
1

Low-Complexity Robust Beamforming Design for
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Abstract—In this paper, large-scale intelligent reflecting sur-
face (IRS)-assisted multiple-input single-output (MISO) system is
considered in the presence of channel uncertainty. To maximize
the average sum rate of the system by jointly optimizing the
active beamforming at the BS and the passive phase shifts at
the IRS, while satisfying the power constraints, a novel robust
beamforming design is proposed by using the penalty dual
decomposition (PDD) algorithm. By applying the upper bound
maximization/minimization (BSUM) method, in each iteration of
the algorithm, the optimal solution for each variable can be
obtained with closed-form expression. Simulation results show
that the proposed scheme achieves high performance with very
low computational complexity.

Index Terms—Intelligent Reflecting Surface, Reconfigurable
Intelligent Surface, Robust Design, Penalty Dual Decomposition.

I. INTRODUCTION

INTELLIGENT reflecting surface (IRS) is one of the most

promising techniques to improve the spectral efficiency in

wireless communication systems. The basic function of the

IRS is to reconfigure the wireless propagation environment

using a meta-surface with a number of artificial passive

elements [1], [2]. To be specific, by designing a passive

beamforming at the IRS, the electromagnetic waves could be

reflected towards a specific direction. Due to the passive nature

of the IRS, channel acquisition in IRS-aided systems seems

to be challenging, especially for the IRS-related channels. The

reason is that the IRS does not possess active radio frequency

chain or any other signal processing units for sending pilot

signals or processing training signals, respectively. To address

this issue, in [3], the authors installed several active elements

in IRS for channel estimation. However, this causes extra

power consumption and data exchange overhead for the sys-

tem. Fortunately, it is found that the cascaded BS-IRS-user

channel is sufficient for the transmission design. Hence, most

of the existing works focused on the study of the estimation

of BS-IRS-user channels [4]. Although the channel estimation

for IRS-aided communication systems has been extensively

Yasaman Omid, Cunhua Pan and Arumugam Nallanathan are with the
School of Electronic Engineering and Computer Science, Queen Mary Uni-
versity of London, U.K. (e-mail: y.omid@qmul.ac.uk; c.pan@qmul.ac.uk;
a.nallanathan@qmul.ac.uk).

Seyyed MohammadMahdi Shahabi is with the Department of Electrical
Engineering, K. N. Toosi University of Technology, Tehran, Iran (e-mail:
shahabi@ee.kntu.ac.ir).

Yansha Deng is with the Department of Engineering, Kings College
London, U.K. (e-mail: yansha.deng@kcl.ac.uk).

studied, most of the existing transmission design is based on

the idealistic assumption of perfect channel state information

(CSI). There are only a paucity of research works that have

studied the robust transmission design by considering the

imperfect CSI [5]–[7].

The robust transmission design for IRS-aided systems was

first studied in [5], where the authors considered a bounded

CSI error model for an IRS-aided multi-user MISO system. By

resorting to the technique of semidefinite programming (SDP),

the transmit power minimization problem was converted into

a sequence of convex sub-problems that can be efficiently

solved. In [6], the transmit power minimization problem for an

IRS-aided MISO system was formulated subject to the worst-

case rate constraint under the bounded cascaded channel error

model, and subject to the outage probability constraints under

statistical cascaded channel error model. Low-complexity but

efficient algorithms were proposed to handle these problems.

In [7] a new robust algorithm for joint BS-IRS beamform-

ing design is presented based on mean square error (MSE)

minimization for an IRS-aided single-user MISO system. To

tackle this problem, they adopted alternating algorithm (AO)

based on the majorization-minimization (MM) technique and

the Lagrangian dual method, in which closed-form solution

for each variable can be derived in each iteration. In both [5]

and [6], the proposed algorithms were based on the iterative

procedure, where each iteration needs to solve convex opti-

mization problems via the CVX tool, which incurs excessive

computational complexity. Although the iterative algorithm

in [7] can obtain closed-form solution in each iteration, the

method is only applicable for single-user systems.

Motivated by above, in this paper, a new algorithm for joint

BS and IRS beamforming design is devised by utilzing the

penalty dual decomposition (PDD) technique [8], [9], which

readily leads to a less complex structure compared to the

MM-driven method. We assume that the BS only possesses

imperfect CSI, and an statistical CSI error model is considered

for the cascaded BS-IRS-user and BS-user channels. First, we

formulate a rate maximization problem subject to power con-

straints. To facilitate the algorithm design, by using the block

successive upper bound maximization/minimization (BSUM)

method [10], we reformulate this optimization problem into a

tractable manner. Through the PDD algorithm, the problem

is solved iteratively, and the closed-form solution for each

variable is obtained in each iteration. Based on the complexity

analysis, it can be concluded that the complexity of the

proposed solution is lower than that of the existing methods.
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II. SYSTEM MODEL AND PROBLEM FORMULATION

We consider the downlink IRS-aided transmission of a

multi-antenna base station (BS) with NT antennas serving K
single-antenna users. The IRS has M phase shifters (PS). The

BS-IRS, BS-user and IRS-user channel matrices are denoted

by GBI ∈ C
M×NT , GBU ∈ C

K×NT , and GIU ∈ C
K×M ,

respectively. We consider an indoor application, where there

is rich scattering; hence, we consider only non line of sight

channels in our model. This assumption has been considered

for IRS-related links in many papers such as [11]. Each row of

the channel matrices GBU and GIU denotes the corresponding

channel vectors of the i-th user, and follows zero mean

complex Gaussian distribution as g
[i]
BU ∼ CN (0, β[i]

BUI) and

g
[i]
IU ∼ CN (0, β[i]

IUI), whereas vec(GBI) ∼ CN (0, βBII).
Note that β

[i]
BU , β

[i]
IU and βBI represent the large scale fad-

ing gains of the corresponding channels, modeled by the

3GPP standards. Considering non-perfect channel estimation

for the BS-user and the IRS-user channels, the estimated

channel matrices are represented by ĜBU and ĜIU respec-

tively while G̃BU and G̃IU stand for the estimation error

matrices of these channels. To be more specific, we have

GBU = ĜBU + G̃BU and GIU = ĜIU + G̃IU . Note that

the channel estimation errors is assumed to have complex

normal distribution as vec
(
G̃BU

)
∼ CN (

0, σ2
BUI

)
and

vec
(
G̃IU

)
∼ CN (

0, σ2
IUI

)
. The received signal at the i-th

user can be formulated as

y[i] =
K∑
k=1

[
g
[i]
BUvks

[k] + g
[i]
IUΨIGBIvks

[k]
]
+ w[i]

=
(
g
[i]
BU + g

[i]
IUΨIGBI

)
vis

[i]

+
K∑
k �=i

[(
g
[i]
BU + g

[i]
IUΨIGBI

)
vks

[k]
]
+ w[i]

= g[i]vis
[i] +

K∑
k �=i

[
g[i]vks

[k]
]
+ w[i] (1)

where g[i] = g
[i]
BU+g

[i]
IUΨIGBI denotes the effective channel

between the BS and the i-th user, V = [v1, . . . ,vK ] is the

BS beamforming matrix, and s is the desired symbol vector,

whose elements have unit power, i.e., E
{∣∣s[i]∣∣2} = 1. Also,

ΨI = diag [ψ1, . . . , ψM ] is the diagonal phase shift matrix in

the IRS and w[i] ∼ CN (0, σ2
w) is the additive white Gaussian

noise at the ith user. The received signal in (1) can be rewritten

in terms of the estimated channel vectors as

y[i] =
(
ĝ
[i]
BU + ĝ

[i]
IUΨIGBI

)
vis

[i]

+
K∑
k �=i

[(
ĝ
[i]
BU + ĝ

[i]
IUΨIGBI

)
vks

[k]
]

+
K∑
k=1

[(
g̃
[i]
BU + g̃

[i]
IUΨIGBI

)
vks

[k]
]
+ w[i]

= ĝ[i]t[i] +
K∑
k �=i

[
ĝ[i]t[k]

]
+

K∑
k=1

[
g̃[i]t[k]

]
+ w[i], (2)

where t[i] � vis
[i] denotes the transmit vector intended for the

i-th user, the terms ĝ
[i]
BU , ĝ

[i]
IU , g̃

[i]
BU and g̃

[i]
IU stand for the ith

row of the matrices ĜBU , ĜIU , G̃BU and G̃IU respectively,

and we have

ĝ[i] � ĝ
[i]
BU + fĜ[i]

c , (3)

g̃[i] � g̃
[i]
BU + fG̃[i]

c , (4)

in which f � (diag (ΨI))
T

= [ψ1, . . . , ψM ], Ĝ
[i]
c =

diag
(
ĝ
[i]
IU

)
GBI is the estimated cascaded channel and

G̃
[i]
c = diag

(
g̃
[i]
IU

)
GBI is the cascaded channel estimation

error. For large-scale IRS with a large number of PSs (e.g.,

M →∞), the distribution of g̃[i] is

g̃[i] ∼ CN (
0,

(
σ2
BU + σ2

IUβBIM
)
I
)
= CN (

0, σ2
gI

)
. (5)

The detailed steps of deriving the distribution of g̃[i] can be

found in Appendix A. The approximation in (5) becomes

more accurate when the value of M increases. Note that,

the accuracy of this approximation does not depend on the

value of NT , hence the design is suitable for any number

of transmit antennas at the BS. Additionally, the effective

estimated channel matrix is represented by

Ĝ �
[
ĝ[1] T , . . . , ĝ[K] T

]T
= G+ G̃, (6)

in which we have G �
[
g[1] T , . . . ,g[K] T

]T
and G̃ �[

g̃[1] T , . . . , g̃[K] T
]T

. Considering all the above, the follow-

ing theorem is presented.

Theorem 1. It can be shown that the minimum achievable
rate of the i-th user is given by

R[i]= log2

⎛
⎜⎝1+ |ĝ[i]vi|2∑K

k=1
k �=i

[|ĝ[i]vk|2] +σ2
g

∑K
k=1 [|vk|2] +σ2

w

⎞
⎟⎠ . (7)

Proof. Let I
(
t[i]; y[i]|Ĝ

)
be the conditional mutual infor-

mation of user i conditioned on estimated channel matrix

Ĝ. Expanding I
(
t[i]; y[i]|Ĝ

)
in terms of the differential

entropies results in

I
(
t[i]; y[i]|Ĝ

)
= H

(
t[i]|Ĝ

)
−H

(
t[i]|y[i], Ĝ

)
. (8)

The first term on the right hand side of (8) simplifies to

log2 det (2πeFi) , where Fi � E
{
t[i]t[i]H

}
denotes the

transmit covariance matrix related to t[i] [12]. Regarding the

equation in (2), the second term of the right hand side of (8) is

upper bounded by the entropy of a Gaussian random variable

[13] as follows

H
(
t[i]|y[i], Ĝ

)
≤ log2 det

(
2πe

(
Fi − Fiĝ

[i]H ĝ[i]Fi

ĝ[i]Fiĝ[i]H + Γi

))
,

(9)

in which Γi �
∑K
k=1
k �=i

ĝ[i]HFkĝ
[i] +

∑K
k=1 σ

2
g Tr (Fk) + σ2

w.

Now, we employ the Woodbury matrix identity as follows

(A+BCD)−1=A−1−A−1B
(
C−1+DA−1B

)−1
DA−1.

(10)
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Assuming A = I, B = ĝ[i]H , C = Γ−1
i and D = g[i]Fi, and

using (10), we have

I− ĝ[i]H ĝ[i]Fi
ĝ[i]Fiĝ[i]H + Γi

=

(
I+

ĝ[i]H ĝ[i]Fi
Γi

)−1

. (11)

Thus, the right hand side of (9) can be rewritten as

log2 det

(
2πeFi

(
I− ĝ[i]H ĝ[i]Fi

ĝ[i]Fiĝ[i]H + Γi

))

= log2 det

(
2πeFi

(
I+

ĝ[i]H ĝ[i]Fi
Γi

)−1
)

= log2 det (2πeFi)− log2 det

(
I+

ĝ[i]H ĝ[i]Fi
Γi

)
. (12)

Exploiting (12) and employing Sylvester’s determinant theo-

rem, i. e., det(I+AB) = det(I+ BA), (9) is rewritten as

H
(
t[i]|y[i], Ĝ

)
≤ log2 det

(
2πeFi

(
I− ĝ[i]H ĝ[i]Fi

ĝ[i]Fiĝ[i]H + Γi

))

= log2 det (2πeFi)− log2 det

(
1 +

ĝ[i]Fiĝ
[i]H

Γi

)
. (13)

Consequently, assuming E

{∣∣s[i]∣∣2} = 1 and utilizing (13),

(8), we derive

I
(
t[i]; y[i]|Ĝ

)
≥ log2 det

(
1 +

ĝ[i]Fiĝ
[i]H

Γi

)

= log2

(
1 +

∣∣ĝ[i]ti
∣∣2

Γi

)
= log2

(
1 +

∣∣ĝ[i]vi
∣∣2

Γi

)
. (14)

Therefore, the minimum achievable rate of the i-th user is

written as (7) and thus the proof is completed.

Now, in order to jointly design efficient beamforming ma-

trices for the BS and the IRS, the sum achievable rate in (7) is

maximized. To this end, we formulate the following weighted

sum rate maximization problem

max
V,f

K∑
i=1

αiR
[i]

s. t. |ψi| = 1, i = 1, ...,M,
Tr

(
VVH

) ≤ PT ,

(15)

where αi denotes the weight measuring the priority of the ith
user and PT stands for the BS power budget. It is readily

seen that, the optimization problem in (15) is challenging to

solve, as it is a non-convex problem with multiple coupled

optimization variables. In the following, we aim to find a

tractable low-complexity solution for this problem.

III. PDD-BASED SOLUTION

In this section, we aim to provide a tracktable low-

complexity solution to the optimization problem in (15). To

this end, the PDD method is utilized. We first introduce a set of

auxiliary variables {X, V̄} and we define X = {f ,V, V̄,X}.
In order to use the PDD method for our problem, we need to

be able to decouple the optimization variables. To do so, we

rewrite the optimization problem in (15) as

max
X

K∑
i=1

αi log2

⎛
⎝1 + |xii|2∑K

k=1
k �=i

|xki|2 + σ2
g

∑K
k=1 |vk|2 + σ2

w

⎞
⎠

s. t. Tr
(
V̄V̄H

) ≤ PT

|ψi| = 1, i = 1, ...,M,

V̄ = V,X = VHĜH ,
(16)

where the term xij denotes the element in the i-th row and

the j-th column of the matrix X. By appending all of the

equality constraints to the objective function, the Augmented

Lagrangian (AL) problem can be obtained as follows

max
X

K∑
i=1

αi log2

⎛
⎝1 + |xii|2∑K

k=1
k �=i

|xki|2 + σ2
g

∑K
k=1 |vk|2 + σ2

w

⎞
⎠

−Pρ(X )
s. t. Tr

(
V̄V̄H

) ≤ PT ,
|ψi| = 1, i = 1, ...,M,

(17)

in which the function Pρ(X ) is defined as Pρ(X ) = 1
2ρ

(
||V−

V̄+ρZv||2+ ||X−VHĜH+ρZg||2
)

. The variable ρ denotes

the penalty parameter of the Lagrangian function and the

matrices Zv and Zg are the dual variables associated with

their respective equality constraint. Now, the key to use the

BSUM method is to find a tractable locally lower bound for

the objective function of the problem in (15). To do so, by

employing the theory of the WMMSE method, the following

theorem is achieved.

Theorem 2. For each user i the following inequality holds

log2

(
1 +

|xii|2∑K
k �=i |xki|2 + σ2

g

∑K
k=1 |vk|2 + σ2

w

)
≥

log2(wi)− wiei(ui,X,V) + 1, (18)

where ei(ui,X,V) = |1 − u∗i xii|2 +
∑
k �=i |u∗i xki|2 +

σ2
g

∑K
k=1 ||u∗ivk||2 + σ2

w|ui|2.

The proof can be straightforwardly provided by using the

first-order optimality condition for the right hand side of the

inequality. In this case, the optimal values for ui and wi are

calculated by

uopti =
xii∑K

k=1 |xki|2 + σ2
g

∑K
k=1 ||vk||2 + σ2

w

, (19)

wopti = 1 +
|xii|2∑K

k �=i |xki|2 + σ2
g

∑K
k=1 ||vk||2 + σ2

w

. (20)

It can be readily proved that the right hand side of the

inequality in (18) is a tight lower bound for the objective

function of (16). Now by replacing the objective function with

its tractable lower bound, (17) can be rewritten as

min
X

K∑
i=1

αiwiei(ui,X,V) + Pρ(X )
s. t. Tr

(
V̄V̄H

) ≤ PT ,
|ψi| = 1, i = 1, ...,M.

(21)

For the sake of simplicity, we reformulate the optimization

Page 3 of 11 IEEE Communications Letters

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



4

problem in (21) as

min
X

Tr(XBXH)− Tr(AXDH)− Tr(AXHD)

+Tr(A) + σ2
g Tr(V

HbV) + σ2
wb+ Pρ(X )

s. t. Tr
(
V̄V̄H

) ≤ PT ,
|ψi| = 1, i = 1, ...,M.

(22)

where B = diag{[α1w1|u1|2, α2w2|u2|2, . . . , αKwK |uK |2]},
b = Tr(B) =

∑K
i=1 αiwi|ui|2, D = diag{[u1, u2, . . . , uK ]}

and A = diag{[α1w1, α2w2, . . . , αKwK ]}.
Now the remaining task is to solve the optimization problem

via BSUM iterations, which consist of the following four steps.

In each step, closed-form solutions are calculated for a sub-set

of the optimization variables, and the BSUM steps are repeated

until some convergence criteria is met.

1) In the first step, we solve the optimization problem

(22) with respect to V assuming all other variables are

constant. In this case, the sub-problem is an unconstrained

quadratic optimization problem in which by using the first

order optimality condition, we have

V = (2ρσ2
gbI+ I+ ĜHĜ)−1(V̄ − ρZv + ĜHXH + ρĜHZH

g ).
(23)

2) In the second step, we solve the problem for the auxiliary

variable V̄. In this case, the problem becomes a projection of

a point into a ball centered at the origin. This yields a closed-

form solution as follows

V̄ = PPT
(V + ρZv), (24)

where PY(y) is the projection of y into the convex set Y1.

3) In the third step, we solve the problem for the variable

X assuming all other variables are constant. A closed-form

solution is found by using the first order optimality condition

X = (2ρDA+VHĜH − ρZg)(2ρB+ I)−1. (25)

4) Finally, the problem should be solved for the variable f .

In this case, the optimization problem can be reformulated as

min
|ψi|=1,i=1,...,M

fHfH − 2Re{cfH}, (26)

where

H =
1

2ρ

K∑
i=1

K∑
j=1

Ĝ[i]
c viv

H
i Ĝ[i]H

c , (27)

c =
1

2ρ

K∑
i=1

K∑
j=1

(
x∗ij + ρ∗z∗gij − ĝ

[j]
BUvi

)(
vHi Ĝ[i]H

c

)
. (28)

With respect to only one specified ψk, k = 1, ...,M , the

optimization problem becomes

min
|ψk|=1

|ψk|2Hkk − 2Re{(ck −
∑M
i �=k ψiHik)ψ

∗
k}, (29)

and the solution to this optimization problem is

ψk =
(ck −

∑M
i �=k ψiHik)

|ck −
∑M
i �=k ψiHik|

. (30)

1The projection of a point X into a set S is defined by min
P∈S

‖X−P‖. In

case S is a sphere centered at the origin with radius R (S = {X|‖X‖ ≤ R}),
the projection of X is obtained by R X

‖X‖+max(0,R−‖X‖) .

Through an iterative algorithm, the optimal IRS phase shifts

could be obtained. In each step, all but one of the IRS phase

shifts are fixed and the problem is solved for each ψk, k =
1, ...,M . This continues until the convergence criteria is met.

The BSUM algorithm for solving the optimization problem

in (22) is summarized in Algorithm 1. In addition, the PDD

method, in which the dual variables and the penalty parameter

are updated is provided in Table I of [8], in which an adaptive

strategy is presented that switches between the penalty method

and AL, and finally finds an appropriate penalty parameter ρ
with which the AL method could converge. A comprehensive

discussion related to the convergence properties of the PDD-

based algorithm is also presented in [8]. Particularly, under

appropriate conditions, the sequence of x[i] ∈ X generated by

the PDD method tends to a KKT point of the main problem.

Algorithm 1 The BSUM steps to solve problem (22)

Initialize f ,V such that all constraints are met

Compute Ĝ based on (3) and (6)

Set X = VHĜH , V̄ = V
Repeat

1. compute uopti and wopti by (19) and (20)

2. compute V, V̄ and X by (23), (24) and (25)

3. compute f by solving (26)

Until some convergence criteria are met.

IV. COMPLEXITY ANALYSIS

The proposed PDD-based method is an iterative algorithm,

and the computational complexity of each iteration consists of

calculating V, V̄, X and H, the complexity of which are given

by O(N3
T +KN

2
T +K

2NT ), O(KN2
T ), O(NTK2+K3) and

O(N2
TM +M2NT ), respectively. For a simple system with

K = 1, NT = 10 and M = 10, the complexity of each

iteration of the presented PDD-based method is 0.1 times the

complexity of the AO-based algorithm in [7], and 0.001 times

the complexity of the convex algorithm presented in [5] for

the full channel uncertainty case with statistical error model.

V. NUMERICAL RESULTS

In this section, the performance of our proposed algorithm

is evaluated in terms of the average sum-rate of the system.

It is assumed that the large-scale fading coefficient between

any two nodes is modeled by 10 log10(β) = −127.8 −
27 log10(d) + Z, where d denotes the distance between the

two nodes in km and Z ∼ CN (0, σ2
shad) in which σ2

shad = 8
dB represents the shadowing. The noise variance at each

user is σ2
w = 1, the estimation error variances are σ2 =

σ2
BU = σ2

IU = 0.1, and the priority weights of all users

are αi = 1, i = 1, . . .K. The initial value for the penalty

parameter is set to ρ0 = 500K
2KM+M2+KNT

as in section III

of [9], and it is decreased by a coefficient of 0.7 in each

step of the penalty method. Also, the non-robust design refers

to a case with imperfect CSI where the effect of channel

estimation error is not considered in the design, i.e. σg in
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Figure 1: Average sum-rate versus M ; A comparison among

robust, non-robust and perfect CSI designs.
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Figure 2: Average sum-rate versus SNR; A comparison be-

tween the PDD-based scheme and the AO-based scheme.

all equations of section III is set to zero. Fig. 1 illustrates the

average sum rate versus the number of IRS reflectors. In this

figure, the system variables are K = 4, NT = 4, SNR= 10
dB. It is shown that the performance of the proposed robust

method is close to the perfect CSI scenario. Note that, as M
increases, the gap between the robust design and the non-

robust structure widens, which is a result of the approximation

in (5), since the approximation in (5) becomes more accurate

when M is large. In other words, the fact that (5) is more

accurate when M is large, results in better performance of

the robust design in larger values of M . Moreover, as the

channel estimation error increases, the performance gain of the

robust design over non-robust system becomes more obvious.

In Fig. 2, the performance of the presented PDD-based method

is comparable to the AO-based scheme in [7]. The system

variables are NT = 4 and K = 1. As depicted, the PDD-

based algorithm outperforms the AO-based scheme in terms of

average sum-rate. This should be as a result of the optimization

objective in [7] which attempts to minimize the MSE.

VI. CONCLUSION

In this paper, a new robust design was presented for an

IRS-assisted MISO system with channel uncertainty. The PDD

algorithm is utilized to tackle the optimization problem. It is

shown that the complexity of the proposed algorithm is low,

and it achieves higher average sum rates over other schemes

in the literature.

APPENDIX A

DISTRIBUTION OF g̃[i]

Here, the distribution of g̃[i] is calculated. Based on the

channel models it is obvious that g̃[i] has a zero mean

distribution and its covariance matrix can be computed as

Cov(g̃[i]) = E(g̃[i]H g̃[i]) = σ2
BUI+Ω, where Ω is defined as

Ω = E(GH
BI diag(g̃

[i]
IU )

HfHf diag(g̃
[i]
IU )GBI)

=
M∑
j=1

⎡
⎢⎢⎣

qj1q
∗
j1E(h

[i]
j h

[i]∗
j ) ... qjNT

q∗j1E(h
[i]
j h

[i]∗
j )

...
. . .

...

qj1q
∗
jNT

E(h
[i]
j h

[i]∗
j ) ... qjNT

q∗jNT
E(h

[i]
j h

[i]∗
j )

⎤
⎥⎥⎦

≈

⎡
⎢⎣

E(qH1 q1)σ
2
IU ... E(qHNT

q1)σ
2
IU

...
. . .

...

E(qH1 qNT
)σ2
IU ... E(qHNT

qNT
)σ2
IU

⎤
⎥⎦

=MβBIσ
2
IUI (31)

The notations qij , h
[i]
j and qj in (31) stand for the element

in the ith row and the jth column of GBI , the j-th element

of the vector g̃
[i]
IU , and the jth column of GBI , respectively.

Note that the approximation stands for large values of M .
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