]
p and s

[k]
s represent the signal intended for the l-th primary user and the k-th secondary

user, respectively. In this case, x
[l]
p � wl,ps

[l]
p and x

[k]
s � wk,ss

[k]
s denote the transmit vectors

intended for the l-th primary user and the k-th secondary user, respectively, where wl,p and wk,s

are their corresponding active beamforming vectors at the AP, and wl,pw
H
l,p and wk,sw

H
k,s are

their corresponding transmit powers. The signal received by the l-th primary user and the k-th
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secondary user are then written as

y[l]p =
(
h
[l]
AU,p + h

[l]
IU,pΨGAI

)
(x[l]

p + x[U(s,l,p)]
s ) + n[l]

p = h[l]
p x

[l]
p + h[l]

p x
[U(s,l,p)]
s + n[l]

p , (4)

y[k]s =
(
h
[k]
AU,s + h

[k]
IU,sΨGAI

)
(x[k]

s + x[U(p,k,s)]
p ) + n[k]

s = h[k]
s x[k]

s + h[k]
s x[U(p,k,s)]

s + n[k]
s , (5)

where U(s, l, p) stands for the secondary user that occupies the same spectrum as that of the

l-th primary user, U(p, k, s) stands for the primary user that occupies the same spectrum as

that of the k-th secondary user, Ψ represents the diagonal phase shift matrix of the IRS, and

h
[l]
p and h

[k]
s are the effective channels between the AP and the users which are defined by

h
[l]
p = h

[l]
AU,p+h

[l]
IU,pΨGAI and h

[k]
s = h

[k]
AU,s+h

[k]
IU,sΨGAI , respectively. Finally, n

[l]
p ∼ CN (0, σ2

n)

and n
[k]
s ∼ CN (0, σ2

n) represent the additive white Gaussian noise at their respective users. Now,

by reformulating the received signal in (4) and (5) in terms of the estimated channels, we have

y[l]p =ĥ[l]
p x

[l]
p + ĥ[l]

p x
[U(s,l,p)]
s + h̃[l]

p x
[l]
p + h̃[l]

p x
[U(s,l,p)]
s + n[l]

p , (6)

y[k]s = ĥ[k]
s x[k]

s + ĥ[k]
s x[U(p,k,s)]

p + h̃[l]
p x

[k]
s + h̃[l]

p x
[U(p,k,s)]
p + n[l]

p , (7)

where

ĥ
[i]
{p,s} � ĥ

[i]
AU,{p,s} + vĤ

[i]
c,{p,s}, (8)

h̃
[i]
{p,s} � h̃

[i]
AU,{p,s} + vH̃

[i]
c,{p,s}, (9)

v � (diag (Ψ))T = [θ1, . . . , θM ] . (10)

In (8) and (9), Ĥ
[i]
c,{p,s} = diag

(
ĥ
[i]
IU,{p,s}

)
GAI is the estimated cascaded AP-IRS-user chan-

nel and H̃
[i]
c,{p,s} = diag

(
h̃
[i]
IU,{p,s}

)
GAI represents the cascaded channel estimation error. The

distribution of the effective channel estimation error vector h̃
[i]
{p,s} for large values of M is

approximated by

h̃
[i]
{p,s} ∼ CN

(
0, σ2

hI
)
, (11)

where σ2
h = σ2

AU+Mσ2
IUβAI . The approximation in (11) is derived in the appendix of [10] where

it is shown that this approximation becomes more accurate when the number of IRS elements is

large. Also, it can be easily shown that this approximation remains valid whether the IRS phase

shifts are continuous or discrete. This approximation is valid for uncorrelated channels, however,

up to a certain amount of correlation is tolerable. The effect of channel correlation on the system

performance can be a topic to be analyzed in future works. We consider the decoding order {k, l}
for decoding user k ∈ {1, ..., K} and user l ∈ {1, ..., L} while using the successive interference
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cancellation (SIC) method. In other words, the l-th primary user first decodes the data flow of the

U(s, l, p)-th secondary user, then by cancelling its resulting interference, it decodes its own data

flow. The k-th secondary user, then, decodes its own data flow by treating the signal from the

U(p, k, s)-th primary user as the interference term. With this assumption, the following theorem

can be presented.

Theorem 1. The achievable sum rate of the users is obtained by

R[sum] =
L∑
l=1

R[l]
p +

K∑
l=k

R[k]
s , (12)

in which

R[l]
p =

1

Z
log2

(
1 +

|ĥ[l]
p wl,p|2

σ2
h

Z

(||wl,p||2 + ||wU(s,l,p),s||2
)
+ σ2

n

Z

)
, (13)

is the minimum achievable rate of the l-th primary user and

R[k]
s =

1

Z
log2

(
1 +

|ĥ[k]
s wk,s|2

|ĥ[k]
s wU(p,k,s),p|2 + σ2

h

Z

(||wU(p,k,s),p||2 + ||wk,s||2
)
+ σ2

n

Z

)
, (14)

is the minimum achievable rate of the k-th secondary user. In addition, the achievable rate of a

the secondary user U(s, l, p) when it is decoded by the l-th primary user is obtained as follows

R[U(s,l,p)],l
s,p =

1

Z
log2

(
1 +

|ĥ[l]
p wU(s,l,p),s|2

|ĥ[l]
p wl,p|2 + σ2

h

Z

(||wl,p||2 + ||wU(s,l,p),s||2
)
+ σ2

n

Z

)
, (15)

The proof of Theorem 1 is given in Appendix A. To ensure that the l-th primary user can cancel

the interference from the U(s, l, p)-th secondary user, the rate of the U(s, l, p)-th secondary user

when it is decoded by the l-th primary user should be no lower than the rate of the U(s, l, p)-th
secondary user when it decodes its own data flow, i.e. R

[U(s,l,p)],l
s,p ≥ R

[U(s,l,p)]
s , l ∈ {1, ..., L}

[17]. Based on (14) and (15), this can also be achieved if
|ĥ[l]

p wU(s,l,p),s|2
|ĥ[l]

p wl,p|2+bl
≥ |ĥ[U(s,l,p)]

s wU(s,l,p),s|2
|ĥ[U(s,l,p)]

s wl,p|2+bl
, l ∈

{1, ..., L}, where bl =
σ2
h

Z

(||wl,p||2 + ||wU(s,l,p),s||2
)
+ σ2

n

Z
. Now, we aim to jointly optimize the

active beamforming at the AP and the phase shifts at the IRS to maximize the sum achievable

data rate. Specifically, the optimization problem is formulated as follows

max
W,v

∑L
l=1R

[l]
p +

∑K
k=1R

[k]
s

s. t. |θi| = 1, i ∈ {1, ...,M},
trace

(
WWH

) ≤ P,

|ĥ[l]
p wU(s,l,p),s|2
|ĥ[l]

p wl,p|2+bl
≥ |ĥ[U(s,l,p)]

s wU(s,l,p),s|2
|ĥ[U(s,l,p)]

s wl,p|2+bl
, l ∈ {1, ..., L},

(16)

where W = [w1,p, . . . ,wL,p,w1,s, . . . ,wK,s], and P is the AP power budget. The optimization

problem (16) incorporates R
[l]
p and R

[k]
s which are nonlinear components with respect to (w.r.t)
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11

v and W, and make the problem non-convex. Additionally, the final constraint in (16) implies a

strong and mutual coupling between v and W which can be hardly dealt with in its initial form.

On the other hand, it is obvious that most presented methods for optimizing IRS elements take

continuous phases in consideration for the reflection coefficients, whereas practical scenarios

impose discrete phase shifts making the optimization problem intractable. Hence, in this paper,

we aim to address this non-convex problem towards finding near-optimal solutions with a low

complexity form in both cases of continuous and discrete phase shifts.

IV. THE PDD TECHNIQUE

In this section, inspired by the PDD method [31], [39], we propose a novel algorithm to

solve the problem in (16). To this end, we first introduce a set of auxiliary variables as S =

{T,v,W,W̄}, where T = WHĤH , W̄ = W, and we define

Ĥ �
[
ĥ[1] T
p , . . . , ĥ[L] T

p , ĥ[1] T
s , . . . , ĥ[K] T

s

]T
. (17)

With these definitions, the optimization problem becomes

max
S

∑L
l=1R

[l]
p +

∑K
k=1R

[k]
s

s. t. |θi| = 1, i ∈ {1, ...,M},
trace

(
W̄W̄H

) ≤ P,

|tl,l|2 ≤
∣∣tL+U(s,l,p),l

∣∣2 , l ∈ {1, ..., L},∣∣tL+U(s,l,p),L+U(s,l,p)

∣∣2 ≤ min
{∣∣tl,U(s,l,p)+L

∣∣2 , ∣∣tL+U(s,l,p),l

∣∣2} , l ∈ {1, ..., L},
T = WHĤH , W̄ = W.

(18)

Note that if the third and fourth constraints of (18) hold, then the third constraint of (16)

will definitely hold, but not vice versa. Please refer to Appendix B for further explanation.

Also, unlike the third constraint of (16), the two new constraints in (18) no longer have any

limitations on the level of estimation error and noise, but this feature is created by limiting

the feasibility region. In other words, by limiting the feasibility region, the third constraint of

(16) has been simplified. To obtain the augmented Lagrangian problem, all equality conditions

except for |θi| = 1, i ∈ {1, ...,M}, should be brought into the objective function [10], [39].

The reason is that by keeping this condition in the constrains, a closed-form solution can be

calculated with projection. The details are explained later in subsection IV-A. This leads to the
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following optimization problem

max
S

∑L
l=1R

[l]
p +

∑K
k=1R

[k]
s −Qγ(S)

s. t. |θi| = 1, i ∈ {1, ...,M},
trace

(
W̄W̄H

) ≤ P,

|tl,l|2 ≤
∣∣tL+U(s,l,p),l

∣∣2 , l ∈ {1, ..., L},∣∣tL+U(s,l,p),L+U(s,l,p)

∣∣2 ≤ min
{∣∣tl,U(s,l,p)+L

∣∣2 , ∣∣tL+U(s,l,p),l

∣∣2} , l ∈ {1, ..., L},

(19)

where Qγ(S) is calculated by

Qγ(S) = 1

2γ

( L+K∑
i=1

||wi − w̄i + γλwi
||2 +

L+K∑
i=1

L+K∑
j=1

|ti,j −wH
i ĥ

[j]H + γλhij |2
)
. (20)

In (20), wi and w̄i stand for the ith column of W and W̄, respectively. Also, ĥ[j] represents the

j-th row of the matrix Ĥ. The penalty parameter for the Lagrangian function is denoted by γ,

and λwi
and λhij are the dual variables of the equality conditions in problem (18). The vector

λwi
is the ith column of the matrix Λw and λhij is the element in the ith row and jth column of

Λh. The constraint T = WHĤH is only necessary to hold for the diagonal elements of T and

the elements of T which represent the primary and the secondary users that are paired together.

Thus (20) can be rewritten by

Qγ(S) = 1

2γ

( L+K∑
i=1

||wi − w̄i + γλwi
||2 +

L+K∑
i=1

L+K∑
j=1,
j∈Ji

|ti,j −wH
i ĥ

[j]H + γλhij |2
)
, (21)

where Ji = {j|j = i , j = L + U(s, i, p) or j = U(p, i − L, s)}. With this in mind, all other

elements of T can be set to zero. Now, in order to apply BSUM to (19), we introduce the

following theorem.

Theorem 2. The objective function of the optimization problem in (18) can be rewritten as

max
qi,ri,ci,di

L∑
l=1

(
log(cl)− clfl(ql,S)

)
+

K∑
k=1

(
log(dk)− dkgk(rk,S)

)
, (22)

where

fl(ql,S) = |1− q∗l ĥ
[l]
p wl,p|2 + σ2

h

Z
(||q∗lwl,p||2 + ||q∗lwU(s,l,p),s||2) + σ2

n

Z
|ql|2, (23)

gk(rk,S) =|1− r∗kĥ
[k]
s wk,s|2 + |r∗kĥ[k]

s wU(p,k,s),p|2 + σ2
h

Z
(||r∗kwU(p,k,s),p||2 + ||r∗kwk,s||2) + σ2

n

Z
|rk|2.
(24)

The proof of this theorem can be simply achieved by using the first-order optimality condition

on (22). Note that the function in (22) is convex w.r.t. the variables qi, ri, ci and di. To obtain
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the optimal values for these variables, we set the derivative of (22) w.r.t. q∗l , c∗l , r
∗
k, and d∗k, to

zero, which results in the following solutions

qoptl (S) = ĥ
[l]
p wl,p

|ĥ[l]
p wl,p|2 + σ2

h

Z

(||wl,p||2 + ||wU(s,l,p),s||2
)
+ σ2

n

Z

, (25)

coptl (S) = 1

fl(ql,S) = 1 +
|ĥ[l]
p wl,p|2

σ2
h

Z

(||wl,p||2 + ||wU(s,l,p),s||2
)
+ σ2

n

Z

, (26)

roptk (S) = ĥ
[k]
s wk,s

|ĥ[k]
s wk,s|2 + |ĥ[k]

s wU(p,k,s),p|2 + σ2
h

Z

(||wU(p,k,s),p||2 + ||wk,s||2
)
+ σ2

n

Z

, (27)

doptk (S) = 1

gk(rk,S) = 1 +
|ĥ[k]
s wk,s|2

|ĥ[k]
s wU(p,k,s),p|2 + σ2

h

Z

(||wU(p,k,s),p||2 + ||wk,s||2
)
+ σ2

n

Z

. (28)

This theorem gives a lower bound for the objective function of (18) as

Z
( L∑
l=1

R[l]
p +

K∑
k=1

R[k]
s

)
≥

L∑
l=1

(
log(cl)− clfl(ql,S)

)
+

K∑
k=1

(
log(dk)− dkgk(qk,S)

)
. (29)

This locally tight lower bound is tractable and by using it as the objective function, the following

optimization problem is driven

min
S

L∑
l=1

clfl(ql,S) +
K∑
k=1

dkgk(rk,S) +Qγ(S)

s. t. |θi| = 1, i ∈ {1, ...,M},
trace

(
W̄W̄H

) ≤ P,

|tl,l|2 ≤
∣∣tL+U(s,l,p),l

∣∣2 , l ∈ {1, ..., L},∣∣tL+U(s,l,p),L+U(s,l,p)

∣∣2 ≤ min
{∣∣tl,U(s,l,p)+L

∣∣2 , ∣∣tL+U(s,l,p),l

∣∣2} , l ∈ {1, ..., L}.

(30)

Note that (30) is obtained by using the right hand side of (29) instead of the objective function

in (19), and removing the constant terms, log(cl) and log(dk) from the objective function.

A. The BSUM Algorithm

By applying the BSUM method, the optimization problem in (30) can be solved via the

following steps, each resulting in a closed-form solution for a sub-set of the variables.

1) Step 1: Solving (30) for W: In order to determine the minimum point of the objective

function presented in equation (30) w.r.t. W, which is expressed as p(W) =
∑L

l=1 clfl(ql,S) +∑K
k=1 dkgk(rk,S)+Qγ(S), the first-order optimality condition is employed. This involves setting
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the derivative of the objective function w.r.t. wH
l,p and wH

k,s to zero, as
∂p(W)

∂wH
l,p

= 0 and
∂p(W)

∂wH
k,s

= 0.

These equations result in

wl,p =
(
2γ|ql|2clσ

2
h

Z
I+ 2γ|ql|2clĥ[l]H

p ĥ[l]
p + 2γ|rU(s,l,p)|2dU(s,l,p)ĥ

[U(s,l,p)]H
s ĥ[U(s,l,p)]

s + I

+ 2γ|rU(s,l,p)|2dU(s,l,p)
σ2
h

Z
I+ ĥ[l]H

p ĥ[l]
p + ĥ[U(s,l,p)]H

s ĥ[U(s,l,p)]
s

)−1(
w̄l,p − γλwl,p

+ 2γclqlĥ
[l]H
p

+ ĥ[l]H
p (t∗l,l + γλ∗hl,l) + ĥ[U(s,l,p)]H

s (t∗l,L+U(s,l,p) + γλ∗hl,L+U(s,l,p)
)
)
, l ∈ {1, . . . , L}, (31)

wk,s =
(
2γ|qU(p,k,s)|2cU(p,k,s)

σ2
h

Z
I+ 2γ|rk|2dkĥ[k]H

s ĥ[k]
s + 2γ|rk|2dkσ

2
h

Z
I+ I+ ĥ[U(p,k,s)]H

p ĥ[U(p,k,s)]
p

+ ĥ[k]H
s ĥ[k]

s

)−1(
w̄k,s − γλwk,s

+ 2γdkrkĥ
[k]H
s + ĥ[k]H

s (t∗L+k,L+k + γλ∗hL+k,L+k
)

+ ĥ[U(p,k,s)]H
p (t∗L+k,U(p,k,s) + γλ∗hL+k,U(p,k,s)

)
)
, k ∈ {1, . . . , K}, (32)

for the primary users and the secondary users, respectively. The results in (31) and (32) are

global minimum points of p(W), since this function is differentiable and convex w.r.t W.

2) Step 2: Solving (30) for W̄: Now, we need to consider the auxiliary variable W̄. The

corresponding optimization problem w.r.t W̄ is a projection of a point onto a ball centered

at the origin1. The closed-form solution exists as

W̄ = PP (W + γΛw), (33)

where PP (X) denotes the projection of X onto the convex set P .

3) Step 3: Solving (30) for T: In this step, the optimization problem is solved w.r.t T. Similar

to step 2, we can obtain the variable T through projection. To do so, we project the points tl,l and

tL+U(s,l,p),L+U(s,l,p), ∀l ∈ {1, ..., L}, into the balls centered at the origin with radii |tL+U(s,l,p),l|2
and min

{∣∣tl,U(s,l,p)+L

∣∣2 , ∣∣tL+U(s,l,p),l

∣∣2}, ∀l ∈ {1, ..., L}, respectively. In other words, 2L projec-

tions take place to solve the problem w.r.t T, as

tl,l = PP1(w
H
l,ph

[l]H
p + γλhl,l), (34)

tL+U(s,l,p),L+U(s,l,p) = PP2(w
H
U(s,l,p),sh

[U(s,l,p)]H
s + γλhL+U(s,l,p),L+U(s,l,p)

), (35)

where PP1(x) and PP2(x) denote the projection of x onto the convex sets P1 and P2, respectively.

4) Step 4: Solving (30) for v: The final step is to solve the problem for the variable v. To do

so, we first replace ĥ[i] by its definition in (8) and we write the objective function in (30) w.r.t

1The projection of a point X into a set X is defined by min
P∈X

‖X−P‖. In the case X is a sphere centered at the origin with

radius of R (X = {X|‖X‖ ≤ R}), the projection of X is obtained by R X
‖X‖+max(0,R−‖X‖) .
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the variable v. Assuming we have continuous phase shifters in the IRS, the problem could be

rewritten as

min
|θi|=1, i∈{1,...,M}

vAvH − 2Re{nvH}, (36)

where,

A =
K∑
k=1

dk|rk|2Ĥ[L+k]
c w[L+k]w[L+k]HĤ[L+k]H

c + dk|rk|2Ĥ[L+k]
c w[U(p,k,s)]w[U(p,k,s)]HĤ[L+k]H

c

+
L∑
l=1

cl|ql|2Ĥ[l]
c w

[l]w[l]HĤ[l]H
c +

L+K∑
i=1

L+K∑
j=1,
j∈Ji

Ĥ[j]
c wiw

H
i Ĥ

[j]H
c , (37)

n =
L+K∑
i=1

L+K∑
j=1,
j∈Ji

t∗i,jw
H
i Ĥ

[j]H
c − ĥ

[j]
AUwiw

H
i Ĥ

[j]H
c + γλ∗hi,jw

H
i Ĥ

[j]H
c

+
K∑
k=1

dkrkw
[L+k]HĤ[L+k]H

c − dk|rk|2ĥ[L+k]
AU w[L+k]w[L+k]HĤ[L+k]H

c

+
K∑
k=1

dk|rk|2ĥ[L+k]
AU w[U(p,k,s)]w[U(p,k,s)]HĤ[L+k]H

c

+
L∑
l=1

clqlw
[l]HĤ[l]H

c − cl|ql|2ĥ[l]
AUw

[l]w[l]HĤ[l]H
c . (38)

In (37) and (38), Ĥ
[j]
c is the cascaded channel of the j-th user when j ∈ {1, ..., L+K}, and it is

defined by Ĥ
[j]
c = diag(ĥ

[j]
IU)GAI , where ĥ

[j]
IU is the j-th row of [ĥ

[1]T
IU,p, ..., ĥ

[L]T
IU,p, ĥ

[1]T
IU,s, ..., ĥ

[K]T
IU,s ]

T .

Now for one specified θk, k = 1, ...,M , the optimization problem becomes

max
|θk|=1

2Re{ekθ∗k}, (39)

in which ek = nk −
∑M

i �=k θiaik. The solution to this optimization problem is

θk =
ek
|ek| . (40)

For a scenario where a discrete IRS is used with the discrete set of phases ΨN , the following

optimization problem should be solved

max
θk∈ΨN ,k=1,...,M

2Re{ekθ∗k}. (41)

The optimization problem (41) can be further simplified as

max
θk∈ΨN ,k=1,...,M

2 |ek| cos(ψk − ∠ek). (42)

where ∠ek denotes the argument of ek. The optimal solution to the problem in (42) can be found
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as follows

θk =
{
ejψm

∣∣∣m = argmax
m′

{
cos

( 2πm′

MIRS

− ∠ek
)
, m′ ∈ {1, . . . ,MIRS}

}}
. (43)

For instance, the solution to this optimization problem, given 1-bit phase shifters (MIRS = 2),

for a specified θk, k = 1, ...,M is given by

θk =

⎧⎪⎨
⎪⎩
ejψ1 , Re{ek} ≤ 0

ejψ2 , otherwise,
(44)

while for 2-bit phase shifters (MIRS = 4), the solution to Problem (42) is

θk =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

ejψ1 , |Re{ek}| ≤ |Im{ek}| and Im{ek} ≥ 0,

ejψ2 , |Re{ek}| ≥ |Im{ek}| and Re{ek} ≤ 0,

ejψ3 , |Re{ek}| ≤ |Im{ek}| and Im{ek} ≤ 0,

ejψ4 , |Re{ek}| ≥ |Im{ek}| and Re{ek} ≥ 0.

(45)

Given the solutions for a specific k ∈ {1, ...,M} in (43), an iterative algorithm is proposed to

alternately optimize one phase shift while keeping the others fixed until final convergence. This

algorithm is guaranteed to converge in both cases of continuous and discrete IRS phase shifts.

The BSUM algorithm to solve the optimization problem in (30) is summarised in Algorithm 1.

The parameters are initialized at the beginning of the overall algorithm which will be explained

in the following sub-section. The termination point of this algorithm is when a certain accuracy

is achieved for the variables.

B. The Overall PDD Algorithm and Convergence Analysis

The PDD algorithm for solving Problem (30) is described in Algorithm 2. As described in

Algorithm 2, the PDD method is a double loop algorithm, where in the inner loop the optimization

problem is solved via the BSUM method and in the outer loop the dual Lagrangian variables and

the penalty parameter are updated. A detailed convergence analysis for the PDD algorithm using

the BSUM method is provided in [31], thus to avoid redundancy we only refer to [31] regarding

the convergence of this algorithm. Specifically, it is shown that under appropriate conditions, the

sequence generated by the PDD method tends to a KKT point of the main problem. In Algorithm

2, the update method for the dual variable Λw in the kth iteration is

Λw(k) = Λw(k − 1) +
1

γ
(W(k)− W̄(k)). (46)
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Algorithm 1 The BSUM method to optimize (30)

Repeat

1. Compute qopti , ropti , copti and dopti by (25)-(28)

2. Compute W by (31), (32)

3. Compute W̄ by (33)

4. Compute T via (34) and (35)

5. Calculate A and n by (37) and (38)

6. Repeat:

For k ∈ {1, ...,M}: Compute θk by solving either (39) or (42)

Until v converges

7. Recalculate Ĥ with the updated v

Until some termination criterion is met.

The other dual Lagrangian variable, Λh, is updated in the same manner. Also, the penalty

parameter in the kth iteration is updated by

γ(k) = ζγ(k − 1), (47)

where ζ ∈ (0, 1) is a decreasing parameter.

Algorithm 2 The overall PDD algorithm

Initialize γ,Λh,Λw, η, ζ v,W such that all constraints are met

Compute Ĥ based on (17), T = WHĤH ,W̄ = W.

Repeat

1. Optimize (30) via the BSUM method in Algorithm 1

2. If

∣∣∣∣
∣∣∣∣
[
(W − W̄)T , (T−WHĤH)T

] ∣∣∣∣
∣∣∣∣
∞
≤ η: Update Λh,Λw as in (46)

Else: Update γ by (47)

Until convergence criteria is met.

V. IRS-AIDED OMA

In this section we consider IRS-aided FDMA and TDMA communication systems to provide a

comparison benchmark for IRS-aided NOMA. Here, we consider a system containing U single-

antenna users. The IRS-user, AP-user, and AP-IRS channels are denoted by h
[i]
IU , h

[i]
AU , and
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GAI , respectively, where i ∈ {1, ..., U}, and the effective channel between the ith user and

the AP is represented by h[i] = h
[i]
AU + v diag(h

[i]
IU)GAI . The estimated effective channel is

ĥ[i] = ĥ
[i]
AU + vĤ

[i]
c , where Ĥ

[i]
c = diag(ĥ

[i]
IU)GAI represents the cascaded channel, and ĥ

[i]
AU and

ĥ
[i]
IU are imperfect estimations for h

[i]
AU and h

[i]
IU , respectively. The channels and estimation errors

are generated similar to the IRS-NOMA scenario. Also, similar to the IRS-NOMA scenario, it

is assumed that the estimation error of the acquired effective channel follows the distribution

CN (0, σ2
hI) where σ2

h is calculated by (11). In the following, the FDMA and TDMA cases

are considered and a robust PDD-based solution is given that maximizes their sum rates. The

overall PDD algorithm for the FDMA and TDMA modes are similar to that of the NOMA mode

presented in Algorithm 2. The steps of the BSUM method are different, and they are presented

in the following sub-section with the revised formulas and parameters.

A. FDMA Mode

In the FDMA mode, the AP communicates with U users over U adjacent frequency resource

blocks. In this case, the achievable sum rate is calculated by

R
[sum]
FDMA =

1

U

U∑
k=1

log2

(
1 +

|ĥ[k]w[k]|2
1
U
σ2
h||w[k]||2 + 1

U
σ2
n

)
, (48)

where w[k] is the active beamforming vector for the kth user. The proof can be readily derived

with a similar approach to that of Theorem 1 in [10]. Assuming W = [w[1], ...,w[U ]], the resultant

optimization problem of maximizing the sum rate is written as

max
W,v

R
[sum]
FDMA

s. t. |θi| = 1, i ∈ {1, ...,M},
trace

(
WWH

) ≤ P.

(49)

To solve this optimization problem, we employ the same PDD-based approach as we conducted

for IRS-NOMA. We introduce a set of auxiliary variables X = {W,W̄,v}, such that W̄ = W.

We now obtain the following augmented Lagrangian problem

max
X

∑U
k=1 log2

(
1 + |ĥ[k]w[k]|2

1
U
σ2
h||w[k]||2+ 1

U
σ2
n

)
−QFDMA

γ (X )

s. t. |θi| = 1, i ∈ {1, ...,M},
trace

(
W̄W̄H

) ≤ P,

(50)

where QFDMA
γ (X ) = 1

2γ

∑U
i=1 ||w[i] − w̄[i] + γλwi

||2. To solve the problem using BSUM, we

employ the same procedure as in Theorem 2 and [39], to find a tractable locally tight lower
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bound for the achievable sum rate. This lower bound is given by

log2

(
1 +

|ĥ[k]w[k]|2
1
U
σ2
h||w[k]||2 + 1

U
σ2
n

)
= max

ck,qk
log2(ck)− ckf(qk), (51)

where f(qk) = |1− q∗kĥ
[k]
w[k]|2 + σ2

h

U
||q∗kw[k]||2 + σ2

n

U
|qk|2. The optimal values of ck and qk are

qoptk (X ) =
ĥ[k]w[k]

|ĥ[k]w[k]|2 + 1
U
σ2
h||w[k]||2 + 1

U
σ2
n

, (52)

coptk (X ) = 1 +
|ĥ[k]w[k]|2

1
U
σ2
h||w[k]||2 + 1

U
σ2
n

. (53)

The optimization problem can now be rewritten as

min
X

∑U
k=1 ckf(qk) +QFDMA

γ (X )

s. t. |θi| = 1, i ∈ {1, ...,M},
trace

(
W̄W̄H

) ≤ P.

(54)

Similar to the PDD-based algorithm we used for IRS-NOMA, by using the first-order optimality

condition, this problem can be solved in four steps w.r.t each of the variables individually. Then

through an iterative algorithm similar to Algorithm 2, the problem is solved.

1) Step 1: Solving (54) for W: The solution to this optimization problem w.r.t w[k], k ∈
{1, ..., U}, is given by

w[k] =
(
2γck|qk|2ĥ[k]Hĥ[k] +

1

U
2γck|qk|2σ2

hI+ I
)−1

×
(
w̄[k] + 2γckqkĥ

[k]H − γλwk

)
. (55)

2) Step 2: Solving (54) for W̄: The optimization problem w.r.t W̄ is equivalent to the pro-

jection of a point onto a ball centred at the origin, and it is solved similar to (33).

3) Step 3: Solving (54) for v: The solution to the problem w.r.t v is exactly the same as what

it was in IRS-NOMA, with A and n replaced by Ā and n̄, respectively, defined by

Ā =
U∑
k=1

ck|qk|2Ĥ[k]
c w[k]w[k]HĤ[k]H

c , (56)

n̄ =
U∑
k=1

ckqkw
[k]HĤ[k]H

c − ck|qk|2ĥ[k]
AUw

[k]w[k]HĤ[k]H
c . (57)

To be more specific, in the case of continuous IRS, the solution is given by (40) and in the case

of discrete IRS, the solution is driven by (43), depending on the resolution of the IRS, with the

new definitions of Ā and n̄ in (56) and (57), respectively.
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B. TDMA Mode

In the TDMA mode, the communication between the AP and the users occurs in adjacent

time-domain resource blocks. In this case, the achievable sum rate is obtained by

R
[sum]
TDMA =

1

U

U∑
k=1

log2

(
1 +

|ĥ[k]wk|2
1
U
σ2
h||wk||2 + 1

U
σ2
n

)
. (58)

Hence, the optimization problem becomes

max
W,v

R
[sum]
TDMA

s. t. |θi| = 1, i ∈ {1, ...,M},
trace

(
WWH

) ≤ P.

(59)

Solving this optimization problem is similar to solving (49). We use the PDD-based scheme to

solve the optimization problem in an iterative algorithm, where in each iteration closed-form

solutions are given for each of the variables. To this end, the optimization problem is rewritten

based on the auxiliary variables in X as an augmented Lagrangian problem, and then the sum

rate is replaced by its tight lower bound, which results in the tractable optimization problem in

(54). The solution to the optimization problem in (54) in the TDMA mode, for the variables

W and W̄ are given by (55) and (33), respectively. However, the solution of (54) for v is not

the same as FDMA or NOMA modes. Note that, unlike NOMA and FDMA, in TDMA the IRS

phase shifts for each user can be optimized separately over different time slots. The IRS passive

beamforming can be time-selective, however, it cannot be frequency-selective, thus in TDMA,

we have ĥ[k] = ĥ
[k]
AU +v[k]Ĥ

[k]
c , in which v[k] denotes the value of v in the k-th time slot, where

user k is being served. With this fundamental difference in mind, the following optimization

problem should be solved for each k ∈ {1, ..., U}
min
v[k]

v[k]Ǎ[k]v[k]H − 2Re{ňv[k]H}
s. t. |θ[k]i | = 1, i ∈ {1, ...,M},

(60)

where,

Ǎ[k] = ck|qk|2Ĥ[k]
c w[k]w[k]HĤ[k]H

c , (61)

ň[k] = ckqkw
[k]HĤ[k]H

c − ck|qk|2ĥ[k]
AUw

[k]w[k]HĤ[k]H
c . (62)
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To solve the equivalent problem (60), we can follow the same way as that of (36). In this case,

for each time slot k and for one specific phase shift θ
[k]
j , The solution would be obtained as

θ
[k]
j =

ě
[k]
j∣∣∣ě[k]k
∣∣∣
, (63)

where ě
[k]
j = ň

[k]
j −

∑M
i �=j θiǎ

[k]
ij . In the case of a discrete IRS, the solution would be calculated

with the same approach as (43).

VI. COMPLEXITY ANALYSIS

In this section, the complexity of the proposed method is calculated and it is compared with

other techniques in the literature. The proposed scheme in Algorithm 2 is iterative, and each

iteration contains Algorithm 1. The termination criterion of Algorithm 1, is achieving a certain

accuracy for the variables, i.e. Algorithm 1 is terminated when b(W̄,W,v,T) = ||W̄(i)−W̄(i−
1)||+ ||W(i)−W(i− 1)||+ ||v(i)−v(i− 1)||+ ||T(i)−T(i− 1)|| < η0a(W̄,W,v,T), where

i is the number of inner loop iteration and η0 = 0.1, and a(W̄,W,v,T) = ||W̄|| + ||W|| +
||v||+ ||T||. As the number of outer iterations increases, this accuracy is achieved in fewer inner

loop iterations. In the final iterations of the outer loop, this accuracy is very close, and the inner

loop ends in only one iteration. Thus, on average, the number of inner loop iterations to achieve

the required accuracy is very low and does not affect the order of the computational complexity.

In each iteration, the computational complexity consists of calculating the variables in steps 1

through 7 of Algorithm 1, which is O(U2N + U(N3 + (3.5 +N)M2 + 13MN)), and updating

either the dual Lagrangian variables or the penalty parameter. Note that in step 2 of Algorithm

2, the order of complexity is the highest when the dual variables are updated, i.e. O(2U2N).

Also, for updating v, the maximum computational complexity is to calculate the values of A

and n, which is done only once in each iteration of BSUM (refer to step 5 and 6 of Algorithm

1). Considering a system with a total of U = K +L users where M > N,U , and assuming the

BSUM technique terminates in less than 10 steps, the order of complexity for each iteration of

Algorithm 2, for the IRS-aided NOMA, is

O (
3U2N + U(N3 + (3.5 +N)M2 + 13MN)

)
. (64)

For the IRS-aided OMA, the order of complexity for calculating the dual variables is negligible,

thus only the complexity of Algorithm 1 needs to be considered here. In this case, the order of
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complexity of each iteration of Algorithm 2 for IRS-OMA becomes

O (
U(N3 + (1 +N)M2 + 4MN)

)
. (65)

It is apparent that for large values of M , the computational complexity of IRS-NOMA and

IRS-OMA are in the same order.

The computational complexity of the proposed PDD-based algorithm for IRS-aided NOMA

is lower than that of the methods in the literature focusing on sum rate maximization in the

downlink. In this section, we compare the complexity of our proposed algorithm to those

presented in [16], [18]. In [16], an alternating optimization technique was used to find the

optimal active AP beamforming vector and the passive IRS phase shifts for the sum rate

maximization problem. The authors used the interior-point solver in CVX to solve the resulting

convex optimization problems in each iteration of their algorithm which scales up the order of

complexity. For instance, the complexity of each iteration of the algorithm proposed in [16] is

O(max(N, 3U(U − 1)4)
√
N log(

1

μc
) + (3U2 +M)3.5), (66)

where μc is the accuracy defined in [16]. In [18], the authors presented an iterative alternating

optimization algorithm, where each iteration included three steps of solving convex optimization

problems using the CVX toolbox. The Computational complexity for each iteration of this

algorithm is

O((N4.5 + (M + 1)4.5 + U3.5) log
1

μ
), (67)

where μ represents the accuracy of CVX. Now, consider a simple case where U = 2, μc = 0.1

and μ = 0.1. In this scenario, the complexity ratio of the PDD-based algorithm to the methods

in [16] and [18] is shown in Fig. 2. As shown in this figure the computational complexity of our

method is far less than the algorithms proposed in [16] and [18] for different system dimensions.

VII. NUMERICAL RESULTS

In this section, the performance of our proposed algorithm is evaluated in terms of the average

sum rate of the system. The NOMA system model under study contains L = 3 primary users and

K = 3 secondary users, which is equivalent to U = 6 single-antenna users in the OMA scenario.

An AP with N = 4 antennas communicates with the users and an IRS with M elements assists

this communication. Without loss of generality, we assume that the AP is located at the point
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Figure 2: The complexity ratio of the PDD-based algorithm to the algorithm in [16], i.e.
(64)
(66)

,

and the algorithm in [18], i.e.
(64)
(67)

.

[0, 0] at the center of D0, and the IRS is located at the point [−0.25, 0.25]. The radius of D0

and Di are r0 = 1 km and ri = 0.3 km, respectively. The large-scale fading coefficients, βAU ,

βIU and βAI are modeled by 3GPP standards in [40], where each large scale fading coefficient

is calculated by 10 log10(β) = −10 − 20 log10(d) + Z. In this model, d represents the distance

between the two nodes in km and the parameter Z is a random variable with the distribution of

Z ∼ CN (0, σ2
shad) where σ2

shad = −22 dB represents the shadowing. Unless stated otherwise,

it is assumed that the noise variance at each user is σ2
n = −10 dB, the transmission power of

the AP is P = 1, and the estimation error variances are σ2 = σ2
AU = σ2

IU = −10 dB. In the

IRS-NOMA scenario, we utilized the policy presented in [41], where the users are paired based

on their direct channels to AP. To be specific, for a NOMA system with 2K users, the optimal

pairing policy is ui,j =

⎧⎪⎨
⎪⎩
1, i+ j = U + 1;

0, Otherwise,
, where ui,j, i, j ∈ {1, . . . , U} stands for a

coefficient showing that the i-th user is paired with the j-th user if its value equals 1. Therefore,

the overall pairing policy follows an appropriate condition for using NOMA by having a weak

channel and a strong channel respectively for the edge user and central user. The simulation

parameters for Algorithm 2 are ζ = 0.95, η = 0.3, γ = 4.518, and the dual Lagrangian variables

are initialized by setting all of their values to 0.1. To initialize the variables W and v at the

beginning of the algorithm (step zero), we set W0 = 0.9
√

P
2UN

(1 + j1) and v0 = 1, where 1

is an all-one matrix/vector with the appropriate size. In our simulations, ”perfect CSI” refers to

the scenario where there is no channel uncertainty (σ2 = σ2
AU = σ2

IU = 0). ”Robust” refers to a

case where σ2 �= 0 and we use the beamforming design that is robust to the channel uncertainty,
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Figure 3: Evaluation of the IRS-NOMA system in terms of robustness to channel uncertainty.

which is presented in Algorithms 1 and 2. ”Non-robust” refers to a case where σ2 �= 0, however,

the AP is unaware of this channel uncertainty. This can be realized by setting σ2
h = 0 in all of

the formulations that are used in Algorithms 1 and 2. This inherently effects the output rate.

In Fig. 3 we evaluate the robustness of the proposed scheme to channel uncertainty. Specif-

ically, Fig. 3.(a) compares the IRS-aided NOMA system with the case where NOMA is used

without the assist of an IRS. In this figure, the average sum rate is demonstrated versus the

variance of channel estimation error, for three NOMA systems, one without IRS, one with an

IRS of size M = 10, and one with an IRS of size M = 60. It is shown that even with a

small-scale IRS with only a few tens of antennas, the system performance is much better than

when IRS is not employed. The advantages of IRS-NOMA are due to the capability of the IRS

to modify the propagation environment such that the direction of users’ channel vectors become

more alike. Furthermore, the ability of the system to cancel out the channel estimation error is

improved by the number of passive elements in the IRS, since the IRS creates more degrees

of freedom for the system. In Fig. 3.(b) the sum rate is depicted versus the number of IRS

elements (M ) for three cases of robust design, non-robust design and perfect CSI. It is shown

that the performance of the proposed robust method is better than the non-robust case. Note

that, as M increases, the gap between the robust design and the non-robust structure widens as a

consequence of using the approximation in (11) which is only accurate when M is large [10]. In

other words, by increasing M , the system becomes more robust. Through simulation, we verify

the validity of the approximation in (11) for M > 50, where the amount of uncertainty in this
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Figure 4: Comparison among IRS-aided FDMA, TDMA and NOMA.

approximation drops to less than 2% of σ2
h.

Fig. 4 proposes a comparison between IRS-assisted NOMA and OMA systems, i.e. TDMA

and FDMA, in three cases of perfect CSI, imperfect CSI with robust design, and imperfect CSI

with non-robust design. In Fig. 4.(a), the average sum rate is shown versus the number of IRS

elements, for σ2 = −10 dB. In this figure, it is demonstrated how IRS-aided NOMA outperforms

OMA in terms of average sum rate. It is noteworthy that, in the case non-overlapping resource

blocks are dedicated to users, the throughput of NOMA should be theoretically twice that of

OMA thanks to employing twice as much resource blocks as OMA, and IRS is a beneficial tool

for realizing such a situation. However, in practice, there would be some residual co-channel

interference due to non-ideal similarity in the directions of users’ channels. It is also shown

that TDMA has a superior performance than FDMA. This is driven by the fact that in TDMA,

the IRS phase shift matrix is adjusted for each user separately, while in FDMA the phase shift

matrix should be in charge of optimizing both users’ propagation environments at the same time,

making the IRS less flexible to the channel variation. In other words, FDMA is not able to fully

leverage the degree of freedom rendered by the IRS. Fig. 4.(b) depicts the system average sum

rate versus the variance of the channel estimation error (σ2). It is assumed here that an IRS with

M = 60 elements aids either of the NOMA, TDMA or FDMA communications. As shown in this

figure, in the perfect CSI scenario, IRS-NOMA always renders superior performance compared

to IRS-OMA due to channel reconfiguration abilities of the IRS. However, by increasing the

channel estimation error, the performance of the non-robust IRS-NOMA drops quickly until it
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Figure 5: Comparison between the two cases of continuous and discrete IRS.

becomes fairly close to the performance of IRS-TDMA in larger values of σ2. This limitation

stems from the fact that for a high channel uncertainty level, the system operates in a noise-

dominant environment, and the promising features of the IRS can hardly extend to the case

undergoing severe channel uncertainty. As shown in this figure, the robust IRS-NOMA design

can compensate for the performance losses due to the channel uncertainty. Thus, this figure

proves that to benefit from the advantages of the IRS-NOMA, having a beamforming design

robust to the channel estimation error is crucial.

Fig. 5 demonstrates the effectiveness of the proposed robust PDD-based methods for a discrete

IRS with phase resolutions of MIRS ∈ {2, 4} by comparing their performances to those of a

continuous IRS. In Fig 5.(a), the average sum rate of the robust IRS-NOMA scheme is shown

versus M for different levels of channel uncertainty. The performance of the discrete method

where MIRS = 4 is very close to that of the continuous IRS-NOMA. In case MIRS = 2, there

is a performance loss in the system due to the smaller resolution of the IRS elements, yet

this performance loss is negligible. In summary, the proposed method using a discrete IRS can

achieve high performance in IRS-NOMA with a less complex structure. Fig. 5.(b) displays the

average sum rate versus M for robust IRS-aided OMA under channel uncertainty of σ2 = −10
dB. This figure reveals that the performance loss of the discrete IRS designs are negligible

compared to the continuous IRS designs. Thus, by using a discrete IRS, we can reduce the

hardware complexity while avoiding severe performance loss in IRS-OMA systems.
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Figure 6: Performance of the system in terms of BER.

In Fig. 6, the performance of the IRS-aided NOMA system is studied in terms of bit error

rate (BER) for an uncoded BPSK modulation. In Fig. 6.(a), we employ both continuous and

discrete phase shifters with different resolutions, in an IRS with M = 150 elements. This figure

shows the significance of estimation error cancellation in an IRS-aided NOMA system. Note

that in the IRS-NOMA system, the transmission power, i.e. trace(WWH), depends on many

system variables such as the value of channel uncertainty σ2
h. Thus, the SNR changes with system

variables. The SNR for achieving the results in Fig. 6.(a) was in the range of [0, 4.5] dB. Fig.

6.(b) presents a performance comparison between the presented method in the Algorithm 2 and

the method proposed in [18]. It is shown that in a perfect CSI scenario, the method presented

in [18] achieves a better performance, but in the case of imperfect CSI, our robust design can

compensate for the channel uncertainty up to an acceptable level. As discussed in Section VI,

the order of computational complexity of our method is far less than those presented in the

literature. However, there is a trade-off between performance and complexity. To be specific, by

choosing the accuracy threshold for Algorithm 1 as η0 = 0.1, we can maintain low complexity at

the cost of performance, but in case we set a better accuracy for the termination criterion, i.e. for

any η0 < 0.1, better results can be achieved at the cost of high computational complexity. Thus,

in our presented PDD-based scheme, we have a trade-off between performance and complexity

and based on our system requirements and limitations, we can choose the right value for η0 to

achieve the desired result. Based on our simulations, by setting η0 = 0.1, we can maintain a low

complexity while the algorithm performs well.
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VIII. CONCLUSION

This paper investigated the benefits of using IRS in a NOMA communication system. We

jointly optimized the AP beamforming vector and the IRS entries under imperfect CSI, to

maximize the sum rate. The PDD algorithm was applied to design a robust joint beamforming at

the IRS and the AP. The proposed method was an iterative algorithm with closed-form solutions

in each step, resulting in a low computational complexity. Two cases of continuous and discrete

IRS were considered, and a low-complexity solution was proposed for the discrete phase shift

selection. Numerical results demonstrated the efficiency of the robust design compared to the

non-robust and the perfect CSI scenarios. In addition, the study compared NOMA to OMA in

two scenarios involving IRS-assisted FDMA and TDMA systems, and concluded that the robust

IRS-aided NOMA technique outperforms the robust IRS-OMA in terms of spectral efficiency.

APPENDIX A

PROOF OF THEOREM 1

Let I
(
x
[i]
{p,s}; y

[i]
{p,s}|ĥ[i]

{p,s}
)

be the conditional mutual information of primary user i conditioned

on estimated channel vector ĥ
[i]
{p,s}. Note that {p, s} is replaced with p if user i is a primary user,

and replaced with s if user i is a secondary user. Expanding I
(
x
[i]
{p,s}; y

[i]
{p,s}|ĥ[i]

{p,s}
)

in terms of

the differential entropies results in

I
(
x
[i]
{p,s}; y

[i]
{p,s}|ĥ[i]

{p,s}
)
= H

(
x
[i]
{p,s}|ĥ[i]

{p,s}
)
−H

(
x
[i]
{p,s}|y[i]{p,s}, ĥ[i]

{p,s}
)
. (68)

The first term on the right hand side of (68) simplifies to log2 det (2πevi) , where vi � E
{
x[i]x[i]H

}

denotes the transmit co-variance matrix related to x
[i]
{p,s} [42]. The second term of the right-hand

side of (68) is upper bounded by the entropy of a Gaussian random variable [43] as follows

H(x
[i]
{p,s}|y[i]{p,s}, ĥ[i]

{p,s}) ≤ log2 det
(
2πe(wi,{p,s} −

wi,{p,s}ĥ
[i]H
{p,s}ĥ

[i]
{p,s}wi,{p,s}

ĥ
[i]
{p,s}wi,{p,s}ĥ

[i]H
{p,s} + Γ

[i]
{p,s}

)
)
, (69)

in which

Γ[l]
p � 1

Z

(
σ2
h trace (wl,p) + σ2

h trace
(
wU(s,l,p),s

)
+ σ2

n

)
, (70)

Γ[k]
s � ĥ[k]H

s wU(p,k,s),pĥ
[k]
s +

1

Z

(
σ2
h trace

(
wU(p,k,s),p

)
+ σ2

h trace (wk,s) + σ2
n

)
. (71)

Now, we employ the Woodbury matrix identity as follows

(A+BCD)−1 = A−1 −A−1B
(
C−1 +DA−1B

)−1
DA−1. (72)

Page 28 of 66IEEE Transactions on Wireless Communications

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



29

Assuming A = I, B = ĥ[i]H , C = Γ
[i]−1

{p,s} and D = ĥ[i]wi,{p,s}, and using (72), it is concluded

I−
ĥ
[i]H
{p,s}ĥ

[i]
{p,s}wi,{p,s}

ĥ
[i]
{p,s}wi,{p,s}ĥ

[i]H
{p,s} + Γ

[i]
{p,s}

=
(
I+

ĥ
[i]H
{p,s}ĥ

[i]
{p,s}wi,{p,s}

Γ
[i]
{p,s}

)−1

. (73)

Thus, the right hand side of (69) can be rewritten as

log2 det
(
2πewi,{p,s}

(
I−

ĥ
[i]H
{p,s}ĥ

[i]
{p,s}wi,{p,s}

ĥ
[i]
{p,s}wi,{p,s}ĥ

[i]H
{p,s}+Γ

[i]
{p,s}

))

= log2 det
(
2πewi,{p,s}

(
I+

ĥ
[i]H
{p,s}ĥ

[i]
{p,s}wi,{p,s}

Γ
[i]
{p,s}

)−1)

= log2 det
(
2πewi,{p,s}

)− log2 det
(
I+

ĥ
[i]H
{p,s}ĥ

[i]
{p,s}wi,{p,s}

Γ
[i]
{p,s}

)
. (74)

Exploiting (74) and employing Sylvester’s determinant theorem, i. e., det(I + AB) = det(I+

BA), (69) is rewritten as

H
(
x
[i]
{p,s}|y[i]{p,s}, ĥ

)
≤ log2 det

(
2πewi,{p,s}

(
I−

ĥ
[i]H
{p,s}ĥ

[i]
{p,s}wi,{p,s}

ĥ
[i]
{p,s}wi,{p,s}ĥ

[i]H
{p,s} + Γ

[i]
{p,s}

))

= log2 det
(
2πewi,{p,s}

)− log2 det
(
1 +

ĥ
[i]
{p,s}wi,{p,s}ĥ

[i]H
{p,s}

Γ
[i]
{p,s}

)
. (75)

Consequently, assuming E{|s[i]{p,s}|2} = 1 and utilizing (75), (68) leads to

I
(
x
[i]
{p,s}; y

[i]
{p,s}|ĥ[i]

)
≥ log2 det

(
1 +

ĥ
[i]
{p,s}wi,{p,s}ĥ

[i]H
{p,s}

Γ
[i]
{p,s}

)
= log2

(
1 +

∣∣ĥ[i]
{p,s}wi,{p,s}

∣∣2

Γ
[i]
{p,s}

)
. (76)

Thus, the minimum achievable rates of the l-th primary user and the k-th secondary user are

R[l]
p = log2

(
1 +

|ĥ[l]
p wl,p|2

σ2
h

(||wl,p||2 + ||wU(s,l,p),s||2
)
+ σ2

n

)
, (77)

R[k]
s = log2

(
1 +

|ĥ[k]
s wk,s|2

|ĥ[k]
s wU(p,k,s),p|2 + σ2

h

(||wU(p,k,s),p||2 + ||wk,s||2
)
+ σ2

n

)
. (78)

APPENDIX B

FURTHER EXPLANATIONS ON THE CONSTRAINTS OF PROBLEM (18)

In this appendix, we provide further explanations on deriving the third and fourth constraints of

(18) from the third constraint of (16). In (16), we have
|ĥ[l]

p wU(s,l,p),s|2
|ĥ[l]

p wl,p|2+bl
≥ |ĥ[U(s,l,p)]

s wU(s,l,p),s|2
|ĥ[U(s,l,p)]

s wl,p|2+bl
, l ∈

{1, ..., L}. Based on our definitions of T = WHĤH , W = [w1,p, . . . ,wL,p,w1,s, . . . ,wK,s]

and Ĥ �
[
ĥ
[1] T
p , . . . , ĥ

[L] T
p , ĥ

[1] T
s , . . . , ĥ

[K] T
s

]T
, this ratio can be rewritten by

|tL+U(s,l,p),l|2
|tl,l|2+bl ≥
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|tL+U(s,l,p),L+U(s,l,p)|2
|tl,L+U(s,l,p)|2+bl . Now, this constraint can be replaced by the third and fourth constraints of

(18), based on the following theorem.

Theorem 3. Given the four non-negative real variables a, b, c, d ≥ 0, if a ≥ c, a ≥ b and d ≥ c,

for all non-negative real values of K we have a
b+K

≥ c
d+K

.

Proof. It is apparent that if a ≥ c and d ≥ b, the inequality a
b+K

≥ c
d+K

holds. Thus, the proof

is complete if d ≥ b. In the case where b ≥ d, only one option exists to arrange the variables,

that is 0 ≤ c ≤ d ≤ b ≤ a. In this case, suppose that the inequality does not hold. We have

a

b+K
<

c

d+K
→ a(d+K)− c(b+ k)

(b+K)(d+K)
< 0→ a(d+K)− c(b+K) < 0→

(ad− cb) +K(a− c) < 0
{1}−−→ ad < cb→ a

b
<
c

d
, (79)

where {1} results from the fact that K(a − c) ≥ 0. Now, based on our original assumption of

0 ≤ c ≤ d ≤ b ≤ a, we have a
b
≥ 1 and c

d
≤ 1. Hence, the resulting inequality in (79) is

inaccurate which proves that the inequality a
b+K

≥ c
d+K

holds. Thus, the proof is conducted.
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