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Abstract—In this paper, the downlink transmission of an
intelligent reflecting surface (IRS)-assisted multiple-input single-
output (MISO) system is investigated where the IRS elements
are selected from a predefined discrete set of phase shifts. We
minimize the mean square error (MSE) of the received symbols
in the system via optimizing the phase shifts at the IRS jointly
with beamforming vectors at the base station (BS) and equalizers
at the user terminals. In order to find the optimal IRS phase
shifts, a trellis-based structure is used that smartly selects the
discrete phases. Moreover, for the sake of comparison, a semi-
definite programming (SDP)-based discrete phase optimization is
also presented. The BS beamformer and the optimal equalizers
are determined via closed-form solutions. Numerical results
demonstrate that the trellis-based scheme has better performance
compared to other discrete IRS phase shift designs, such as
SDP and quantized majorization-minimization technique, while
maintaining a very low computational complexity.

Index Terms—Multiple-input single-output, Intelligent Reflect-
ing Surface, Reconfigurable Intelligent Surface, Trellis.

I. INTRODUCTION

I INTELLIGENT reflecting surface (IRS) has been intro-

duced as a promising technique for providing a low-cost

spectrum and energy efficient wireless solution that achieves

high performance by reconfiguring the wireless propagation

environment [1]. An IRS is a meta-surface with passive radio

elements that reflect the RF waves towards a specific direction

via passive reflection beamforming. Hence, deploying such a

structure requires a large number of passive elements without

any power amplifiers, which makes it a low-cost and power

efficient technology. Motivated by these beneficial features,

the topic of IRS-aided multiple-input single-output (MISO)

systems has seen a significant surge in popularity among

researchers in the field of 5G communications and beyond.

Recently, various passive beamforming schemes have been

studied in the literature for different IRS-aided systems [2].

In [3], a multiple-input single-output (MISO) system was

considered, in which an IRS was applied to assist the com-

munication from the multi-antenna base station (BS) to mul-

tiple single-antenna users. Specifically, two solutions for IRS

phase optimization problem were proposed based on semi-

definite relaxation (SDR) and alternate optimization tech-
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niques. The authors in [4] studied the effects of channel

estimation error in an IRS-aided MISO system, and they

presented an alternating algorithm for joint optimization of the

BS and IRS beamformers using the Lagrangian method and

the majorization-minimization (MM) technique, respectively.

In [5], the authors considered the joint active and passive

discrete beamforming optimization problem in an IRS-aided

MIMO system to minimize the total transmit power. They

presented an optimal solution for discrete phase optimization

where the complexity was exponential with the number of

IRS elements. To decrease the complexity, they designed a

sub-optimal solution by using an iterative algorithm, where in

each step, only one phase shift was optimized while the other

phase shifts remained constant. This process was repeated

until convergence was achieved. In [6], the energy efficiency

maximization problem was studied through the joint power

allocation and discrete phase optimization. The authors relaxed

the problem by solving it for a continuous phase shift vector,

and they used the quantization method to obtain discrete

phase shifts. It was shown that in terms of average energy

efficiency, there is a large gap between the discrete and infinite-

resolution phase shifters, but in terms of average sum-rate, the

quantization method has a near-optimal performance when the

number of IRS elements is large. In [7] a mathematical-based

approach is presented to handle the optimization of discrete

IRS elements by using some auxiliary continuous variables

and inserting some penalty terms into the objective function

for converting these continuous variables and replacing non-

convex components with approximated convex ones through

using the successive convex approximation method. However

this method seems to be too sub-optimal as there would be no

well-optimized policies for converting the continuous variables

into discrete ones, other than weighted penalty terms following

some linear approximations.

It is worth noting that most methods in the literature deal

with designing continuous phase shifts, which is impractical

in real scenarios. In addition, few works devoted to adopting

discrete phase shifts, either impose very high computational

complexity, or are sub-optimal. Hence, this paper aims to pro-

pose a smart discrete IRS design by employing a trellis-based

realization which results in a significantly low-complexity

solution for its corresponding optimization problem.

II. SYSTEM MODEL AND PROBLEM FORMULATION

In this paper, we consider the downlink transmission of

a multi-user MISO system aided by an IRS. The system
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contains a BS with M active antennas serving K single-

antenna users. The downlink transmission is assisted by an

IRS with N passive elements. Due to path loss, we only

consider the first pilot signal that is reflected by the IRS

and we ignore the signals that are reflected two or more

times. Hence, the received signal by the ith user is written as

y[i] =
∑K

k=1 g
[i]v[k]s[k]+n[i], where g[i] = h

[i]H
r ΨG+h

[i]H
d

is the effective channel between the ith user and the BS,

v[k] ∈ C
M×1 is the active beamforming vector for the ith

user, s[k] is the desired symbol for the ith user with unit power,

and n[i] is the additive white Gaussian noise at the ith user

with zero mean and variance σ2. The IRS-user, BS-IRS and

BS-user channels are denoted by h
[i]
r ∈ C

N×1, G ∈ C
N×M

and h
[i]
d ∈ C

M×1, respectively. The IRS phase shift matrix

is shown by Ψ which is a diagonal matrix with the discrete

entries ψk ∈ B, where B is the set of NIRS possible discrete

phases, shown by B = {e j2πm
NIRS ,m = 1, ..., NIRS}. Each user

applies a one-tap equalizer, denoted by c[i], to the received

signal to detect the transmit symbol. Therefore, the estimated

symbol for the ith user is ŝ[i] = c[i]y[i]. In this paper, the

criteria of minimizing the MSE is employed. To this end, we

form the following optimization problem

min
V,c[i],Ψ

∑K
i=1E|ŝ[i] − s[i]|2

s. t. Tr(VVH) ≤ P,
ψk ∈ B, k = 1, ..., N,

(1)

where V = [v[1], ...,v[K]] ∈ C
M×K , and P is the maximum

transmit power at the BS. Note that the expectation is taken

over the data symbols and the additive Gaussian noise received

at the users. We assume that E{ssH} = I and E{ss[i]∗} = 1i,

where s = [s[1], ..., s[K]]T , and 1i is an all zero vector with

a 1 at the ith element. With these assumptions at hand, the

objective function in (1) can be rewritten as

MSE =
K∑
i=1

|c[i]|2 Tr(VHg[i]Hg[i]V)

− 2Re{c[i]g[i]v[i]}+ |c[i]|2σ2 + 1. (2)

It can be recognized that the optimization problem in (1) is

non-convex. Therefore, we propose an alternating optimization

technique to find solutions for each variable alternatively.

III. PROPOSED SOLUTION

In this section, an alternating optimization technique is

presented to solve the problem in (1). To do so, in each step,

the problem is solved with respect to only one variable, and

this continues until some convergence criteria is met. In the

following, the steps of this algorithm are presented.

A. Optimization of the equalizers

In the first step, given a fixed V and Ψ, the optimal

equalizer for each user is calculated. The optimization problem

with respect to c[i] would be

min
c[i]

∑K
i=1 |c[i]|2 Tr(VHg[i]Hg[i]V)

−2Re{c[i]g[i]v[i]}+ |c[i]|2σ2.
(3)

The solution to this problem is the Wiener filter [8],

c[i] =
v[i]Hg[i]H

g[i]VVHg[i]H + σ2
. (4)

B. Optimization of the BS beamformer

In the second step, given fixed Ψ and c[i], the optimization

problem in (1) is solved with respect to V. To this end, the

optimization problem is rewritten as

min
V

Tr
(
VH

(∑K
i=1 |c[i]|2g[i]Hg[i]

)
V
)

−2Re
{∑K

i=1 c
[i]g[i]v[i]

}
s. t. Tr(VVH) ≤ P,

(5)

which can be reformulated by

min
V

||VD− I||2F
s. t. Tr(VVH) ≤ P,

(6)

where D = CH, C = diag([c[1], ..., c[K]]) and H =
[g[1]T , ...,g[K]T ]T . This optimization problem in (6) is in the

form of a least square problem. By assuming that the constraint

does not exist, the solution to this optimization problem is

V = DH(DDH)−1. (7)

In case Tr(VVH) ≤ P , the solution stands, but if

Tr(VVH) > P , the beamforming matrix V needs to be

projected into a ball centered at the origin with radius P .

Hence, V needs to be updated by

V =

√
PV√

P ||V||+max{0,√P − ||V||} . (8)

C. Optimization of the IRS discrete phase shifters

In the final step, the problem is solved with respect to Ψ,

for fixed values of V and c[i]. To this end, the optimization

problem becomes

min
Ψ

∑K
i=1 |c[i]|2 Tr(VHg[i]Hg[i]V)

−2Re{c[i]g[i]v[i]}
s. t. ψk ∈ B, k = 1, ..., N.

(9)

In the following, we propose a trellis-based method while

introducing the semi-definite programming (SDP)-based alter-

native for the sake of comparison.

1) Trellis-based Solution

We assume discrete phase shifters for the IRS, i.e. the

phases are selected from a set of discrete phases, referred to

as B. Therefore, assuming there are NIRS possible phases

in B, there are (NIRS)
N ways to allocate phases to the

IRS elements. In the literature, this problem has either been

solved by using the exhaustive search algorithm, which im-

poses a large computational complexity on the system, or it

has been addressed by using sub-optimal techniques such as

quantization. In spite of its low computational complexity,

it can be shown that the quantization technique inflicts an

inevitable loss to the system performance. To address these

issues, here we employ a smart phase selection method with
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low computational complexity, using trellis. Note that this

technique can be easily employed in other system models.

To use the trellis method, the objective function must be a

summation of real terms, where the jth term is a function of

only the first j variables. In other words, using simple linear

algebra, we reformulate the objective function in (9) as

f(Ψ) =
N∑

k=1

Re
{
ψk

( K∑
i=1

|c[i]|2q[i]
k VVHh

[i]
d

)

+ ψk

k−1∑
n=1

ψ∗n
( K∑
i=1

|c[i]|2q[i]
k VVHq[i]H

n

)

− ψk

( K∑
i=1

c[i]q
[i]
k v[i]

)}
, (10)

where q
[i]
k ∈ C

1×M is the kth row of the matrix G
[i]
c =

diag(h
[i]H
r )G, which represents the BS-IRS-user cascaded

channel for the ith user. As shown in (10), to optimally select

the phase of the kth element, we require only the phases of

the first k− 1 elements. Therefore, we can use trellis to solve

the following optimization problem

min
Ψ

f(Ψ)

s. t. ψk ∈ B, k = 1, ..., N.
(11)

To solve the problem in (11), we first introduce a variable

T which represents the memory window of the trellis, i.e. in

each step, the trellis takes T of the variables ψk to form its

states. Each of the variables ψk can have NIRS possible phase

choices. Hence, the trellis structure can be formed as in Fig.

1, with (NIRS)
T states, each having NIRS outgoing branches

with labels selected from B.

In the first stage, the first T variables are selected as initial

memory, and their (NIRS)
T permutations of phase selection

are considered as the initial states. To move from current states

to the next, in the nth stage where the memory includes nth

to (n + T − 1)th variables, the memory window moves to

the (n + 1)th to (n + T )th variables. Then, the next states

are formed by considering all possible phase selections for

the (n + T )th variable. There are multiple branches entering

each states; therefore, to select one branch and remove the

others, we use the MSE benchmark. In other words, at the nth

stage, we calculate the value of (10) for the (n+T )th variable

(ψn+T ), and the benchmark for each branch is the (n+ T )th
term of (10). At each stage, the cumulative benchmark of

branches are calculated by adding the branch benchmarks

to the cumulative benchmark of their originating paths, and

then among all branches entering the same state, all but

one with the least cumulative benchmark are removed. The

algorithm terminates after N − T stages, when the window

has covered all variables. Finally, the path with the least

cumulative benchmark is selected as the final solution to the

problem in (11). Algorithm 1 summarizes the trellis method.

2) SDP-based Solution

To facilitate a benchmark for the trellis-based solution, the

SDP method could be employed for solving problem (9).

Algorithm 1 Trellis Algorithm to solve (11)

Input : B,Ψinitial

Initialize all possible permutations of ψ1, . . . , ψT

for i = T + 1, . . . , N do
for j = 1, . . . , NIRS do
ψi = B(j);
Calculate (10) as the benchmark;

end for
Eliminate all paths except the one with the minimum

benchmark value;

end for
Choose ψi, . . . , ψN , such that they lead to the minimum

cumulative benchmark value.

Output : Ψ = diag([ψi, . . . , ψN ])

To this end, by defining f = [ψ1, ..., ψN ] the optimization

problem (9) would be reformulated as

min
f

Tr(ΓfHf) + 2Re{Tr(γf)}
s. t. ψk ∈ B, k = 1, ..., N,

(12)

in which Γ =
∑K

i=1

∣∣c[i]∣∣2 G[i]
c VVHG

[i]H
c and γ =∑K

i=1

(∣∣c[i]∣∣2 G[i]
c VVHh

[i]
d − c[i]G[i]

c v[i]
)

. Now, by assum-

ing f ′ = [f , 1] and Δ =

[
Γ γH

γ 0

]
, the equivalent opti-

mization problem can be written by

min
F

Tr (ΔF)

s. t. diag (F) = 1(N+1)×1, Rank(F) = 1,
F � 0, ψk ∈ B, k = 1, ..., N,

(13)

where F = f ′Hf ′. By relaxing the optimization problem in

(13) and removing the rank one constraint, we have

min
F

Tr (ΔF)

s. t. diag (F) = 1(N+1)×1

F � 0, ψk ∈ B, k = 1, ..., N,

(14)

For a rank-one matrix F, vectors f ′ and f would be straightfor-

wardly recovered from F and mapped into the discrete phases,

otherwise, in case the rank of F is r > 1, the following

procedure could be adopted

1) Solve SDP-driven problem (14) to reach an optimal

solution F∗. Owing to the fact that F∗ is a positive

semi-definite matrix, the Cholesky decomposition could

be used as F∗ = LLH .

2) Consider a random vector w following the distribution

w ∼ CN (0, IN+1).
3) For s = 1, 2, . . . , N + 1, let ψ̂s = h(lsw), where ls

denotes the s-th row of L and the function h() is defined

as follows

h(x) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

1, arg(x) ∈ [ −π
NIRS

, π
NIRS

)

e
j2π

NIRS , arg(x) ∈ [ π
NIRS

, 3π
NIRS

)
...

e
j2π(NIRS−1)

NIRS , arg(x) ∈ [ (2NIRS−3)π
NIRS

, (2NIRS−1)π
NIRS

)
(15)
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Figure 1: Trellis-based design for determination of Ψ.

Algorithm 2 Overall Algorithm to solve (1)

Initialize : Ψ,V, c[i] such that all constraints are met.

RepeatUntil : convergence criteria are met.

Phase1 : For fixed Ψ and V, find c[i] using (4).

Phase2 : For fixed c[i] and Ψ find V using (7).

if Tr(VVH) > P :

Update V using (8)

Phase3 : For fixed c[i] and V find Ψ via trellis/SDP.

Output : Ψ,V, c[i]

Note that ψ̂s ∈ B, s = 1, . . . , N , satisfies the constraint of

the optimization problem in (9) and Ψ̂ = diag
(
[ψ̂1, . . . , ψ̂N ]

)
implies the final solution. It can be shown, this method leads

to an
(NIRS sin( π

NIRS
))2

2NIRS
-approximation.

D. Overall Algorithm

In this section, the algorithm to solve the optimization

problem in (1) is presented. We use a three phase alternating

optimization technique. In the first phase the equalizers are

optimized, in the second phase the optimal BS beamformer

is determined and in the final phase the trellis method is

employed for the IRS phase selection. The steps of the overall

algorithm are explained in Algorithm 2.

IV. COMPLEXITY ANALYSIS

The proposed scheme in Algorithm 2 is iterative. In each

iteration, the optimal values for c[i] and V are calculated by (4)

and (7), respectively, which has the combined computational

complexity in the order of O(K3+2K2M +MK). Also, the

discrete IRS phase shifts are determined in each iteration via

the trellis method in Algorithm 1. The trellis-based algorithm

consist of N − T stages. The optimization problem in (11)

consists of (NIRS)
T states with NIRS branches entering each

state. Hence, a total of (N − T )(NIRS)
T+1 comparisons are

needed. This number is negligible compared to an exhaustive

search approach with (NIRS)
N comparisons, especially for

large values of N . To have a comparison benchmark for the

proposed method, we compare the trellis-based phase selection

scheme with the SDP method, the MM-based method in [4]

and the presented successive refinement algorithm in [5]. The

computational complexity of the SDP-based method using

the interior point algorithm with an accuracy ε > 0, would

be O((N + 1)3.5)NIRS log(1/ε) + 2N) [9]. On the other

hand, the complexity of the MM-based scheme is on the

order of O(n(NM + N2)), where n represents the number

of MM iterations, and the complexity of the method in [5] is

on the order of O
(
ÎitrNIRS(K

3 +K2M +KMN)
)

, where

Îitr > N is the number of iterations required for achieving the

convergence of the successive refinement algorithm. To have

a better understanding, consider a system with M = K = 4
and N = 100. By using a trellis structure with T = 2 and

NIRS = 2, the complexity of the trellis-based method is 10−3

times that of the MM method in [4] and the successive refine-

ment method in [5], and 10−5 times that of the SDP scheme.

We show in Section VI that a trellis with T = NIRS = 2 is

enough for having a near-optimal performance.

V. INTERFERENCE ANALYSIS

Here, we aim to investigate the impact of presence of the

IRS from the interference point of view. To this end, using

the definition of g[i] = fG
[i]
c + h

[i]H
d , the MSE in (2) is

reformulated as MSE=MSEIRS-free + JIRS, where

MSEIRS-free =

K∑
i=1

|c[i]|2 Tr(h[i]H
d VVHh

[i]
d )

− 2Re{c[i]h[i]H
d v[i]}+ |c[i]|2σ2 + 1,

(16)

represents the MSE in case the system is not equipped with

an IRS and

JIRS=
K∑
i=1

|c[i]|2 Tr(fG[i]
c VVHG[i]H

c fH)

+2|c[i]|2 Re{Tr(VHh
[i]
d fG[i]

c V)}−2Re{c[i]fG[i]
c v[i]},

(17)

stands for the IRS impact on the system. Note that, equipping

the propagation environment with the IRS would lead to

either a constructive impact or a destructive impact on the

system performance based on the value of (17). In particular,

since MSEIRS-free has a positive value, in order to provide a

constructive impact, JIRS in (17) should be negative. On the

other hand, owing to the positive value of MSE, we have

|JIRS| < MSEIRS-free. In section VI, the proposed method is

evaluated in terms of the interference mitigation.

VI. NUMERICAL RESULTS

In this section, the performance of the smart trellis-based

IRS phase selection algorithm is evaluated in terms of MSE per

user. It is assumed that the channel vectors h
[i]
r , i = 1, ..., N ,

and G are modeled by the Ricean fading with a Ricean factor

of 10, while h
[i]
d , i = 1, ..., N , is a Rayleigh flat fading. The

large-scale path loss is modeled by β(d) = β0d
−η , where

β0 = −30 dB is the path loss at the distance of 1 m, d
is the distance between the two nodes of the link in meters

and η is the path loss exponent which is set to η = 2 for
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Figure 2: MSE vs. N , for different values of T and NIRS .
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Figure 3: MSE vs. N , for different IRS beamforming methods.

channels with line of sight components and η = 3 for channels

without line of sight components. The system is considered

to have a BS with M = 4 antennas serving K = 4 single-

antenna users randomly located within a 100 m vicinity of

the BS. An IRS, located at the distance of 100 m from the

BS, aids this communication by re-configuring the propagation

environment. The IRS is equipped with N discrete elements

with the resolution NIRS = 4. The maximum power of the BS

is P = 10 and the power of noise at each receiver is σ2 = 0
dB. In the trellis structure, the memory of the trellis is T = 2,

and we use a 4-PSK modulation to drive our results.

Fig. 2 demonstrates the performance of the trellis-based

method versus N , for different values of T and NIRS .

As shown here, with larger trellis memory, the performance

becomes better, since the trellis can take more IRS elements

into consideration. Also, the higher the resolution of the IRS

elements is, the lower the MSE gets. However, take into con-

sideration that the better performance gained by higher values

of T and NIRS comes at the cost of higher computational

complexity, as discussed in section IV. So, there is a trade-

off between performance and complexity. Fig. 3 compares the

performance of the trellis-based scheme to the MM method

presented in [4]. The black graph is the solution of the MM

method in case of having continuous IRS and the purple one

is the case where in each iteration of the MM algorithm, the

phase shifts are quantized with the resolution of NIRS = 2.

As shown in this figure, the trellis algorithm has a better

performance compared to not only the quantized MM method

with the same resolution but also the SDP-driven method.

Moreover, by comparing the figures 3 and section IV, it can be

concluded that a trellis structure with a resolution of NIRS = 2
and the memory T = 2 is very efficient in terms of complexity

and it has almost the same performance as the continuous

IRS case solved with the MM method. In Fig. 4, the effect

of an IRS employing the trellis-based scheme with T = 2

and NIRS = 2 is investigated in two different systems with

parameters K = M = 4 and K = M = 6. It is shown that

the value of JIRS is negative for different realizations of the

system model, and the MSE which is given in (2) is reduced

by increasing N . Thanks to such a negative value for JIRS, it

can be claimed that employing the IRS with a large number

of reflectors results in an obvious constructive impact on the

system performance from MSE standpoint in comparison with

the case in which the system is not equipped with the IRS.
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Figure 4: Interference versus number of IRS elements (N ).

VII. CONCLUSION

In this paper, a smart phase selection scheme based on the

trellis algorithm is presented for discrete phase optimization of

an IRS-aided MISO system. This algorithm is compared to the

MM solution in the literature, which was aimed for continuous

IRS. The numerical results demonstrate that while the trellis-

based scheme has much lower computational complexity than

the MM method, the performance loss caused by the discrete

phase shifts is negligible.

REFERENCES

[1] C. Pan, H. Ren, K. Wang, W. Xu, M. Elkashlan, A. Nallanathan, and
L. Hanzo, “Multicell MIMO Communications Relying on Intelligent
Reflecting Surfaces,” IEEE Transactions on Wireless Communications,
vol. 19, no. 8, pp. 5218–5233, Aug. 2020.

[2] X. Yu, V. Jamali, D. Xu, D. W. K. Ng, and R. Schober, “Smart
and Reconfigurable Wireless Communications: From IRS Modeling to
Algorithm Design ,” arXiv:2103.07046, Mar 2021.

[3] Q. Wu and R. Zhang, “Intelligent Reflecting Surface Enhanced Wireless
Network via Joint Active and Passive Beamforming,” IEEE Transactions
on Wireless Communications, vol. 18, no. 11, pp. 5394 – 5409, Nov 2019.

[4] J. Zhang, Y. Zhang, C. Zhong, and Z. Zhang, “Robust Design for Intelli-
gent Reflecting Surfaces Assisted MISO Systems,” IEEE Communications
Letters, vol. 24, no. 10, pp. 2353–2357, Oct 2020.

[5] Q. Wu and R. Zhang, “Beamforming Optimization for Wireless Network
Aided by Intelligent Reflecting Surface With Discrete Phase Shifts,” IEEE
Transactions on Communications, vol. 68, no. 3, pp. 1838–1851, Mar.
2020.

[6] C. Huang, G. C. Alexandropoulos, A. Zappone, M. Debbah, and C. Yuen,
“Energy Efficient Multi-User MISO Communication using Low Resolu-
tion Large Intelligent Surfaces,” 2018 IEEE Globecom Workshops, GC
Wkshps 2018 - Proceedings, sep 2018.

[7] S. Hu, Z. Wei, Y. Cai, C. Liu, D. W. K. Ng, and J. Yuan, “Robust and
Secure Sum-Rate Maximization for Multiuser MISO Downlink Systems
with Self-sustainable IRS ,” arXiv:2005.11663, Jan 2021.

[8] D. G. Manolakis, V. K. Ingle, and S. M. Kogon, Statistical and Adap-
tive Signal Processing: Spectral Estimation, Signal Modeling, Adaptive
Filtering and Array Processing. New York, NY, USA: McGraw-Hill,
2000.

[9] C. Helmberg, F. Rendl, R. J. Vanderbei, and H. Wolkowicz, “An interior-
point method for semidefinite programming,” SIAM Journal on Optimiza-
tion, vol. 6, no. 2, pp. 342–361, 1996.

Page 5 of 12 IEEE Communications Letters

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60


