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Abstract—Indoor localization based on existing Wi-Fi Received
Signal Strength Indicator (RSSI) is attractive since it can reuse
the existing Wi-Fi infrastructure. However, it suffers from dra-
matic performance degradation due to multipath signal atten-
uation and environmental changes. To improve the localization
accuracy under the above-mentioned circumstances, an improved
Spearman-distance-based K-Nearest-Neighbor (KNN) scheme is
proposed. Simulation results demonstrate that our improved
method outperforms the original KNN method under the indoor
environment with severe multipath fading and temporal dynamics.

Index Terms—Indoor localization, RSSI, Spearman distance,
Wi-Fi.

I. INTRODUCTION

HE proliferation of wireless communication and mobile

computing has driven the demand of location-based
services (LBSs). For outdoor open environment, the Global
Navigation Satellite Systems (GNSS), such as Global
Positioning System (GPS), GLONASS, BeiDou Navigation
System and Galileo Positioning system can provide high loca-
tion accuracy. However, the GNSS signals from satellites can-
not be always hearable in many indoor areas, which limits
their applications. In recent decade, Wi-Fi infrastructures are
widely deployed in many indoor environments such as airports,
supermarkets and shopping malls etc. Furthermore, most of the
current off-the-shelf smart equipments, such as smartphones,
laptops and Ipad are integrated with Wi-Fi modules which
makes it possible for location based on Wi-Fi signal strengths
in indoor environment.
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However, performing received signal strength (RSS) based
indoor localization is particularly challenging due to the
following three reasons: Firstly, it is difficult to obtain an accu-
rate received signal strength indicator (RSSI) values. According
to the measurement in [1], the variance of RSSIs collected
from an immobile receiver in one minute is up to 5 dB.
Secondly, RSSI is easily varied by the multipath and NLOS
effect which is unavoidable in an indoor environment where a
ceiling, a floor, furniture, walls and the movement of people are
present. Thirdly, manufacturing variations among different Wi-
Fi devices might also affect the RSSI measurement accuracy.
Therefore, different Wi-Fi devices might yield different RSSI
values at the same location, especially for those equipments
made by different manufacturers. However, as RSSI finger-
prints can be easily obtained from most off-the-shelf wireless
network infrastructures, it is also an attractive approach for
location determinations.

The current RSS-based localization methods can be divided
into ranged-based localization methods and RSS fingerprint
location techniques. The former converts the RSSI values to
distances according to the propagation loss model [2], [3]
before performing localization by lateration methods. The latter
can usually be divided into two phases: training and locat-
ing. Although the procedure of training is time-consuming,
labor-intensive, and vulnerable to environmental dynamics, it is
inevitable for fingerprinting-based approaches. With the devel-
opment of Google maps, indoor google maps can provide more
and more indoor localization. Until July 2015, over 10,000
locations around the world are available.

In fact, the absolute RSSI values are unstable and quite dif-
ferent when measured by different Wi-Fi terminals. To mitigate
these effects, the relative RSSI values, i.e. their rankings, are
used to replace the absolute ones for location determinations
[4]-[9]. This means that, even if the absolute RSSI values of
a set of Access Points (APs) in the covering area might be
quite different when measured by different Wi-Fi measurement
devices or over different time, their ranking is more likely to
remain the same or, at least, more similar. This is based on
the assumption that the RSSI values monotonically decrease
when the distance between the source and APs increases [10].
To evaluate the similarity among different rankings of the
same set of APs, the Spearman rank correlation coefficient
[11] is utilized which is a nonparametric measure of statistical
dependence between two variables. This Spearman’s coeffi-
cient assesses how well the relationship between two variables
can be described using a monotonic function and is appro-
priate for both continuous and discrete variables, including
ordinal variables. Based on this reason, we propose to utilize
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the Spearman rank correlation coefficient to evaluate the sim-
ilarity among different rankings of the same set of APs. For
the purpose of comparison, RSS-based lateration algorithm pro-
posed in [12] and the K-nearest neighbor (KNN) method [13]
are also provided in this letter.

To evaluate the effectiveness of our spearman-distance-based
method, we use a partition attenuation factor propagation model
as in [12] to simulate the real indoor environments.

The rest of the letter is organized as follows. In Section II,
we first provide some related background before introducing
our proposed method. Simulation results and discussion are
presented in Section III. Finally, we conclude our work in
Section IV.

II. ALGORITHMIC DESCRIPTION
A. Background

There are two phases in RSSI fingerprint location
approaches: the off line training phase and the runtime localiza-
tion procedure. During the off line training phase, various RSSI
values are collected at predefined points within the coverage
area. The collected RSS characteristics are location depen-
dent and stored in the correlation databases (CDBs). Obviously,
the more parameters per signal observed, the more unique the
fingerprint and thus the better the location accuracy.

An RSSI fingerprint can also be classified as either a target
or reference fingerprint. Undoubtedly, a target RSSI fingerprint
is associated with the object node that is to be localized, that is,
it contains signal parameters measured by the object node or by
the associated APs. The reference RSSI fingerprints are values
collected during the training phase and stored in the CDB. The
target fingerprint T used in the remainder of this letter is written
by a N; X 2 matrix:

1Dy RSSI

T = ) e))

IDy, RSSIy,

where NNV, is the number of APs within the range of the object to
be localized. I D; and RSSI; are the identity and the measured
RSSI from the i" AP, respectively.

The reference fingerprint R at pixel (¢, j) can be expressed as

IDi’jJ RSSL‘J‘J

where NN; ; is the number of APs whose predicted RSSI val-
ues are above the minimum threshold at pixel (i, j). The rows
of Rj; are classified in descending order of RSSI, that is,
RSSL;J"]C > RSSL',J"M, ifk <=k&.

B. Spearman Rank Correlation Coefficient

The Spearman rank correlation coefficient [14] is used to
calculate the correlation between the target fingerprint T and
the reference fingerprint R; ;. However, the target fingerprints
might not have the same number of APs nor the same APs.
Therefore, some modification is needed before computing the
Spearman correlation coefficient.
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On this basis, two Ny X 2 matrices, Vr and Vg, are gener-
ated, which are initialized to be
ID; N,
Vp=Vg=| @ ! (3)
IDy, Ny
The position of APs in the RSSI ranking of T must be
inserted in the second column of the correspondent row in V,
that is to say

VT(nka 2) = kv (4)

where Vr(ng,1) = T(k,1), npy € [1,Ny] and k =
1,2,..., N,
Similarly, Vg can be renewed to be

where Vg(ng, 1) = R;;(k,1), np € [1,Ny] and k =
1,2,...,N; ;.

The Spearman rank correlation coefficient between the target
fingerprint and the reference fingerprint at pixel (7, ;) can be
expressed as

SN (Ve (n,2) — Rr) (Vg (n,2) — Rg)]

Pij = ’
\/zfjil (Vi (n.2) = Ber)* (Vi (n.2) — )]
©)

where

_ 1 N
RT = ﬁt Zn:l VT (TL, 2) 5

_ 1 N
RR = ﬁt Zn:l VR (’n‘a 2) ;

Subsequently, the Spearman distance d; ; can be given as

dij=1—p;;. (7)

C. Spearman-Distance-Based Methods

By exploiting the Spearman rank correlation of RSSI mea-
surements from different APs, we proposed an improved
Spearman-distance-based KNN [15] location method. In our
proposed approach, the localization procedure includes the fol-
lowing three steps: Firstly, the offline RSSI fingerprint database
is built; Secondly, collecting the position fingerprint of the
object; Thirdly, calculating the Spearman distance accord-
ing to Equation (7) and then select all the locations with
minimum Spearman Distance; Finally, execute the original
KNN approach according to all the locations with minimum
Spearman Distance and obtain the final location estimation. The
detailed flow chart is shown as in Fig. 1.

III. SIMULATIONS AND DISCUSSIONS
A. Simulation Methodology

In our simulation, RSSI values are generated from the prede-
fined 400 locations which are shown in Fig. 2 by the small blue
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Fig. 1. Flow chart of localization.
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Fig. 2. Simulation layout.

circles. This area is a 10 m by 10 m square field with all these
predefined points evenly spaced in this field. The position of the
object to be localized is randomly generated inside this cover-
age area. That is to say, the x and y label of the objects to be
localized are Nx x rand and Ny X rand, respectively, where
Nx and Ny represent the maximize value in axis x and y of
the simulated area which are both equal to 10 m in our simula-
tion and “rand” is the Matlab function. Four APs at the four
corners of the square area are deployed as shown in Fig. 2.
In order to simulate the indoor environments, the whole cov-
erage area is divided into nine districts which represent nine
different rooms, which are separated by concrete walls. The
wireless signals from devices in different rooms are decayed
by various number of walls before reaching the APs. To simu-
late the indoor signal propagation, a partition attenuation factor
(PAF)[2] is added into the shadow fading propagation model.
Therefore, the shadow fading propagation model can be written
as [0]

P(d) = P(dy) — 10 1og10(£i> — W x PAF + X,, (8)

where P(d) is the total path loss measured in decibel, P(dp) is
the path loss at the reference distance d, vy is the path loss expo-
nent, PAF is used to denote a specific obstruction such as walls
in indoors. We use it here to simulate the penetration loss when
signals pass through the wall. IV is the number of walls between
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DEFAULT PARAMETER SETS
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Fig. 3. Comparison of average location errors for different values of NP.

the object node and the APs. X is a normal random variable.
For a better understanding, consider the wireless device located
in Room4 of Fig. 2, W is 1, 3, 3, 1, respectively, for APy, AP,
AP3 and AP4

Moveover, in order to simulate the indoor environment accu-
rately, it is important to take the correlation into account. The
spatial correlation of the shadow fading effect is obtained as
follows:

Firstly, a m x m covariance matrix K is generated which
satisfies K;;(d;;) = o? exp(—%ii ), where D, represents the
decorrelation distance which can range from several meters
to many tens of meters, d;; is the distance between the ith
position and the jth one. Secondly, for the above obtained
covariance matrix K, execute cholesky factorization, we get
K = LL". Subsequently, generate a non-correlated normal
random variables w = w1, . ..,wm| T, then X, in Equation (8)
can be expressed as X, = Lw. That is to say, the correlation
of the shadow fading at location ¢ and j is E[X, (1) X, ()] =
Kij(dij) = o? exp(%ij).

In this subsequent simulation, Non-line-of-sight (NLOS)
environment is assumed, and then the related parameter sets are
summarized as shown in Table I.

B. Impact of the Number of the Closest Neighbor Points

The effect of varying number of NP which means the num-
ber of the closest neighbor points in the location space can be
examined by choosing different values from 2 to 5. The average
location errors (ALE) of the PR method, the KNN method and
the Proposed method are shown in Fig. 3. It is obvious that the
value of ALE for the PR method is a constant because it is noth-
ing to do with the value of NP. As shown in Fig. 3, the curve
corresponds to the KNN method shows a steady decline in ALE
before rising and reaches the lowest point when NP equals to 4.
For the proposed method, however, there is a slow and steady
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Fig. 4. Comparison of average location errors for different location methods.

decrease in ALE, ranging from 3.5 m to just below 3.2 m when
NP increases from 2 to 5. Thus, for fair comparison, we keep
the value of NP at 4 in the following subsections.

C. Impact of Shadow Fading

To see the impact of shadow fading factor, we set o range
from 4 dB to 8 dB and repeat the same measurements for
1000 times. Fig. 4. illustrates the ALE when the shadow fad-
ing factor varies within the above given scope. For the purpose
of comparison, the original KNN method and the polynomial-
regression-based method (PR Method) [2] are also simulated.
Obviously, the positioning error significantly increases for the
original KNN method with the increase of shadow fading fac-
tor. Such impressive results are natural since that a big shadow
fading forms more unreliable position fingerprint and thus the
influence of location error is increased to a certain extent. The
value of shadow fading, by contrast, doesn’t have a significant
influence on the another two methods. When o is small, the
original KNN method and the PR method show similar localiza-
tion performance which are apparently inferior to the proposed
method. The effectiveness of our proposed method improves
significantly as the value of o increases which demonstrates
the superiority of our method in aweful indoor environments
comparing with the another two approaches.

D. Cumulative Error Distribution

Fig. 5-6 illustrate the cumulative distribution function(CDF)
of localization errors in the simulated indoor environment when
the shadow fading factor equals to 5 dB and 7 dB, respectively.
As can be seen from Fig. 5, the proposed scheme achieves
a localization error under 2.7 m for 80% of the testing sam-
ples, which is significantly smaller than those of the original
KNN method(4.5 m) and the PR method(4.9 m). And when the
shadow fading factor increases from 5 dB to 7 dB, the proposed
scheme achieves a localization error under 4.6 m for 80% of the
testing samples, which is significantly smaller than those of the
original KNN method(8.2 m) and the PR method(5.8 m).
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On this basis, we can conclude that our approach exhibits a
preferable property in the indoor environment where the value
of RSSI is unstable and varied with time since the proposed
method takes the relative ranking of RSSIs into considera-
tion which is beneficial for improving the precision of location
fingerprint.

IV. CONCLUSIONS

A novel Spearman-distance-based indoor location system is
presented in this letter, which is based on the fingerprint of RSSI
values obtained in advance from the APs. We collect and pro-
ceed the RSSI values as “fingerprints” to form the radio map
in the training procedure. The spearman rank correlation coef-
ficient is then calculated after obtaining the unknown position
fingerprint. Then we get the spearman distance based on the
spearman rank correlation coefficient and then combine it with
the original KNN approach. Experimental results show that
the proposed combination method achieves better performance
than the another two existing methods.
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