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Abstract

NarrowBand-Internet of Things (NB-IoT) is a new 3GPP radio access technology designed to

provide better coverage for a massive number of low-throughput low-cost devices in delay-tolerant

applications with low power consumption. To provide reliable connections with extended coverage, a

repetition transmission scheme is introduced to NB-IoT during both Random Access CHannel (RACH)

procedure and data transmission procedure. To avoid the difficulty in replacing the battery for IoT

devices, the energy harvesting is considered as a promising solution to support energy sustainability in

the NB-IoT network. In this work, we analyze RACH success probability in a self-powered NB-IoT

network taking into account the repeated preamble transmissions and collisions, where each IoT device

with data is active when its battery energy is sufficient to support the transmission. We model the

temporal dynamics of the energy level as a birth-death process, derive the energy availability of each

IoT device, and examine its dependence on the energy storage capacity and the repetition value. We

show that in certain scenarios, the energy availability remains unchanged despite randomness in the

energy harvesting. We also derive the exact expression for the RACH success probability of a randomly

chosen IoT device under the derived energy availability, which is validated under different repetition

values via simulations. We show that the repetition scheme can efficiently improve the RACH success
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probability in a light traffic scenario, but only slightly improves that performance with very inefficient

channel resource utilization in a heavy traffic scenario.

Index Terms

NB-IoT, RACH, collision, energy harvesting, stochastic geometry.

I. INTRODUCTION

The Internet of Things (IoT) is a novel paradigm that is rapidly gaining interest in modern

wireless telecommunications to support connections of billions of miscellaneous innovative

devices. Third Generation Partnership Project (3GPP) has introduced several standards in its

releases to improve support for Low Power Wide Area (LPWA) IoT connectivity [2]–[4]. In

Rel-13, EC-GSM-IoT (Extended Coverage-GSM-IoT) [5] and LTE-MTC (LTE-Machine-Type-

Communications) [6] have been introduced to existing Global System for Mobile Communica-

tions (GSM) [7] and Long-Term Evolution (LTE) [8] networks for better providing IoT devices,

respectively. Another feature is NarrowBand-Internet of Things (NB-IoT) [5] whose applications

include smart metering, intelligent environment monitoring, logistics tracking, municipal light,

waste management, and so on.

A. NarrowBand-Internet of Things

NB-IoT is a new 3GPP radio-access technology developed from existing LTE functionalities,

whereas some features of its specification deemed unnecessary for LPWA IoT needs have been

stripped out [9]. Because of this, NB-IoT can provide unique advantages for various IoT services

over other technologies like 2G, 3G or LTE. LPWA networks mainly require deep/wide coverage,

low power consumption, massive connections, and lower cost. The inherent characteristics of

NB-IoT make it a good fit for LPWA deployment as shown in Fig. 1.

Extending battery lifetime is one of the features of NB-IoT. There are several ways to reduce

power consumption and achieve lifespans of IoT devices for more than 10 years. In the most

simple way, we can switch the device to sleep mode when it does not work, so it doesn’t

waste power while waiting. Power management is fundamentally the tradeoff between message

frequency, device sleep cycles, and business case needs. Deep coverage is another feature of

NB-IoT, where it is designed to improve indoor coverage by 20 dB compared to conventional
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GSM/GPRS. This is achieved by a higher power density, as radio transmissions are concentrated

on a narrower carrier bandwidth of just 180 kHz. The Coverage Enhancement (CE) feature

additionally offers the capability to repeat the transmission of a message when there exist poor

coverage conditions but at the expense of a lower data rate.

Battery Lifetime

Extended Coverage 

Massive Connections

NB-IoT

Fig. 1: Main features of NB-IoT

NB-IoT reuses the LTE design extensively, such that the time required to develop full specifi-

cations and products is significantly reduced. In the downlink of NB-IoT, OFDMA (Orthogonal

Frequency Division Multiplexing) technology is adopted with the sub-carrier spacing of 15 kHz

and 12 sub-carriers make up the 180 kHz channel [10]. In the uplink, SC-FDMA (Single Carrier

Frequency Division Multiple Access) technology including single sub-carrier and multiple sub-

carrier are adopted. A single sub-carrier technology with 3.75 kHz and 15kHz is adopted with

carrier spanning over 48 and 12 respectively. In this paper, we focus on NB-IoT Physical Random

Access CHannel (NPRACH) with single sub-carrier spacing of 3.75 kHz.

NPRACH resources consist of the assignment of time and frequency resources and occur

periodically. In the NPRACH, a random access preamble is transmitted which is the first step

of random access procedure that enables the device to establish a data connection with its

associated Evolved Node B (eNB) [10]. To improve the quality of service and reduce the power

consumption of IoT devices, efficient RACH procedures need to be proposed and analyzed

[9]. In [11]–[13], mathematical models of contention-based RACH focusing on the Signal-to-

Interference-plus-Noise Ratio (SINR) outage or collision have been studied. However, to the

best of our knowledge, most works have focused either on studying the SINR outage without

considering collision or studying the collision from the single cell point of view and most results
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are based on the uplink power control due to its analysis simplicity.

Our previous work [14] has provided the preamble transmission model without considering

the collision, [15] has considered the collision model without considering the repetition scheme,

and [16] has considered the repetition scheme based on the uplink power control for simplicity.

However, the IoT device adopts the cell specific maximum transmission power without power

control when transmitting more than two preamble repetitions, which is motivated by the state-

ment in 3GPP standard [5]. In this scenario, it is unknown 1) to what extent the transmission

power affects the RACH success; 2) to what extent the repetition transmission scheme affects the

RACH success; 3) how to choose the repetition value in different traffic scenarios to balance the

RACH success probability and data transmission channel resources. To solve these problems, we

present a novel mathematical framework to analyze and evaluate the RACH success probability,

taking into account the SINR outage events as well as the collision events at the eNB, where

the IoT devices adopt fixed transmission power.

Generally speaking, in the NB-IoT network, the physical layer parameters and network topol-

ogy can strongly affect the RACH performance, due to that the received SINR at the eNB

can be severely degraded by the mutual interference generated from massive IoT devices. In

this scenario, the random positions of the transmitters make accurate modeling and analysis of

this interference even more complicated. It is worth noting that stochastic geometry has been

regarded as a powerful tool to model and analyze mutual interference between transceivers in the

wireless networks [17], such as conventional cellular networks [18], wireless sensor networks

[19], cognitive radio networks [20], and heterogenous cellular networks [21].

However, conventional stochastic geometry works [17]–[21] focused on analyzing normal

uplink or downlink scheduled data transmission channel, where the intra-cell interference is not

considered, due to the ideal assumption that each orthogonal sub-channel is not reused in a cell.

The work [22] still focused on the scheduled data transmission, though it has considered the

intra-cell interference over non-orthogonal sub-channels. All these stochastic geometry works

are different from the RACH analysis in this paper, where massive IoT devices in a cell may

randomly choose and transmit the same preamble to their associated eNB to request for channel

resources for data transmission, and different preambles represent orthogonal sub-channels. Thus

only IoT devices choosing the same preamble (i.e., sub-channel) have correlations. Note that IoT

devices associated to the same eNB may choose the same preamble and collisions occur when

two or more IoT devices transmit the same preamble simultaneously, such that the intra-cell
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interference and collisions are considered.

In practical NB-IoT networks, mutual interference among transmissions is much more intricate

than the conventional LTE network systems. In this paper, we develop a novel mathematical

framework for NB-IoT networks using stochastic geometry for RACH analysis with some chal-

lenges: 1) the distribution of the random transmission distances is considered, due to that the IoT

device transmits with fixed transmission power; 2) the intra-cell interference is considered, due

to that the massive IoT devices in a cell may randomly choose and transmit the same preamble

using the same sub-channel; 3) the temporally correlated mutual interference is considered, due

to that each IoT device remains spatially static during each repetition; 4) both the SINR outage

and the collision events are considered, due to that collisions occur when two or more IoT devices

transmit the same preamble simultaneously; 5) the network point of view analysis is considered

instead of the single cell point of view, which is difficult in capturing both interference and

collision generated from IoT devices transmitting with different transmit distances, due to the

many concurrent transmissions and the interference experienced in each cell is different.

B. Energy Harvesting

Human-operated cellular devices, such as smart phones, can be charged at will. But IoT

devices are often located at remote and hard to reach locations, such as underground or in

tunnels, without access power supply, which may be inconvenient, dangerous, expensive, or

even impossible to change the battery. Hence, the battery energy storage highly determines the

lifetime of the whole device, which provides a strong motivation for powering IoT devices by

harvesting energy, such that networks consisting of energy harvesting or rechargeable batteries

can survive perpetually [23]. Practically, energy can be harvested from renewable environmental

sources including thermal, solar, wind, etc. [24] and radio signals of different frequencies such

as radio broadcasting [25]. In these cases, the network performances are often tied closely to

the efficiency in energy harvesting and utilization.

It is difficult to predict the time and the amount when the energy is available, as the energy

arrival process is also random and dynamic. Energy buffer, i.e., battery storage, which collects

harvested energy for signal processing and communication, is introduced in order to mitigate

the unpredictability of the energy. Moreover, energy harvesting rates achievable today still fall

short of typical power consumption levels. The harvested energy need to be accumulated in

storage modules (e.g., capacitors or batteries) to a sufficient energy level to operate the IoT
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device. Nevertheless, the energy buffer is limited. It remains challenging to assign the amount

of energy in terms of uncertain energy sources. To have an in-depth study on the harvesting

and utilization of energy, we need an analytically simple yet practically accurate model of the

harvested energy. Several models on the harvested energy have been used in literature, assuming

a time-slotted system. The arriving of harvested energy is known as a deterministic way in [26]

while unknown in [27]. In [28] [29], the stationary Markovian models of the harvested energy

were studied, which are analytically simple and are thus useful to provide insights for solving

some key theoretical problems. However, the validity of these models has not been formally

justified with empirical measurements, and hence it is not known if the insights are useful in

practice. In [30], a more general analytical model for the harvested energy was provided with

support from empirical measurements. In their empirical measurements, the harvested energy may

be a Markovian process. In [31], sleep/wake-up strategies for various factors were studied, which

determines the optimal parameters of the solar energy harvest based strategy using a bargaining

game model. However, to the best of our knowledge, there has been no work studying energy

harvesting in NB-IoT networks. In this work, we consider NB-IoT networks with the IoT devices

harvesting energy from nature, e.g., solar cells, microbial fuel cells, and water mills, etc.

C. Contributions and Outcomes

The contributions of this paper can be summarized as follows:

1) Using stochastic geometry, we present a tractable analytical framework for the self-powered

NB-IoT network via energy harvesting from natural resources, in which the locations of the eNBs

and the IoT devices are modeled as two independent Poisson Point Processes (PPPs) in the spatial

domain.

2) We model the arrival of harvesting energy as independent Poisson arrival processes. Using

tools from Markov stochastic process, we characterize the fraction of time each IoT device kept

in ON state as the energy availability. We first model the temporal dynamics of the energy level

as a birth-death process, and then derive the expression of energy availability of each IoT device

using hitting time analysis.

3) Based on the derived energy availability of the IoT device, we drive the expression for the

RACH transmission success probability of a randomly chosen IoT device with fixed transmission

power under both SINR outage and collision conditions in the NB-IoT network. Furthermore,
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we develop a realistic simulation framework to capture the randomness locations, the preamble

transmission as well as the RACH collision, and verify our derived RACH success probability.

3) Our results show that the energy availability of the IoT device increases at first and then re-

main unchanged, the RACH success probability increases, and the repetition efficiency decreases

when increasing the repetition value. As such, the repetition value needs to be optimized. It is also

noticed that in certain scenarios, the energy availability remains unchanged despite randomness

in the energy harvesting. The results also show that there is an upper limit on transmission power

and too large transmission power will waste energy.

The rest of the paper is organized as follows. Section II presents the network model. Section

III derives energy availability of IoT device and analysis the actual result conditioning on

some specific energy utilization strategies. Section IV derives the RACH transmission success

probabilities of a randomly chosen IoT device. Section V presents the simulation framework.

Finally, Section VI concludes the paper.

II. SYSTEM MODEL

A. Network Description

We consider an uplink stochastic geometry model for NB-IoT system, consisting of a single

class of eNBs and IoT devices, that are spatially distributed in the Euclidean plane R
2 following

two independent homogeneous Poisson Point Processes (PPPs) ΦB and ΦD with intensities λB

and λD, respectively. Without loss of generality, we assume each IoT device remains spatially

static during time slots [16]. Same as [18], we assume that each IoT device associates with its

geographically nearest eNB, where a Voronoi tesselation is formed. A standard power-law path-

loss model is considered, where the path-loss attenuation is defined as r−α, with the propagation

distance r and the path-loss exponent α. In addition, we consider a Rayleigh fading channel,

where the channel power gain h is assumed to be exponentially distributed random variable with

unit mean, i.e., h ∼ Exp(1). All channel gains are assumed to be independent and identically

distributed (i.i.d.) in space and time.

B. Random Access Procedure

In the uplink of NB-IoT, data can only be transmitted via the dedicated uplink data transmission

channel, Narrowband Physical Uplink Shared CHannels (NPUSCH), which is scheduled by the

associated eNB. Before resource scheduling, the IoT device needs to execute a RACH to request
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uplink channel resources with the associated eNB. The RACH procedure of NB-IoT has the

simplified message flow as for LTE, however, with different parameters [10]. There are two

types of RACH procedures: contention-free and contention-based. The former is used to perform

handover, whereas the latter is used otherwise [32]. The four-step contention-based RACH used

by NB-IoT is described as follows.

In step 1, the device first transmits a preamble (msg1) on the NPRACH during the first Random

Access Opportunity (RAO). The eNB periodically informs the devices about a set of up to 64

orthogonal preamble sequences from which the IoT device can make a choice. Collisions occur

when two or more devices transmit the same preamble sequence simultaneously. In step 2, the

IoT device sets a Random Access Response (RAR) window and waits for the eNB to transmit

a RAR (msg2) with an uplink grant for the transmission of a message in the following step. If

the device that sent a preamble sequence does not receive a msg2 from the eNB within a certain

period of time, it enters a backoff period, trying to access the network once this period has

expired. In step 3, the IoT device that successfully receives its RAR transmits a Radio Resource

Control (RRC) Connection Request (msg3) with identity information to eNB. If two or more

devices have chosen the same preamble sequence in a RAO, they will receive the same grant in

the RAR message, and thus, their msg3 transmissions will collide. In step 4, the eNB transmits

a RRC Connection Setup (msg4) to the IoT device when it successfully receives msg3. More

details on the RACH can be found in [8] [14].

Massive connections in NB-IoT make the simultaneous RACH requests under a limited number

of available preambles one of the main challenges, thus we focus on the contention of preamble

in step 1 of contention-based RACH, with the assumption that steps 2, 3, and 4 of RACH are

always successful whenever step 1 is successful. If step 1 in RACH fails, i.e. the associated

RAR message was not received, the IoT device needs to transmit another preamble in the

next available RAO. That is to say, a RACH procedure is always successful if the IoT device

successfully transmits the preamble to its associated eNB. In this case, the failure of this preamble

transmission can result from the following two reasons: 1) the eNB cannot decode the preamble

due to the low received SINR; 2) the eNB successfully decoded the same preamble from two

or more IoT devices in the same time and causes the collision.

It is known that the collision event in step 1 of RACH can be detected by the eNB, when the

collided IoT devices are separable in terms of the power delay profile [8]. Our model follows

the assumption of collision handling in [15], where collision events are detected by eNB after
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it decodes the preambles in step 1 of RACH, and then no response will be fed back from the

eNB to the IoT devices, such that it can not proceed to the next step of RACH [33].

C. Narrowband Physical Random Access CHannel

NB-IoT technology occupies a frequency band of 180 kHz bandwidth [34], which corresponds

to one resource block in LTE transmission. In the NPRACH, a preamble is transmitted based on

symbol groups on a single subcarrier. A preamble consists of four symbol groups transmitted

without gaps and can be repeated several times using the same transmission power. Frequency

hopping is applied to symbol group granularity, i.e. each symbol group is transmitted on a

different subcarrier. To serve UEs in different coverage classes, the NB-IoT network can configure

up to 3 NPRACH resource configurations in a cell. In each configuration, a repetition value from

the set {1, 2, 4, 8, 16, 32, 64, 128} is specified for repeating a basic preamble [35]. In this

model, we consider a single repetition value NT as [16], where the channel resources assignment

of NPRACHs only takes place at the beginning of each transmission time interval (TTI, i.e., a

time slot) as shown in [16].

D. Energy Harvesting Model

We assume that each IoT device is supported solely by the energy harvested from the sur-

rounding environment (e.g., solar, kinetic, wind) and is equipped with a rechargeable battery

with the finite capacity to buffer energy. Note that the assumption of a finite energy buffer is

realistic since it is not possible to have infinite energy within an IoT device with limited physical

dimensions. We model the energy arrival process of a randomly chosen IoT device in one TTI

as an independent Poisson process with intensity μ0. This assumption is based on the fact that

most energy harvesting modules contain small sub-modules harvesting energy independently,

e.g., small solar cells harvesting energy in a solar panel, where the net energy harvested can be

argued to be a Binomial process, which approaches to the Poisson process in the limit when the

number of sub-modules grows large. This assumption is not uncommon, e.g., see [36] [37].

Since the energy arrivals are random and the energy storage capacities are finite, there is

some uncertainty associated with whether the IoT device has enough energy to serve itself at a

particular time. Under such a constraint, the IoT device needs to be kept OFF, and be allowed

to recharge before it has sufficient energy to serve itself in a given time slot. Thus, at any given

time, an IoT device can be in either of the two operational states: ON or OFF. In this paper,
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Fig. 2: Birth-death process modeling the dynamics of the energy available at an IoT device

the decision to toggle the operational state of an IoT device, i.e., turn ON or OFF, is taken by

the device independently, and it is not influenced by the operational states of other IoT devices.

For example, one IoT device may decide to turn OFF if its current energy level reaches below a

certain predefined level, and to turn ON after harvesting enough energy over the other threshold.

We define the fraction of time that a randomly chosen IoT device remains ON as the energy

availability η0. In order to obtain η0, we first need to characterize how the energy available at

the IoT device changes over time. We model the available energy of an IoT device as a finite-

state continuous-time Markov process (CTMC). In particular, let {M(t) : t � 0} be a stationary,

homogeneous, and irreducible Markov process with state space M = {m1,m2, · · · ,mi} that

specifies the energy state at time t. For this setup, we define the energy required of a randomly

chosen IoT device in each repetition E0 as the unit energy [38]. Thus, the real energy state at

a randomly chosen IoT device is directly proportional to the E0 and the proportionality implies

the maximum repetition value the IoT device can support. Without loss of generality, discretizing

the real energy state of the IoT device by dividing by E0, we get our state space of a randomly

chosen IoT device as M = {0, 1, · · · ,M0}, in which M0 =
⌊
E/E0

⌋
and E is the real energy

storage capacity of the randomly chosen IoT device. Thus, the energy state m ∈ M of the IoT

device implies the maximum repetition value the IoT device can support with the energy. As

such, the temporal dynamics of the battery energy levels can be modeled by the CTMC, in

particular, the birth-death process illustrated in Fig. 2. When the IoT device is ON , the energy

increases according to the energy harvesting rate μ0 units energy per second and decreases at a

depletion rate of ν0 units energy per second.

Note that the data transmission after a successful RACH can be extended following the analysis

of RACH success probability. Since the main focus of this paper is analyzing the contention-

based RACH in the NB-IoT network, we assume that the actual intended packet transmission

is always successful (i.e., the data transmission success probability is one) if the corresponding
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(a) (b)

Fig. 3: (a) Structure of failure NPRACH; (b) Structure of successful NPRACH and NPUSCH

RACH succeeds and that the RACH either always fails as shown in Fig. 3(a) or succeeds as

shown in Fig. 3(b) to obtain the lower bound and upper bound1 of the energy availability η0.

Thus, we have Ef
0 = ERA

0 for failure RACH and Es
0 = ERA

0 + EDA
0 for successful RACH, where

ERA
0 is the energy required for the RACH in each repetition; EDA

0 is the energy required for

the data transmission in each repetition. Thus, we have incorporated the energy depletion rate

for failure RACH and successful RACH cases separately as follows:⎧⎪⎨
⎪⎩
ν0 = AaP/E

f
0 , if RACH fails,

ν0 = AaP/E
s
0, if RACH succeeds,

(1)

where P is the transmission power of each IoT device and Aa is the non-empty probability (i.e.,

IoT device data buffer is non-empty) described in Section IV.

The main notations of the proposed protocol are summarized in TABLE I.

III. ENERGY AVAILABILITY OF IOT DEVICES

We assume that the energy harvesting processes are independent among the IoT devices, which

ensure the independence of the current operational state (ON or OFF) of the IoT devices. An

1In our model, we take into account the RACH in one TTI with a single packet sequence transmission as shown rather

than multiple TTI transmissions. We need to know the energy availability in the first TTI. To calculate energy availability for

simplicity, we assume that the RACH either always fails as shown in Fig .3(a) or succeeds as shown in Fig. 3(b) to obtain the

lower bound and upper bound of the energy availability η0. The results of our work are the foundation of further multiple

TTIs analysis.
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12

TABLE I: Notation Table

λB The intensity of BSs λD The intensity of IoT devices

h The Rayleigh fading channel power gain r The distance between an IoT device and its

associated BS

α The path-loss exponent NT The RACH repetition value

μ0 The energy arrival rate E0 The energy required for each repetition

E The real energy storage capacity ν0 The energy depletion rate

ERA
0 The energy required for the RACH in each

repetition

EDA
0 The energy required for the data transmission

in each repetition

Aa The non-empty probability P The transmission power of each IoT device

Mc
0 The cutoff value M0 The storage capacity

T off
0 The time for which the IoT device remains in

the OFF state

T on
0 The time for which the IoT device remains in

the ON state

σ2 The noise power I0 The aggregate interference of the typical IoT

device

ZD The set of interfering IoT devices γth The SINR threshold

L The number of available preambles are re-

served for the contention-based RACH

λDa The density of active IoT devices choosing the

same preamble

c c = 3.575 is a constant η0 The energy availability

IoT device toggles its operational state solely on its current energy level. Essentially, we focus

on a general strategy S{Mmin
0 ,M c

0} with energy storage capacity M0 (0 ≤ Mmin
0 ≤ M c

0 ≤ M0),

where the randomly chosen IoT device toggles to OFF state when its energy level reaches below

specific level Mmin
0 and toggles back to ON state when its energy level reaches the predefined

cutoff value M c
0 , i.e., it has sufficient energy to use. In addition, it should be noted that the

cutoff value M c
0 and Mmin

0 can be defined and changed by the network if necessary.

We note that, it is strictly sub-optimal when the IoT device toggles to OFF at Mmin
0 �= 0 for

this model, since it effectively reduces the storage capacity from M0 to M0−Mmin
0 . That is to say,

the strategy S1{Mmin
0 ,M c

0} with energy storage capacity M0 is equivalent to S2{0,M c
0 −Mmin

0 }
with energy storage capacity (M0 − Mmin

0 ), which are described in Table II. In our work, the

IoT device will be allowed to transmit only if it harvests sufficient energy for the transmission

of at least NT times of repetitions. Then we set M c
0 � NT and Mmin

0 = M c
0 −NT � 0, so we

have our strategies as S3{M c
0 −NT ,M

c
0} with energy storage capacity M0. Therefore, without

loss of generality, the strategies S3{M c
0 −NT ,M

c
0} with energy storage capacity M0 for our
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work is equivalent to S4{0, NT} with energy storage capacity M0. For the brevity of exposition,

we denote this strategy by S{NT}. In practical, the probability that the IoT device is available

may be different for each device due to the differences in the capability M0 of the energy

harvesting modules and the repetition value NT . However, we limit ourselves to the IoT device

with the same repetition number NT and storage capability M0 with the same energy availability

probability.

TABLE II: Strategy Summary

S1(M
min
0 ,Mc

0 ) Mmin
0 Mc

0 M0

S2(0,M
c
0 −Mmin

0 ) 0 Mc
0 −Mmin

0 M0 −Mmin
0

S3(M
c
0 −NT ,M

c
0 ) Mc

0 −NT Mc
0 M0

S4(0, NT ) 0 NT M0

For strategy S{NT}, the time for which an IoT device remains in the ON state after it toggles

from the OFF state is given by T on
0 {NT}, and the time for which it remains in the OFF state

after toggling from the ON state is given by T off
0 {NT}. For notational simplicity, the cutoff value

{NT} will be dropped wherever appropriate. It is noticed that both T on
0 and T off

0 are general

random variables. We first obtain T on
0 as [39]

T on
0 {NT} = inf{τ : ξ0(τ) = 0|ξ0(0) = NT}, (2)

where ξ0(τ) denotes the current energy level of a randomly chosen IoT device at time τ . For

this setup, the energy availability of a randomly chosen IoT device depends only on the means

of T on
0 and T off

0 , which is shown as

η0 =
E[T on

0 ]

E[T on
0 ] + E[T off

0 ]
=

1

1 + E[T off
0 ]/E[T on

0 ]
, (3)

and E[T on
0 ] is the mean time the randomly chosen IoT device remains in the ON state, and

E[T off
0 ] is the mean time it remains in the OFF state.

Proof. Let {T on
0 (k)} and {T off

0 (k)} be the sequences of the kth cycle of ON and OFF times,

respectively. The availability can now be described by the fraction of time the randomly chosen

IoT device remains in the ON state as

η0 = lim
K→∞

∑K
k=1 T

on
0 (k)∑K

k=1 T
on
0 (k) +

∑K
k=1 T

off
0 (k)

. (4)

Dividing both the numerator and the denominator by K and invoking the law of large numbers,

we have the result in (3).
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Now we need to calculate the mean ON time E[T on
0 ] and the mean OFF time E[T off

0 ]. For

OFF time, according to [40], we have E[T off
0 ] = NT/μ0 (i.e., the time required to harvest NT

units of energy), which is the sum of NT exponentially distributed random variables, each with

mean 1/μ0. Substituting into (3), we obtain

η0 =
1

1 +NT/(μ0E[T on
0 ])

. (5)

To derive the mean ON time E[T on
0 ], we first need to obtain the transmission matrix Q0 for

the birth-death process corresponding to the randomly chosen IoT device. According to the

Kolmogorov differential equations [41], Q0=⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−μ0 μ0 0 0 · · · 0 0 0

ν0 −μ0 − ν0 μ0 0 · · · 0 0 0

0 ν0 −μ0 − ν0 μ0 · · · 0 0 0
...

...
...

...
. . .

...
...

...

0 0 0 0 · · · ν0 −μ0 − ν0 μ0

0 0 0 0 · · · 0 ν0 −ν0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, (6)

where the first column corresponds to the energy state 0 and the states are in the ascending

order. Then we obtain the following Lemma 1. from [39].

Lemma 1. (Mean Hitting Time). The expected hitting time of state 1 (energy level 0) starting

from state m+1 (energy level m �= 0) is

E[T on
0 (m)] =

(
(−B0)

−1
�)

)
(m), (7)

where B0 is a defined M0 × M0 matrix to be the restriction of matrix Q0 to the set M \ {0}
i.e., B0 = (Q0(m,n),m �= 0, n �= 0), −B0 is invertible and � is a column vector of all 1’s.

Now we can obtain a closed-form expression for the (m,n)th element in (−B0)
−1 by

(−B0)
−1(m,n) =

1

νn
0

min(m,n)∑
k=1

μn−k
0 νk−1

0 . (8)

Proof. See Appendix A.

Substituting (8) into (7) and then plugging into m = NT , we have the mean ON time for

strategy S{NT} with energy storage capacity M0 as

E[T on
0 (NT )] =

(μ0

ν0

)M0+1(
1−

(μ0

ν0

)−NT
)

(
1− μ0

ν0

) 1

ν0 − μ0

− NT

μ0 − ν0
. (9)
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Submitting (9) into (5), we obtain the energy availability in the following Theorem 1..

Theorem 1. (Energy Availability). The energy availability of a randomly chosen IoT device is

given by

η0 =
1

1 +

NT

(
1− μ0

ν0

)2

(μ0

ν0

)M0+2(
1−

(μ0

ν0

)−NT
)
+

μ0

ν0

(
1− μ0

ν0

)
NT

. (10)

In (10), it can be shown that the energy availability increases with increasing μ0 and M0. For

illustration, the relationships between η0 and NT , M0, μ0 are analyzed in Section V.

IV. RACH TRANSMISSION SUCCESS PROBABILITY

In the NB-IoT repetition scheme, an active IoT device will repeat the same preamble NT

times (i.e., the dedicated repetition value). In each repetition, a preamble is composed of four

symbol groups transmitted without gaps, where the first preamble symbol group is transmitted

via a sub-carrier determined by pseudo-random hopping (i.e., the hopping depends on the current

repetition time and the Narrowband physical Cell ID, a.k.a NCellID [10]), and the following three

preamble symbol groups are transmitted via sub-carriers determined by the fixed size frequency

hopping [42]. This frequency hopping algorithm is designed in a way that different selections

of the first subcarrier lead to hopping schemes which never overlap. Specifically, if two or more

IoT devices chose the same first sub-carrier in a single RAO, the following sub-carriers (i.e.,

in the same RAO) would be same, due to that these two hopping algorithms lead to one-to-

one correspondences between the first sub-carrier and the following sub-carriers (i.e., these IoT

devices either collide on the full set or not collide at all in a single RAO). In this setup, the

RACH success refers to the preamble being successfully transmitted to the associated eNB (i.e.,

received SINR is greater than the SINR threshold) and no collision occurs (i.e., no other IoT

devices successfully transmit a same preamble to the typical eNB simultaneously).

For an IoT device to be able to initiate an uplink transmission, the energy harvested by this

device should be sufficient to perform RACH and data transmission. We have defined the energy

availability of a randomly chosen IoT device after harvesting enough energy as η0 in Theorem 1.

In this section, we first formulate the SINR outage condition to drive the preamble transmission

success probability and then facilitate the analysis of the RACH success probability.
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A. SINR Definition

Recall that each IoT device transmits a randomly chosen preamble to its associated eNB to

request for channel resources, where different preambles represent orthogonal sub-channels, and

thus only IoT devices choosing the same preamble have correlations. The RACH analysis in this

work needs to take into account both the inter- and intra-cell interference2. The received power at

a typical eNB from a randomly chosen IoT device of interest is therefore P0 = Ph0r
−α
0 , where h0

and r0 are the channel power gain and the distance from the typical IoT device to its associated

eNB respectively. Using the received power over the link of interest and the interference power,

the SINR received at the typical eNB at the origin can be written as

SINR(r0) =
Ph0r

−α
0

I intra
0 + I inter

0 + σ2
=

Ph0r
−α
0

I0 + σ2
, (11)

where σ2 is noise power, and I0 is aggregate interference of the typical IoT device with

I0 =
∑
j∈ZD

Phjrj
−α. (12)

In (12), hj and rj are channel power gain and the distance from the interfering IoT devices to

the typical eNB, P is the transmission power of the IoT devices, and ZD is the set of interfering

IoT devices for the typical IoT device. We note that only the active IoT devices choosing the

same preamble will generate interference. The density of active IoT devices choosing the same

preamble is obtained as follows.

Remark 1. (The density of active IoT devices choosing the same preamble). Note that inactive

IoT devices (those without enough energy or data packets in buffer) do not attempt RACH, such

that they do not generate interference. According to the repetition scheme mentioned earlier,

each active IoT device will contend on all L = 48 sub-carriers due to the single repetition value

configuration, and thus each preamble has an equal probability (1/L) to be chosen. As only

2In LTE, the PRACH root sequence planning is used to mitigate inter-cell interference among neighboring BSs (i.e., neighboring

BSs could use different roots to generate preambles) [8]. However, as in [14] [43], we focus on providing a general analytical

framework of cellular networks considering both the inter- and intra-interference without using PRACH root sequence planning.

That is to say, we consider intra-cell interference due to the fact that the IoT devices in the same cell may choose the same

preamble and we consider the inter-cell interference due to the fact that the IoT devices in different cells share the preamble

sequence pool among eNBs. We also obtain the approximation results of the networks with perfect PRACH root sequence

planning (e.g., no inter-cell interference from any cells) in Lemma. 3. But the extension taking into account PRACH root

sequence planning will be treated in future works.
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active IoT devices will try to request uplink channel resources, we define the non-empty data

packets probability of each IoT device Aa ∈ [0, 1] following a Bernoulli process. We also have

the energy availability η0 of each IoT device, then according to the thinning process [44], the

density of active IoT devices choosing the same preamble can be expressed as

λDa = Aaη0λD/L. (13)

B. RACH Success Probability

We formulate the RACH success probability under both SINR outage and collision conditions.

We perform the analysis on an eNB associating with a randomly chosen active IoT device in terms

of the RACH success probability. The RACH success refers to the preamble being successfully

transmitted to the associated eNB (i.e., received SINR is greater than the SINR threshold) and

no collision occurs (i.e., no other IoT devices successfully transmits a same preamble to the

typical eNB simultaneously). First, we formulate the SINR outage condition. The typical IoT

device transmits a preamble successfully if any repetition successes, and in a single repetition, a

preamble is successfully received at the associated eNB if its all four received SINRs are above

the SINR threshold γth. Thus, the preamble transmission success probability of a randomly

chosen IoT device under NT repetitions is expressed as

PS,0[NT ] = 1−
NT∏

nT=1

(
1− P0[θnT

(r0)|r0]︸ ︷︷ ︸
I

)
︸ ︷︷ ︸

II

. (14)

I is the probability that all four (a preamble consists of four preamble symbol groups) time-

correlated preamble symbol groups in the nT th repetition are successfully transmitted, II is the

probability that all NT repetitions of a preamble transmission are failed, and

θnT
(r0) =

{
SINRnT ,1(r0) ≥ γth, SINRnT ,2(r0) ≥ γth, (15)

SINRnT ,3(r0) ≥ γth, SINRnT ,4(r0) ≥ γth
}
.

In (15), γth is the SINR threshold, and SINRnT ,1(r0), SINRnT ,2(r0), SINRnT ,3(r0) and SINRnT ,4(r0)

are the received SINRs of the four symbol groups in the nT th repetition of the typical IoT device.

Based on the Binomial theorem, the preamble transmission success probability in (14) can be

rewritten as

PS,0[NT ] =

NT∑
nT=1

(−1)nT+1
( NT

nT

)
P0[θ1(r0), θ2(r0), · · · , θnT

(r0)|r0], (16)
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where

(
NT

nT

)
=

NT !

nT !(NT − nT )!
is the binomial coefficient, and P0[θ1(r0), θ2(r0), · · · , θnT

(r0)]

is the probability that all of 4×nT (a preamble consists of four preamble symbol groups) time-

correlated preamble symbol groups are successfully transmitted.

We note that the preamble transmission success probability in (16) depends on the transmission

distance r0. Taking into account that each IoT device associates to its geographically nearest

eNB, r0 is the minimum distance between the eNB and the typical IoT device. The PDF of the

shortest distance between any point BS and the IoT device with radius r0 is [45]

fR0(r0) ≈ 2επλBr0 exp(−ελBπr
2
0), (17)

where ε = 1 when λDa � λB and ε = 1.25 when λDa 	 λB.

For ease of presentation, we set l = 4× nT , and the probability that all of 4× nT preamble

symbol groups are successfully transmitted is presented in the following Lemma 2.

Lemma 2. The probability that all of 4×nT received SINRs at the eNB from a randomly chosen

IoT device exceed a certain threshold γth is expressed as

p0(γth) = ER0

[
P0[θ1(r0), θ2(r0), ..., θnT

(r0)|r0]
]
=

∫
P0[θ1(r0), θ2(r0), ..., θnT

(r0)|r0]f(r0)dr0

=

∫ ∞

0

2επλBr0 exp
(
− ελBπr

2
0−

lγthσ
2rα0

P

)
exp

(
−2πλDa

∫ ∞

0

[
1− (

1 + γthr
α
0 y
−α)−l]ydy )

dr0.

(18)

Proof. See Appendix B.

Next, we formulate the RACH success probability taking into account both the SINR outage

and the collision. The RACH success probability is represented in the following Theorem 2.

Theorem 2. In the energy harvesting NB-IoT network, the RACH success probability of a

randomly chosen IoT device is derived as

P0 = EN

[
PS,0[NT ]

n∏
j=1

(
1− PS,j[NT ]

)∣∣∣N = n
]

=
∞∑
n=0

{
P[N = n]︸ ︷︷ ︸

I

PS,0[NT ]︸ ︷︷ ︸
II

n∏
j=1

(
1− PS,j[NT ]

)∣∣∣N = n

︸ ︷︷ ︸
III

}
, (19)

where

P[N = n] =
c(c+1)Γ(n+ c+ 1)

(
λDa/λB

)n
Γ(c+ 1)Γ(n+ 1)

(
λDa/λB + c

)n+c+1 , (20)
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and

PS,0[NT ] =

NT∑
nT=1

(−1)nT+1
( NT

nT

)
∫ ∞

0

2επλBr0 exp
(
− ελBπr

2
0−

lγthσ
2rα0

P

)
exp

(
−2πλDa

∫ ∞

0

[
1− (

1 + γthr
α
0 y
−α)−l]ydy )

dr0.

(21)

Part I the Probability Mass Function (PMF) of the number of intra-cell interfering3 IoT devices

for a typical BS N = n derived following [47, Eq.(3)], where c = 3.575 is a constant related

to the approximate PMF of the PPP Voronoi cell and Γ(·) is the gamma function. Part II is

the preamble transmission success probability of a randomly chosen IoT device obtained by

substituting (18) into (16). Part III is the preamble transmission failure probability that the

transmissions from other n intra-cell interfering IoT devices are not successfully received by the

BS, i.e., the non-collision probability of the typical IoT device conditioning on n.

Remark 2. It is evident from (21) that the transmission success probability (II in (19)) of the

typical IoT device increases, whereas the non-collision probability (III in (19)) decreases with

increasing the repetition value NT and decreasing the the received SINR threshold γth. Therefore,

there exists a tradeoff between transmission success probability and non-collision probability.

For illustration, the relationship among RACH access success probability (P0), the transmission

success probability (P0 with III=1), and the non-collision probability (P0 with II=1) versus

repetition value NT and the received SINR threshold γth is shown in Fig. 4.

Note that the RACH success probability of a randomly chosen IoT device in networks with

perfect PRACH root sequence planning could be obtained by only considering the intra-cell

interference. Considering that the practical Voronoi cells do not have a constant radius, we use

the average radius D = 1/
√
πλB [18] to approximate it4. Thus, the RACH success probability

is given in the following Lemma 3.

3We derive the PMF of the number (N ) of the other interfering IoT devices in the Voronoi cell to which a randomly chosen

IoT device belongs, i.e., there are n interfering IoT devices (n+1 IoT devices) in one cell. According to the Slivnyak’s Theorem

[46] [47], the locations of interfering IoT devices follow the Palm distribution of ΦDa , which is the same as the original ΦDa .

4Note that for the networks with perfect PRACH root sequence planning, it is difficult to characterize the radius of the practical

cell. We use D = 1/
√
πλB to approximate the radius of the practical cell and the results depend on the practical cell shape.

Our results have a good match when choosing a proper deployment area and λB as shown in Fig. 10 and Fig. 12
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Lemma 3. The RACH success probability of a randomly chosen IoT device in NB-IoT networks

with perfect PRACH root sequence planning is derived as

P0 = EN

[
PS,0[NT ]

n∏
j=1

(
1− PS,j[NT ]

)∣∣∣N = n
]

=
∞∑
n=0

{
P[N = n]︸ ︷︷ ︸

I

PS,0[NT ]︸ ︷︷ ︸
II

n∏
j=1

(
1− PS,j[NT ]

)∣∣∣N = n

︸ ︷︷ ︸
III

}
, (22)

where P[N = n] is given in (20) and

PS,0[NT ] =

NT∑
nT=1

(−1)nT+1
( NT

nT

)
∫ ∞

0

2επλBr0 exp
(
− ελBπr

2
0−

lγthσ
2rα0

P
−2πλDa

∫ 1√
πλB

0

[
1−

(
1 + γthr

α
0 y
−α

)−l]
ydy

)
dr0.

(23)

V. SIMULATION AND DISCUSSION

In this section, we verify our analytical results by comparing the theoretical RACH success

probabilities with the results from Monte-Carlo simulations. For numerical verification, we

compute the RACH success probability from Monte-Carlo simulations as follows. We simulate

the spatial model described in Section II in MATLAB. The eNBs and IoT devices are deployed

via independent HPPPs in a 2×104 km2 circle area. Each IoT device associated with its nearest

eNB. The IoT devices and the eNBs remain spatially static during a TTI. The channel fading gains

between the IoT devices and eNBs are modeled by exponentially distributed random variables.

Unless otherwise stated, we set P = 0.02 w, Tr = 6 ms, Tg = 31 ms, μi = 0.05, λB = 0.1

eNBs/km2, λD = 102 IoT devices/km2, γth = 20 dB, α = 4, Aa = 0.001, the bandwidth of a

subcarrier is BW= 3.75 kHz, and thus the noise is σ2 = −174+ 10log10(BW) = −138.3 dBm.

For each realization of this setup, the uplink communication has declared a success if 1) the

calculated SINR exceeds a pre-determined threshold γth and 2) other uplink communications

using the same preamble do not exceed γth. In all figures of this section, “Analytical” and

“Simulation” are abbreviated as “Ana.” and “Sim.”, respectively.

A. Analysis of the Energy Availability

Fig. 5 plots the energy availability of a randomly chosen IoT device under our strategy S{NT}
versus the preamble repetition value NT for various storage capacities M0 using (10). We assume
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Fig. 5: The energy availability of the IoT device for S{NT } versus

the repetition value NT for various storage capacities M0.

that the RACH in each TTI succeeds or fails on the full set (i.e., the RACH always succeeds

or all the RACH always fails), and then we derive the upper bound and the lower bound of the

energy availability. As such, we could give the availability region for various values of energy

availability.

We first observe that the energy availability of the IoT device increases with increasing the

preamble repetition value NT at first and then remains unchanged. This is due to the fact that for

the same storage capacity, increasing the repetition value increases the operation time of the IoT

device, i.e., the IoT device spends more time in ON state. In addition, since M c
0 = NT , increasing

the repetition value NT , i.e., increasing the cutoff value, results in more time needed for the IoT

device to harvest sufficient energy, i.e, stay in OFF state for more time before the transmission.

As such, to obtain a higher energy availability, a larger repetition value NT is needed, but if

the repetition value is overestimated, the IoT device will waste the potential resource for data

transmission and lead to lower resource efficiency. That is to say, the repetition value needs to

be optimized. Interestingly, we also observe that for energy storage capacity much larger than

cutoff value, the energy availability approaches a specific value for different preamble repetition

values, e.g., η0 = 0.3 for the lower bound when and η0 = 0.92 for the upper bound when

M0 −M c
0 ≥ 160, which reveals that this setup is surprisingly reliable if it is designed properly,

despite the randomness in the energy harvesting.

Fig. 6 plots the energy availability of the randomly chosen IoT device under our strategy
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Fig. 6: The energy availability of the IoT device for S{NT } versus the energy harvesting rate μ0 for various storage capacities M0 and

repetition values NT .

S{NT} versus the energy harvesting rate μ0 for various storage capacities M0 and repetition

values NT using (10). We first observe that the energy availability of the IoT device increases

with increasing the energy harvesting rate μ0 when the storage capacity M0 is not large enough,

e.g.,M0 = NT . This is due to the fact that for the same storage capacity and the cutoff value,

increasing the energy harvesting rate results in less time needed for the IoT device to harvest

sufficient energy, i.e, stay in OFF state for less time before the transmission. Interestingly, we

also observe that for energy storage much larger than cutoff value, e.g., M0 − M c
0 ≥ 10, the

energy availability approaches a specific value for different preamble repetition values. That is

to say, if it is designed properly, the energy availability is independent of NT .

B. Validation of the RACH success probability

In this section, we simulate an NB-IoT network and evaluate the RACH success probability

based on the energy availability analyzed above. Fig. 7 plots the RACH success probability of

a randomly chosen IoT device versus the energy availability η for various preamble repetition

values NT . We observe that the RACH success probability deteriorates as the energy availability

of IoT devices increases. This is due to the fact that increasing energy availability increases

the number of active devices, which leads to lower received SINR and a higher probability of

collision. In order to obtain fundamental insights on the RACH success probability due to the

preamble repetition value NT , in the following analysis, we use unchanged η0 = 0.3 for different
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NT =1, 2, 4, and 8, which is obtained by fine tuning M0 −M c
0 ≥ 160 as shown in Fig. 5.
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Fig. 7: RACH success probability versus the energy availability η0
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Fig. 8: RACH success probability versus the transmission powers P

for various repetition values NT .

Fig. 8 plots the RACH success probability of a randomly chosen IoT device versus the

transmission power P for various preamble repetition values NT . We first observe a good match

between the analysis and the simulation results, which validates the accuracy of the developed

mathematical framework. As expected, we observe that the RACH success probability increases

as the transmission power of IoT devices increase. This can be explained by the reason that

whilst increasing the transmission power P leads to higher interference power, it also leads to

increased received signal power, thereby improves the overall SIR and hence the RACH success

probability. It is worth noting that the RACH success probability increases faster at first (e.g.,

when P ≤ 0.1) and then gradually becomes steady, which reveals that there is a limit value

of the cell maximum transmission power. Interestingly, we observe that the RACH success

probabilities with a higher repetition value, e.g., NT = 8 become stable earlier than those with

a lower repetition value, e.g., NT = 1, due to that the higher chance of the RACH to succeeds

in higher repetition value case.

Fig. 9 plots the RACH success probability of a randomly chosen IoT device versus the

SINR threshold γth for various preamble repetition values NT . As expected, the RACH success

probability degrades with an increase in the SINR threshold. According to Fig. 4, increasing

SINR threshold γth leads to lower preamble transmission success probability but higher non-

collision probability, thereby decreases the overall RACH success probability. There is a tradeoff

between preamble transmission success probability and non-collision probability.
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0

0.2

0.4

0.6

0.5 1 1.5 2 2.5 3 3.5 4
D

/
B 104

0

0.5

1

R
A

C
H

 S
uc

ce
ss

 P
ro

ba
bi

li
ty

Ana. N
T

=1

Ana. N
T

=2

Ana. N
T

=4

Ana. N
T

=8

Sim. N
T
=1

Sim. N
T
=2

Sim. N
T
=4

Sim. N
T
=8

(a) With Inter-cell Interference

(b) Without Inter-cell Interference

Repetition Value=8,4,2,1

Repetition Value=8,4,2,1

Fig. 10: RACH success probability versus density ratio λD/λB for

various repetition values NT .

Fig. 10(a) and Fig. 10(b) plot the RACH success probability of a randomly chosen IoT

device versus the density ratio λD/λB in the network with and without inter-cell interference,

respectively. We first observe that the RACH success probability decreases with the increase

of the density ratio between IoT devices and BSs (λD/λB), which is due to the following two

reasons: 1) increasing the number of IoT devices generating interference leads to lower received

SINR at the eNB; 2) increasing the number of IoT devices leads to higher probability of collision.

In addition, increasing repetition value increases the RACH success probability due to that it

offers more opportunities to re-transmit a preamble with the time and frequency diversity.
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Fig. 11: RACH success probability versus density ratio λD/λB for various repetition values NT .
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Fig. 11(a) and Fig. 11(b) plot the RACH success probability of a randomly chosen IoT device

versus the density ratio λD/λB in the network with light traffic (Aa = 0.001, λDa � λB,

and ε = 1) and heavy traffic (Aa = 0.015, λDa 	 λB, and ε = 1.25), respectively. In the

light traffic scenario, RACH success probability increase when increasing the repetition value.

However, in the heavy traffic scenario, the RACH success probability cannot improve much when

the repetition value increased. That is to say, the repetition scheme can efficiently improve the

RACH success probability in a light traffic scenario, but only slightly improves that performance

with very inefficient channel resource utilization in a heavy traffic scenario.

Fig. 12: RACH success probability of a randomly chosen IoT

device versus the densities ratio λD/λB and SINR threshold γth.

Fig. 13: Repetition efficiency of a randomly chosen IoT device

versus the densities ratio λD/λB and SINR threshold γth.

Fig. 12 and Fig. 13 plot the RACH success probability and the Repetition efficiency (i.e., ζ =

P0/NT ) of a randomly chosen IoT device versus the density ratio λD/λB and SINR thresholds

γth, respectively. Obviously, increasing the repetition value increases the success opportunities

of RACH, but decreases the repetition efficiency, which reveals that if the repetition value is

overestimated, the IoT device will waste the potential resource for data transmission and lead

to lower resource efficiency. In addition, we observe that the repetition efficiencies decrease

seriously when increasing the repetition value from NT = 1 to NT = 2, especially for the

lower density ratio. This is due to the fact that when there are fewer active IoT devices (e.g.,

λD/λB = 104) to contention for the same resources, it is likely to succeed with small repetition

values, which contributes to a relatively high channel resource utilization.
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VI. CONCLUSION

In this paper, we have presented a comprehensive RACH success probability analysis for

the NB-IoT network with energy harvesting from natural resources. We have derived a closed-

form expression of the energy availability and analyzed the results for some realistic strategies.

We found that energy availability remains unchanged if the network is properly designed de-

spite randomness in energy harvesting. We further analyzed the RACH under the repetition

transmission scheme in the NB-IoT system based on energy availability. We derived the exact

expression for the RACH success probability under time-correlated interference. Different from

existing works, we considered both SINR outage and collision from the network point of view

in the NB-IoT network, where each IoT device adopts fixed transmission power. Our results

have shown that increasing the repetition value increases the RACH success probability but

decreases the repetition efficiency. In the light traffic scenario, RACH success probability can

meet the requirement with small repetition values. However, in the heavy traffic scenario, very

high repetition value leads to a low channel resources utilization. Our results also have shown

that there is an upper limit on transmission power and too large transmission power will waste

energy.

APPENDIX A

A PROOF OF LEMMA 1

Let A0 = −B0 and then we have

A0A0
−1 = I, (A.1)

where A0
−1 is the inverse of the matrix A0. Let

A0
−1 = (amn)1≤m,n≤M0 = (A1, A2, · · · , AM0), (A.2)

and

I = (emn)1≤m,n≤M0 = (E1, E2, · · · , EM0), (A.3)

where Ar and Er denote the rth column of A0
−1 and I respectively, r = 1, 2, · · · ,M0. Then

(A.1) can be rewritten in the form

A0Ar = Er. (A.4)
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In order to calculate A0
−1, we begin by considering the elements of the first column A1 =

(a11, a21, · · · , aM01)
T of A0

−1. That means⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

μ0 + ν0 −μ0 0 · · · 0 0

−ν0 μ0 + ν0 −μ0 · · · 0 0
...

...
...

. . .
...

...

0 0 0 · · · μ0 + ν0 −μ0

0 0 0 · · · −ν0 ν0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

a11

a21
...

aM0−11

aM01

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

[
1 0 · · · 0 0

]T
. (A.5)

Then we have A1=(1/ν0, 1/ν0, · · · , 1/ν0)T . Plugging r = 2, 3, · · · ,M0 into (A.4) respectively,

we have all the elements of A0
−1, i.e, (−B0)

−1.

APPENDIX B

A PROOF OF LEMMA 2

We note that the preamble transmission success probability in (16) depends on the transmission

distance r0. According to the PDF of r0 given in (17), we have

pi(γth) = ER0

[
P0[θ1(r0), θ2(r0), ..., θnT

(r0)|r0]
]

=

∫
P0[θ1(r0), θ2(r0), ..., θnT

(r0)|r0]f(r0)dr0

=

∫
P0[SINR1(r0) � γth, SINR2(r0) � γth, · · · , SINRl(r0) � γth

∣∣r0]f(r0)dr0
=

∫
P0

[
h1
0 �

γthr
α
0 (I1

0 + σ2)

P
, ..., hl

0 �
γthr

α
0 (I l

0 + σ2)

P

∣∣∣r0]f(r0)dr0
(a)
=

∫
E

[
exp(−γthr

α
0

P
(I1

0 + σ2))... exp(−γthr
α
0

P
(I l

0 + σ2))
∣∣∣r0]f(r0)dr0

=

∫
exp

(
− lγthσ

2rα0
P

)
E

[
exp

(
− γthr

α
0

P

l∑
β=1

Iβ
0

)∣∣∣r0]f(r0)dr0, (B.1)

where (a) follows from the independence of hl
0, and I0 is given in (12).

The Laplace transform of the aggregate interference is characterized according to the definition

of LI0(s) = EI0(e
−sI0) as

E

[
exp

(
− γthr

α
0

P

l∑
β=1

Iβ
0

)∣∣∣r0] = E

[ ∏
j∈ZD

exp
(
− γthr

α
0

l∑
β=1

hβ
j r
−α
j

)∣∣∣r0
]

(a)
= E

[ ∏
j∈ZD

( 1

1 + γthrα0 r
−α
j

)l]
(B.2)

(b)
= exp

(
−2πλDa

∫ ∞

0

[
1−

(
1 + γthr

α
0 y
−α

)−l]
ydy

)
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where (a) is obtained by taking the average with respect to hβ
j and (b) follows from the probability

generation functional (PGFL) of the PPP. Substituting (B.2) into (B.1), we verified (18) in Lemma

2.
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