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Machine Learning for Massive
Industrial Internet of Things

Hui Zhou, Changyang She, Yansha Deng, Mischa Dohler, and Arumugam Nallanathan

Abstract—Industrial Internet of Things (IIoT) revolutionizes
the future manufacturing facilities by integrating the Internet of
Things technologies into industrial settings. With the deployment
of massive IIoT devices, it is difficult for the wireless network to
support the ubiquitous connections with diverse quality-of-service
(QoS) requirements. Although machine learning is regarded
as a powerful data-driven tool to optimize wireless network,
how to apply machine learning to deal with the massive IIoT
problems with unique characteristics remains unsolved. In this
paper, we first summarize the QoS requirements of the typical
massive non-critical and critical IIoT use cases. We then identify
unique characteristics in the massive IIoT scenario, and the
corresponding machine learning solutions with its limitations
and potential research directions. We further present the existing
machine learning solutions for individual layer and cross-layer
problems in massive IIoT. Last but not the least, we present a case
study of massive access problem based on deep neural network
and deep reinforcement learning techniques, respectively, to
validate the effectiveness of machine learning in massive IIoT
scenario.

Index Terms—massive Industrial Internet-of-Things, deep
learning, deep reinforcement learning, optimization.

I. INTRODUCTION

Industrial Internet of Things (IIoT), also referred to as

Industrial 4.0, integrates IoT technologies into the industrial

field, which will revolutionize manufacturing, data analysis,

and logistic process in smart factories. As IIoT rapidly evolves,

dramatically increasing number of devices impose high de-

mands on the existing cellular network, with the expectation

to support the ubiquitous connections from both critical and

non-critical IoT devices. To reach this expectation, massive

Machine Type Communications service has been standardized

in the Fifth Generation (5G) New Radio (NR) for up to

106/km2 massive non-critical IoT devices [1], and massive

Ultra Reliable Low Latency Communications are envisioned

to be one of the services in Six Generation (6G) to support

massive critical IoT devices with 1ms user plane latency target.

Optimizing the operation of the cellular network to meet

the diverse quality-of-service (QoS) requirements is challeng-

ing in a large-scale IIoT environment, where a collection

of heterogeneous devices are geographically distributed. De-

spite the remarkable success of the traditional optimization
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methods (e.g., convex optimization), it turns out that most

wireless optimization problems in the IIoT environment are

non-convex, which end up with locally optimal solutions.

Another limitation of traditional optimization methods lies in

its requirement of exact models, which are difficult to obtain in

the dynamic IIoT environment with diverse QoS requirements.
Although machine learning is regarded as a powerful data-

driven method to enable intelligent decision making by utiliz-

ing the high volume of data from heterogeneous IIoT devices.

The unique characteristics in massive IIoT limit the application

of machine learning algorithms, which cannot guarantee the

optimal decision under stringent constraints or even con-

vergence. Several existing works have focused on specific

machine learning solutions for IoT problems [1]–[3]. In [1],

the access control algorithms have been proposed to optimize

the massive access problem based on the deep reinforcement

learning (DRL). In [2], centralized and decentralized IoT

frameworks with DRL solutions have been exploited. In [3],

an federated learning (FL) incentive mechanism has been pro-

posed for resource optimization. Yet, a comprehensive study

on the unique characteristics in the massive IIoT scenario, and

potential machine learning solutions has never been carried

out.
The main contributions of this paper are: 1) we first sum-

marize the diverse QoS requirements of massive IIoT use

cases in Section II; 2) we then provide a concrete vision

of the unique characteristics in massive IIoT scenario, and

investigate machine learning solutions along with its limita-

tions and potential research directions in Section III; 3) we

present how different machine learning algorithms can be

applied in individual layer and cross-layer design to guarantee

the QoS requirements of massive IIoT in Section IV; 4) to

demonstrate the effectiveness of machine learning in massive

IIoT scenario, we present a case study of massive access

optimization problem, specifically the unsupervised learning

with different deep neural network (DNN) structures and DRL,

respectively, and analyze the results in Section V. Finally, we

conclude the paper in Section VI.

II. MASSIVE INDUSTRIAL IOT APPLICATION SCENARIOS

As illustrated in Fig. 1, 5G and Beyond is expected to sup-

port the smart factory to guarantee the operation efficiency. In

this section, we summarize the QoS requirements of massive

non-critical and massive critical IIoT use cases as shown in

Table I1, and point out their specific challenges.

1In Industrial 4.0, the density of devices such as AGVs in indoor applica-
tions will be extremely high (i.e., 106/km2), and the supply chains could be
global.
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Fig. 1. A typical 5G and Beyond factory in the future.

TABLE I
TYPICAL QOS REQUIREMENTS OF DIFFERENT USE CASES IN SMART FACTORY

Use case Reliability Latency Data Rate Connection Density Category

Field sensors 99.9% 10sec 10kbps 1,000,000/km2

Massive non-criticalAsset tracking 99.9% 10sec 0.1-20kbps 1,000,000/km2

Video surveillance 99.9% 100ms 1-10Mbps 1000/km2

Vehicle-to-everything communications 99.999% 10ms 20Mbps -
Automated guided vehicles 99.9999% 1-50ms 1-10Mbps -
Unmanned aerial vehicles 99.9999% 1-50ms 1-10Mbps - Massive critical
Augmented reality 99.9999% 1-5ms 5-25Mbps -
Robot motion control 99.9999% 1ms 1-10Mbps -

A. Massive Non-critical IoT

Massive low/medium-end IoT devices are deployed in the

factory to support the manufacturing by collecting tempera-

ture, position, and etc. Although they have much lower latency

and reliability requirements, the density of devices can be up

to 106/km2.

1) Field Sensors: To monitor and support manufacturing,

increasing number of sensors and actuators will be deployed

in the smart factories to guarantee safety. Although the data

rate of a single field sensor is quite low (e.g.,10kbps), the

collision from the simultaneous massive access may lead to

severe access delays and packet losses.

2) Asset Tracking: Accurate locations and inventory status

of the assets are critical for operational efficiency and safety.

According to requirements in the 5G evolution, we should

provide centimeter-level positioning for a large number of

devices in IIoT.

3) Video Surveillance: Video surveillance is widely

adopted in the factory to guarantee warehouse security, and

automation process safety, which generates Gbps-level uplink

traffic from hundreds of connected cameras. Thus, the uplink

enhancements and techniques are critical for the IIoT use case.

B. Massive Critical IoT

In industrial 4.0, supporting ultra-reliable and low-latency

communications, e.g., 10−5 ∼ 10−7 packet loss probability

and 1ms end-to-end delay, is of significant importance for

massive critical IoT applications, such as Automated Guided

Vehicles (AGV), Unmanned Aerial Vehicle (UAV), etc.

1) Vehicles: As the typical mission-critical applications,

Vehicle-to-everything (V2X) and AGV communications im-

prove the asset transportation efficiency in outdoor and indoor

environments, respectively. UAVs are important in applica-

tions, such as aerial monitoring, package delivery, etc. The

decision making based on the observations of the vehicles,

road-sides units, and BSs belongs to sequential decision-

making problems, which have no closed-form solutions in

general.

2) Virtual Environment of Thing: The goal of integrating

Augmented Reality (AR) and IoT is to provide real-time

control of real-world IoT devices and virtual-world objects

in a virtual environment. Apart from the latency and relia-

bility requirements, AR applications need high computational

capability and sufficient bandwidth to provide an immersed

experience to users.

3) Robot Motion Control: Due to the lack of flexibility

in robots, human knowledge is indispensable in complex

manufacturing processes, where robots respond to human in-

structions. Due to the fast-changing environment (e.g., delayed

positions), the stringent latency and reliability requirements

should be satisfied to guarantee the effectiveness of real-time

decision making.
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III. UNIQUE CHARACTERISTICS AND SOLUTIONS

IN MASSIVE IIOT

To meet the requirement of massive access, especially

under stringent constraints, machine learning is regarded as

a powerful tool to optimize the cellular-enabled massive IIoT,

which can learn efficient representations of the data. However,

the unique characteristics in the massive IIoT scenario limit

the application of machine learning algorithms, which include

• temporal data correlation

• scalability and high-dimensional data

• dynamic networks

• limited data

• high communication overheads

• sequential decision-making problems.

To deal with these characteristics in massive IIoT, we inves-

tigate the potential machine learning solutions along with its

limitations, and future research directions in the following,

which is also summarized in Table II2 and Table III.

A. Temporal Data Correlation

IIoT devices produce massive sequential data, which vio-

lates the Independent and identically distributed (IID) assump-

tion in traditional machine learning. Taking the data traffic

flow as an example, the number of packets transmitted at each

time slot is determined by both the number of newly arrived

packets and the number of devices with failure transmissions

in the previous time slots.

Recurrent Neural Network: To capture the temporal data

dependencies, recurrent neural network (RNN) with recurrent

connections between hidden units can be a promising solution.

However, the implementation of RNN in IIoT faces several

challenges: 1) we need to find an optimal memory size of RNN

to achieve a good trade-off between the learning performance

and computational overheads, however the data traffic correla-

tion time is dynamic in IIoT use cases; 2) for IIoT applications,

such as localization, both the information from the past and the

future are useful. To extract the two kinds of information, the

bidirectional RNN with both forward and backward directions

can be applied. It is noted that BRNN needs to wait for the

future information to execute the backward pass, which may

violate the stringent latency requirement in massive-critical

IoT; and 3) the number of parameters in RNN grows rapidly

with the number of devices in massive IIoT scenario. As a

result, scalability remains an open issue when using RNN in

massive IIoT.

B. Scalability and High Dimensional Data

In factory automation scenario, the state and action spaces

of the network grow with the number of IIoT devices. Existing

machine learning techniques work well in small- and medium-

scale problems, but can hardly solve large-scale problems in

a reasonable time due to the curse of dimensionality, where

2As a basic universal neural network structure, the Fully-connected Neural
Network (FNN), whose neurons in adjacent layers are fully connected, cannot
adapt to the unique characteristics in massive IIoT.

feature extraction is needed to reduce the dimensionality and

obtain the valuable information from the raw data.

Convolutional Neural Network: To solve large-scale prob-

lems and extract features from high-dimensional data, we can

use convolutional neural network (CNN). With sparse interac-

tions among different layers and commonly used parameters

in the filters, the number of parameters in CNN does not

change with the scale of the problem. The challenges of

applying CNN in IIoT use cases lie in the following two

aspects: 1) although CNN has achieved success in certain

applications (e.g., the channel estimation), the convolution

operation is time-consuming and can not meet the stringent

latency requirement in massive-critical IoT; and 2) the CNN

can only deal with data in Euclidean space (i.e., 1D sequence

or 2D grid), which cannot capture the topology of the wireless

network exactly.

Graph Neural Network: As a generalization of CNN,

graph neural network (GNN) is proposed to solve the large-

scale and high-dimensional problems with Non-Euclid data

structure via aggregating the neighborhood information of

each node. As such, it can exploit the underlying topology of

wireless networks [4]. However, there are several challenges

when applying GNN in IIoT scenario: 1) to apply GNN at

the central server in network optimization, we need to collect

the information of all the nodes and edges. This may result in

considerable communication overheads and latency in massive

IIoT systems; and 2) due to the over-smoothing problem, the

performance of GNN gradually decreases with the increasing

number of layers. This is because repeated graph convolutions

eventually make node embeddings indistinguishable. To enable

multi-hop information aggregation in massive IIoT, a deep

GNN needs to be exploited.

C. Dynamic Networks

Wireless networks are highly dynamic such as number of

devices, and types of services. A well-trained learning algo-

rithm can hardly guarantee the QoS requirements in dynamic

networks. How to fine-tune deep learning algorithms for a

new task or in a new environment with few training samples

remains a challenging task.

Graph Neural Network: In dynamic wireless networks, the

topology, the number of devices, and the traffic loads change

over time. Since offline trained GNN can be transferred to

networks unseen in the training, it can be a promising tool for

dynamic networks [4].

Few-shot Learning: The other potential solution is few-

shot learning, whose motivation is to train a DNN with a small

number of samples, and thus the DNN can adapt to dynamic

networks without extensive retraining [5]. Transfer learning

is a widely used few-shot learning method that fine-tunes

the pre-trained DNN without changing the hyper-parameters

of the DNN. However, the performances of deep learning

algorithms are sensitive to hyper-parameters. To handle this

issue, meta-learning has been applied in the existing researches

to optimize hyper-parameters and has been demonstrated to

achieve faster adaptations than transfer learning. The bottle-

necks of implementing meta-learning in mission-critical IoT
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TABLE II
UNIQUE CHARACTERISTICS IN MASSIVE IIOT AND MACHINE LEARNING SOLUTIONS

FNN RNN CNN GNN GAN FL Few-shot learning DRL
Scalability

√ √
High dimensional data

√ √
Temporal data correlation

√
Sequential decision-making problem

√
Dynamic networks

√ √
Limited data

√ √
High communication overheads

√

lies in the following two aspects: 1) to enable fast online

adaptation, we need vast computational resources to train

meta-learning offline, e.g., using hundreds of GPUs to pre-

train DNNs in a few days; and 2) although meta-learning can

achieve a classification accuracy of more than 70% in image

classification [5], the error probability is still too high to meet

the requirement of mission-critical IoT.

D. Limited Data

To collect enough real-world data samples for machine

learning, it takes a very long time. For example, the packet

rate of a device is less than 103 packets/s in most use cases.

When the reliability requirement is 99.9999%, it takes more

than 103 seconds to obtain a valid label. As a result, more

than 107 seconds are needed to collect 104 labeled training

samples from the critical IoT device.

Few-shot learning: As mentioned in Section III-C, few-

shot learning has the potential to enable fast adaptation of

deep learning in dynamic networks. The basic idea is to pre-

train a general DNN offline and fine-tune it to a specific task

with limited real-world data samples. Thus, it is a promising

technique to handle different tasks in massive-critical IoT (e.g.,

UAV) with limited training samples.

Generative Adversarial Network: The other promising

data augmented method is to use Generative Adversarial

Network (GAN) to generate synthetic data samples based on

limited real data samples [6]. With enough synthetic samples

of channel response, packet size, and inter-arrival time between

packets, we can evaluate the reliability and pre-train machine

learning algorithms. To implement GAN in massive IIoT

networks, there are two open challenges: 1) the distribution

of synthetic data samples is not exactly the same as that of

the real data samples [6]. Novel techniques for reducing the

gap between the distributions of synthetic and real data are

of great interest since they can improve the performance of

GAN directly; and 2) for mission-critical IoT, the QoS is

very sensitive to the distributions of packet sizes, inter-arrival

time between packets, and channel fading. The approximation

errors of synthetic data samples may lead to estimation errors

of the QoS. Yet, how to quantify their relationship has not

been investigated in the existing literature and deserves further

study.

E. High Communication Overheads

Collecting data samples at the central servers and updating

learning parameters at the IIoT devices or base stations will

TABLE III
RESEARCH DIRECTIONS OF MACHINE LEARNING IN MASSIVE IIOT

Algorithm Research direction

GNN
• Performance gain via utilizing network topology
• Transference in dynamic networks
• Cooperation in multi-agent settings

FL
• Scheduling policy;
• Cooperation in multi-agent settings

GAN
• Quantify the QoS error from synthetic data;
• Tail probability of delay with DRL

Few-shot
Learning

• Transference in dynamic networks;
• Non-stationary environment in multi-agent settings

DRL
• Constrained DRL to fulfill QoS requirement;
• Bellman equation for fast-changing environment;
• Multi-agent DRL

bring high communication overheads in wireless networks. By

deploying computing and storage resources at the network

edge, it is possible to train and execute distributed learning

algorithms with low communication overheads at the cost

of longer convergence time. How to improve the tradeoff

between communication overheads and the convergence time

of distributed learning algorithms is of crucial importance.

Federated Learning: FL framework has been considered

as a promising approach to reduce communication overheads

and preserve data privacy. In each FL communication round,

devices upload gradients obtained from local data samples to

a parameter server. Then, the parameter server aggregates the

gradients and updates the DNN by using a gradient descent

algorithm. Finally, the DNN is broadcast to all the devices.

However, there are several challenges in deploying the FL

system in massive IIoT: 1) the wireless links are unreliable,

and the computation capability of each IIoT device is lim-

ited. To implement FL over wireless networks with limited

local computation capability, over-the-air aggregation and split

learning can be potential solutions [7]. Nevertheless, how to

reduce the convergence time and improve the performance

of FL by optimizing user scheduling, quantization accuracy,

bandwidth allocation, and power control policies remains an

open problem; and 2) considering that different devices are

operating over different environments and/or in different time

windows, the observed data samples can be non-IID data,

which makes it more difficult to converge.

F. Sequential Decision-making Problems

Finding the optimal solutions to sequential decision-making

problems is very challenging, since the states and actions

in different time steps are correlated with each other. To
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characterize the correlation, one approach is to model the

transitions among states by a Markov decision process (MDP).

In massive IIoT, each device does not have a full observation

of the environment due to the hardware limitation. In this case,

MDP becomes Partially Observable Markov Decision Process

(POMDP). Solving POMDP problems is more challenging

than MDP problems, since the device does not know whether

an action is optimal or not from the global view. Finally, each

device in massive critical IoT use cases has a stringent QoS

requirement, which brings unprecedented challenges, even in

MDP problems.

Deep Reinforcement Learning: Reinforcement learning

(RL) is a machine learning technique to solve MDP problems,

where the agent chooses the optimal action to maximize the

long-term reward through interacting with the environment.

However, traditional RL methods do not scale well in massive

IIoT with high dimensional state-action spaces. Therefore,

DRL, the combination of RL with the neural network, is

regarded as a promising tool in complex POMDP problems.

Deep Q-Network (DQN) is a classic DRL algorithm, which

estimates the Q value via a neural network. Based on double

DQN, Deep Deterministic Policy Gradients (DDPG) is further

proposed, which integrates DQN with the actor-critic structure

to deal with the continuous action space. The implementation

of DRL in a realistic IIoT environment still faces several

challenges:

• Multi-objective optimization In IIoT applications, mul-

tiple performance metrics need to be jointly optimized,

and hence the problem is generally multi-objective opti-

mization. Most of the existing studies maximize/minimize

a weighted sum of different performance metrics, where

the weighting coefficients are determined manually. To

deal with it, one possible solution is the constrained DRL,

where the latency and reliability requirements are formu-

lated as constraints. Then, the optimization variables and

the weighting coefficients can be optimized iteratively

with the primal-dual method.

• Blocking assumption: observe-think-act paradigm The

environment is assumed to be stationary in DRL while

the agents observing the states, computing the learning

process, and taking the actions. With limited local com-

putational capability, the processing delay for obtaining

the actions in IIoT devices can hardly be negligible. As a

result, the environment may have already changed when

the device performs the action in a dynamic massive

IIoT scenario, and hence the blocking assumption may

not hold. One possible solution is to concurrently ob-

serve the states and computing the output by formulating

continuous-time Bellman equations.

• Distributed multi-agent DRL With limited communi-

cation resources and a large number of devices, it is

very difficult to train a centralized DRL that takes the

states and actions of all the devices into account. One

promising approach in massive IIoT scenario is to train

a multi-agent DRL in a distributed manner, where each

agent only observes part of the state of the whole system.

However, it is still challenging to find optimal global

policy for POMDP due to the following reasons: 1) when

all the devices cooperate with each other to maximize

a common utility function, the multi-agent DRL may

take a long time to converge to a locally optimal policy

without QoS guarantee; and 2) when each device tries to

maximize its own utility, the system may end up with

an equilibrium that is not Pareto optimal (i.e., all the

devices experience poor performance). How to improve

the convergence performance of multi-agent DRL for

POMDP remains a challenging problem, especially for

non-stationary environment due to frequent interactions

among multiple agents.

Integrating DRL with other machine learning: To en-

hance the performance of multi-agent DRL for POMDP,

we can combine the DRL with the other machine learning

algorithms in above subsections:

• To improve the convergence performance of multi-agent

DRL, GNN is a promising technique to enhance the coop-

eration among agents in the non-stationary environment,

where the graph convolution adapts to the dynamic multi-

agent environment and capture the interplay between the

agents.

• To improve the learning performance of DRL in POMDP

problems, one promising approach is to utilize the long

historical observations. We can integrate the RNN into

DRL to extract sufficient features from historical obser-

vations to make better decisions.

• To ensure the collaboration among all agents, FL frame-

work can be applied in multi-agent DRL. Knowing that

the working environments and computation capabilities

vary for different devices or BSs, the parameter server

in FL should not treat all of them as equal. Specifically,

in each FL communication round, the parameter server

needs to schedule devices or BSs to upload their local

gradients according to their importance. How to design a

scheduling policy and define the importance of different

devices or BSs remain open problems.

• Different from DRL that only estimates the expectation of

the value function, a distributional DRL can approximate

the distribution of the value function by using GAN [8].

The distributional DRL is more suitable for mission-

critical IoT, since we are interested in the tail probability

of delay rather than the average delay.

• Few-shot learning plays a critical role in DRL that needs

to adapt to non-stationary environments. As demonstrated

in a multi-agent competitive environment in [9], meta-

learning is more efficient than reactive baselines in the

few-shot regime. Nevertheless, how to guarantee the

QoS requirements of critical IIoT with few-shot learning

deserves further study.

IV. MACHINE LEARNING APPLICATIONS

Based on the machine learning methods analyzed in Section

III, we present how different machine learning solutions can

be applied in individual layer and cross-layer to guarantee the

QoS requirements of massive IIoT in this section.

Page 28 of 30

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



6

A. Physical Layer

Channel prediction and active user detection (AUD) are

two important problems in the physical layer: 1) for mobile

IoT use cases with predetermined trajectories, it is possible

to predict large-scale channel gains for higher resource uti-

lization efficiency and QoS performance. To exploit long-

term dependency of historical channel gains, RNN has been

utilized in [10] for real-time channel prediction; and 2) grant-

free transmission can support massive IIoT by enabling data

transmission without scheduling, and hence, the BS needs

to perform AUD. FNN has been utilized in [11] for AUD

with much lower computational latency than the compressive

sensing method. But the time correlation of user activity

(i.e., the device transmits over continuous time slots) was not

considered, which may be solved by RNN.

B. MAC Layer

Several MAC-layer problems can be formulated as POMDP:

1) to mitigate the serious collision in massive IoT access,

DRL can be applied to optimize access control schemes. In

[1], [12], DRL dynamically adapts the access control factors

based on the traffic prediction via RNN. With multi-agent

configuring the parameters of different schemes, the GNN

has the potential to further enhance their cooperation; and 2)

scheduling algorithms are important components to provide

the guaranteed IIoT QoS requirements. The authors of [13]

proposed a knowledge-assisted DRL algorithm to optimize the

scheduling policy, where the expert knowledge is exploited to

improve the training efficiency of DRL. To optimize the sched-

uler in more general scenarios with dynamic user requests and

diverse QoS requirements, the combination of constraint DRL

with GNN is a potential solution.

C. Network Layer

Machine learning methods have been applied to deal with

network-layer problems in recent studies, including network

slicing and routing: 1) to meet the diverse QoS requirements,

learning-based network slicing is a promising approach. The

authors of [8] developed a GAN-powered deep distributional

RL for resource management in network slicing, where GAN

is used to approximate the action-value distribution. However,

the scheduling policy was assumed to be Round Robin and the

achievable rate was characterized by Shannon’s capacity for

simplicity; and 2) in long-distance communication scenarios,

like UAV communications, routing delay is one of the major

components of E2E delay. [4] applied GNN to evaluate the

latency, jitter, and packet losses of a routing scheme, and

indicated that by combining GNN with DRL, it is possible

to minimize the E2E latency, jitter, or packet losses.

D. Cross-layer Design

To improve the E2E performance, we should optimize

the system in a cross-layer manner. Different from existing

approaches that divide the system into multiple layers, cross-

layer models are more complicated and the optimization prob-

lems are non-convex in general. To overcome this difficulty,

we can integrate theoretical knowledge of different layers

(models, analysis tools, and optimization frameworks) into

deep learning algorithms [14]. Specifically, DNNs are first pre-

trained offline in a simulation platform built upon theoretical

knowledge and then fine-tuned in real-world systems to handle

the mismatch between simulation and real-world systems.

V. CASE STUDY

In massive IIoT, the BS, with limited preambles F = 54, is

required to optimize the massive access to mitigate the colli-

sions among devices. Therefore, we validate the effectiveness

of machine learning algorithms in optimizing massive access

problems under two typical traffic types: one shot static traffic

scenario and continuous traffic scenario.

A. One Shot Static Traffic Scenario

IIoT devices transmit their latest measurement to the BS

periodically, and the BS determines each device to transmit or

not in each time slot. To maximize the number of successful

transmissions in each time slot, we model this problem as

unsupervised learning, where the perfect CSIs are assumed

to be known at the BS. With a total number of Nd = 80
devices, we take each device as a node and the CSI as an

edge between the device and the BS, and characterize the

system by a Nd×Nd diagonal CSI matrix [15]. For GNN and

CNN, we have L = 10 layers and 40 parameters in total, and

dropout mechanism is applied to overcome the over-smoothing

problem. For the one layer RNN with 128 neurons, the input

is each row of the matrix, and the total number of parameters

is around 105. For the FNN with two hidden layers of size 64

and 32, the total number of the parameters is around 4× 105.
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Fig. 2. Average number of successfully accessed IoT devices with static
traffic.

Fig. 2 compares the performance of GNN, CNN, FNN, and

RNN by evaluating the average number of successful devices

in random access. Our results shown that all of them achieve

similar performance after convergence, and the convergence

speed follows GNN ≈ CNN > RNN > FNN. This is because

the number of parameters of the FNN and RNN is much

larger than the number of parameters of the GNN and CNN

in massive IIoT problems.
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B. Continuous Traffic Scenario

IIoT devices transmit sporadic traffic to the BS, and the

BS adopts Access Class Barring (ACB) scheme to optimize

the uplink transmission. Since the number of active devices

is determined by the newly arrived packets and previously

failed packets, we model this problem as a Markov decision

problem to maximize the number of successful transmissions

over the long term. We set the number of devices and

the maximum number of retransmissions as Nd = 500 and

Nr = 10, respectively. The reward in each slot is defined as

the number of successful transmissions. DQN and DDPG are

applied to optimize the ACB factor (θ ∈ (0, 1])) in the discrete

(i.e., with the pace of 0.05) and continuous action space [12],

respectively.
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Fig. 3. Average number of successfully accessed IoT devices with continuous
traffic.

Fig. 3 compares the average number of success devices in

the random access of DQN and DDPG. We can observe that

the DDPG slightly outperforms the DQN. This is due to the of

DDPG utilizes continuous control mechanism, which provides

the infinite action space for the ACB configuration, whereas

the action of DQN is limited to 20 discrete values.

VI. CONCLUSION

In this article, we summarized the QoS requirements of

massive IIoT use cases in a Beyond 5G enabled factory. We

then focused on investigating machine learning solutions to

deal with massive IIoT problems with specific characteristic,

along with its limitations and potential research directions.

Based on the machine learning solutions, We further reviewed

how to apply them to guarantee the QoS requirements of

massive IIoT in individual layer, and cross-layer design, re-

spectively. Importantly, we utilized different DNN structures

and DRL in massive access optimization problem to validate

the effectiveness of the machine learning solutions. This work

serves to inspire research to customize machine learning

solutions that consider characteristics of massive IIoT with

stringent QoS requirements.
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