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Abstract—In recent years, more and more attention has been
paid to the unmanned aerial vehicle (UAV) cooperative task
assignment. In order to complete the task with the lowest cost,
some researchers use multi-objective optimization to solve the
assignment problem. But few of them consider the complex
dynamic scenarios. In this article, the time-varying resource
supply and demands are provided by established digital twins
(DTs) of UAVs and targets, thereby enabling accurate decision
guidance for dynamic task assignment. It takes the scheduling
cost, path cost, risk cost and total task time cost as the opti-
mization objectives. To solve this model, an improved dynamic
multi-objective adaptive weighted particle swarm Optimization
algorithm (DMOAWPSO) is proposed. In the initialization stage,
a heuristic method is used to increase the effectiveness of the
solution. Besides, the adaptive mutation and subgroup methods
are adopted to improve the diversity of the solution. Then, ef-
fective environment change detection and response strategies are
designed to adapt to dynamic scenarios. Finally, the evaluation
metrics are calculated in different instances. Compared with
the popular and classic dynamic multi-objective algorithms, the
simulation results verify that the proposed algorithm is effective
and can cope with the environment changes better in solving the
task assignment problem.

Index Terms—dynamic multi-objective optimization, UAV, dig-
ital twin, task assignment, evolutionary algorithm

I. INTRODUCTION

NMANNED aerial vehicle(UAV) plays an increasingly

important role in various fields, especially in the mil-
itary field. For example, situational reconnaissance [1] and
target surveillance [2] can be completed by UAVs, owing to
their unique advantages of massive connections, high spectral
efficiency and flexibility [3]. However, with the complexity
of the mission environment and requirements increasing, a
single UAV with limited capabilities often can not meet the
mission requirements [4]. Therefore, multiple UAVs are often
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formed as a team to cooperate utilizing the autonomous control
technology. In this case, the data interaction between UAVs
and command center can be excuted by adopting reliable and
efficient wireless communication network technology, such as
device-to-device (D2D) technology, to enhance the transmis-
sion capacity, reduce the transmission power, and improve the
spectrum utilization [5], [6]. UAV collaborative task assign-
ment is to assign different subtasks and the corresponding se-
quences to each UAV to meet the mission requirements within
their capabilities. In this way, some heterogeneous UAVs can
be assigned to perform multiple tasks against certain given
targets with limited time. The aim of the assigning problem is
to achieve optimal efficiency by taking the minimum system
cost [7].

Different from the traditional formation control, the task
assignment of UAV is a complex combinatorial optimization
problem, which needs to consider the task priority, coordina-
tion, time constraint and flight trajectory. In the actual environ-
ment, it is difficult to describe the problem properly, especially
for the complex dynamic environment, such as changes in the
number and position of UAVs and targets, or changes in their
own parameters. Essentially, the task assignment problem is
also a nondeterministic polynomial hard (NP-hard) problem
[8]. So the size of the problem (the number of UAVs, targets
and tasks) affects the complexity of the solution process.

Most of the research on the problem of UAV cooperative
task assignment is limited in static environment, which often
ignores the influence of the position change, scale change and
parameter change of both resources and targets. In addition,
due to the complexity of UAV flight path and unpredictability
of flight target in reality, the existing UAV field situation is
mapped to the virtual space for analysis, namely digital twin
(DT) technology [9]. DT provides an excellent solution for
intelligent resource assignment in UAV by creating a real-
time digital simulation model of physical entities, which is
of great significance to the intelligent development of UAV
system [10].

Since the problem scale affects the complexity of the
solution process, this paper mainly focuses on the case of
small scale and typical constraints. Considering of the dynamic
changes, a dynamic multi-objective optimization model is
established with constraints of resource demand, time, path
and risk coefficient. Meanwhile, this paper proposes to use DT
to reflect the dynamic characteristics of the resource demand
and supply of the UAV and target from physical entities. The
objective is to find the optimal target assignment scheme with
minimum scheduling cost, total time cost, path cost and risk
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cost for UAVs. Then, an improved dynamic multi-objective
adaptive weighting particle swarm optimization (DMOAW-
PSO) algorithm is proposed to solve the model. In this
algorithm, the heuristic initialization, adaptive mutation and
subgroup methods are used to improve the effectiveness of the
solution. Moreover, improved environment change detection
and response strategy are designed to deal with the dynamic
change.

The rest of this paper is scheduled as follows. Section II
introduces the previous related work. Section III describes the
system model. Section IV presents the improved algorithm.
Section V provides simulation results and analyzes the al-
gorithm performance. Section VI concludes this paper with
discussions on future work.

II. RELATED WORKS
A. Scenarios and Model

There have been several relatively in-depth studies on the
task assignment of UAVs. How to assign resources and tasks
needs to consider different optimization goals and corre-
sponding constraints in different scenarios. The research of
static environment has been very mature. Cui et al. [11]
decomposed complex tasks into sub-tasks suitable for a single
UAV. Then they described the task assignment problem from
the aspects of task reward, terrain cost and loss cost. The
constraints concluded heterogeneous UAV load constraints and
mission cost constraints. Ye et al. [12] mainly studied the
cooperative jamming decision-making of UAVs in complex
electromagnetic environments. The model evaluated the jam-
ming effects by considering benefits of power suppression,
frequency alignment, jamming coverage space and jamming
pattern, and costs of the probability cost of resource discovery.
For the study of dynamic environment, the task reassignment
of UAV in a time sensitive and dynamic environment was
studied in [13]. Different time windows of new tasks, different
locations of new tasks, the continuous emergence of new tasks
and the continuous emergence of search and rescue scenarios
of different scales were considered from four perspectives.
Peng et al. [14] aimed to improve the problems of poor
real-time performance and low solution quality of dynamic
task assignment of heterogeneous UAV groups in uncertain
environment. It designed a dynamic task assignment model
based on multi-objective, multi task, heterogeneous multi
machine platform. It constrained the target cost performance
and task execution time window. Most of the current research
relies on certain simple hypothesis, lacking real reflection of
dynamic environment changes. The distribution relationships
are limited to one-to-one or one-to-many distribution. Most of
them use the evaluation factor method when establishing the
object of the model, so it is difficult to unify the dimensions.

DT provides an excellent solution for intelligent resource
allocation in task assignment by creating a real-time digital
simulation model of physical entities. In [10], DT of task as-
signment is established to capture the time-varying resource
supply and demands, so that unified resource scheduling and
assignment can be performed. An architecture of Digital Twin-
driven Smart ShopFloor (DTSF) to realize dynamic resource

allocation optimization (DRAO) is proposed in [15].Schroeder
et al. [16] proposed the use of AutomationML to exchange
data between the digital twin and other systems in the future
manufacturing. Jee et al. [17] proposed the architecture of
Digital Twin-driven Smart ShopFloor (DTSF) to realize dy-
namic resource allocation optimization (DRAO). Digital twin
can be applied to the maintenance, diagnosis and prognostics
of products or equipments. Therefore, the model architecture
of this paper also adds the part of digital twin driver.

As a new concept, DT is expected to be widely used in
many fields. In terms of vertical security problem of maglev
train [18], DT can help reflect the unknown external distur-
bances to ensure the vertical security. In terms of the next-
generation communication, although the existing several tech-
nological advances are expected to help the forecasted de-
mand on the 5G environment, these technologies have not been
fully tested to benchmark performance [19]. There are many
challenges that need to be resolved. A 3-hop non-orthogo-
nal multiple access (NOMA) UAV-aided green communication
network framework was proposed in [20], in which DT can be
adopted to provide the realistic imperfect successive interfer-
ence cancelation evaluation instead of assumption. Similarly,
DT will be possibly applied in the modeling of cellular users,
D2D transmitters, and relay nodes [21] in D2D communica-
tion and the channel model and estimation in reconfigurable
intelligent surface-assisted orthogonal frequency division mul-
tiplexing (OFDM) wireless communications [22].

B. Algorithm Method

As an NP-hard problem, no polynomial time algorithm has
been found to solve the task assignment model of UAVs at
this stage. However, some researchers have tried to solve it
for small and medium scales. Recent solution methods can be
divided into two categories: traditional mathematical methods
and intelligent optimization methods. Traditional mathematical
methods inclulde constraint programming method [23], mixed
linear programming method [24], graph theory method [25]
and so on. These methods can obtain the optimal solution of
the proposed problem with high computational complexity but
long computing time. They are ineffective in solving medium-
scale and high-complexity problems. While intelligent opti-
mization algorithms, such as genetic algorithm [26], particle
swarm algorithm [27], simulated annealing method [28], game
theory [29], can greatly reduce the amount of calculation
through iterative evolution and other forms. The optimal or
sub-optimal solution can be obtained in an acceptable time
period. But the solution space will increase exponentially with
the increase of the scale and optimization objectives. However,
the modern intelligent optimization algorithms have been
relatively perfect to adapt to specific problems to improve the
solution performance. So they have become the mainstream
method of UAV cooperative task assignment. Besides, the deep
belief network was utilized to learn the control system in [30].
Such deep learning methods can be applied to learn and deal
with the uncertainties encountered in practice effectively.

For intelligent algorithms to solve the UAV task assignment
problem, many researchers use weighted summation to trans-
form multiple optimization objectives into a single objective
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optimization problem, which simplifies the problem and makes
it easier to calculate. However, single objective optimization
has the following drawbacks: (1) It is difficult to determine
the allocation of weights. Generally, there must be some con-
tradictions between different indicator functions. It is difficult
to balance these indicators by choosing appropriate weights;
(2) The stability of the problem is affected. The dimensions
of each evaluation indicator are often inconsistent. So the su-
perposition of indicators with different orders of magnitude
can deteriorate the stability of the model; (3) The final solu-
tion of single objective optimization contains less information.
Due to the superposition of each indicator, we can only ob-
tain a unique single objective optimization solution. Besides,
we cannot see the advantages and disadvantages of different
indicators from the solution.

In recent years, some researchers have begun to use multi-
objective optimization algorithms to solve such problems.
Wang et al. [31] constructed a mathematical model of het-
erogeneous UAVs and time-series coupled tasks. Through
the proposed improved multi-objective quantum behavioral
particle swarm optimization algorithm, four objects of com-
pletion time, target reward, UAV damage and total range
were optimized. Atencia et al. [32] proposed a new weighted
stochastic multi-objective evolutionary algorithm to solve the
UAV mission planning problem. Seven optimization objectives
were optimized. The convergence speed of the proposed
algorithm was verified through multiple experiments. Deb et
al. [33] suggested a nondominated sorting genetic algorithm
IT (NSGA-II), which can maintain a better spread of solutions
and converge better in the obtained nondominated front.

However, the above researches only consider the application
of multi-objective algorithms in static environments, without
considering the selection of algorithms in dynamic environ-
ments. Sun et al. [34] proposed an improved multi-objective
ant lion optimization (IMOALO) algorithm to solve the UAV
network communication problems. The algorithm used chaos-
opposition based learning solution initialization and hybrid
solution update operators to solve the problem. It has better
performance than some other benchmark approaches. Yu et
al. [35] proposed an improved multi-objective optimization
algorithm to solve the resource allocation problem in radio
access technologies (RATs). The algorithm used the weighted
Tchebycheff method to optimize the problem, and numerical
results demonstrate that the proposed algorithm yields fast con-
vergence, high system energy efficiency, and flexible energy
efficiency tradeoff.

The key to dynamic multi-objective algorithms is the envi-
ronmental change detection and response. The main require-
ment of environmental change detection is to quickly and ac-
curately detect the changes of environmental parameters at the
current moment compared to the previous moment. The cur-
rent methods include re-evaluation [36], distribution estimation
of objective function value data [37], steady state detection
method [38] and so on. For these detection methods, the first
method selects a small part of the population individuals in
two environments before and after the change. Its detection
accuracy cannot be well guaranteed. The latter two methods
have high computational costs. And the detection accuracy is

not stable enough. The existing environmental change response
mechanisms include diversity introduction mechanism [36],
diversity maintenance mechanism [39], prediction mechanism
[40], memory mechanism [41] and so on. For different types
of environmental changes, choosing the appropriate response
mechanism can better improve the quality of the solution.

As discussed above, compared with the recent works, this
paper will study the assignment problem in dynamic multi-
objective scenarios. Dynamic DTs will be used to collect
real-time changes of UAVs and targets parameters. At the
same time, more real and complex many-to-many distribution
relationship will be considered. Thus, this paper establishes
a multi-objective optimization model to avoid the influence
of dimension difference and weight selection on optimiza-
tion objectives. Then an improved DMOAWPSO algorithm is
proposed. The main improvements compared to the adaptive
weighting particle swarm optimization (AWPSO) algorithm
[42] are as follows:

1) A heuristic population initialization method is adopted
to better cover the solution space and provide better
initial solution to meet various constraints. It can guide
the subsequent population evolution and speed up the
convergence.

2) An adaptive mutation method is proposed, which con-
tains three different mutation operators in total. It can
help the population find a better solution with a greater
mutation probability when the environment changes.

3) Multi-subgroup optimization is used to increase the
diversity of the optimal solution set. The number of
different subgroups is allocated according to the number
of objective functions.

4) An improved environmental change detection and en-
vironmental change response method is proposed to
realize dynamic multi-objective scheduling optimization.
The DTs of UAVs and targets can provide the real
time parameters by connecting the virtual simulation
model and physical enties. It detects and classifies the
change according to the measurement of the change of
environment and the relative movement of the center
of mass. Then, different response methods are adopted
under corresponding change categories, so that the pop-
ulation can maintain better diversity and convergence in
the new environment.

III. SYSTEM MODEL
A. Scene Construction

This paper considers a three-dimensional space environment
where UAVs and targets are distributed in two areas at a certain
distance initially. Assume that there are M/ UAVs resources
(uji = 1,...,M) and N targets (t;,j = 1,..,N). The
parameter information of the targets is assumed to have been
obtained by satellite reconnaissance. Among the resources, the
foregoing m; UAVs can use their carried jamming weapon
types k1 and ko to jam the targets. While the remaining
mo = M — m; UAVs can use their carried attack weapon
types ks and k4 to attack the targets. Each UAV can perform
multiple tasks in sequence. So some of the UAVs will be in
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the waiting stage or unassigned with tasks. But each target
must be assigned with at least one jamming weapon resource
and one attack weapon resource. Each target has different
requirements for weapon resources. Thus, the corresponding
assignment relationship between the resources and targets
should be many-to-many. When all targets are attacked, the
total task is completed. Table I and Table II show the detailed
attributes of UAV and target [31].

TABLE I UAV ATTRIBUTE PARAMETER

Attribute Parameter
UAV number NU
Position XiU
Detection radius Rgetect
Capability type P;
Speed v;
Weapon resources carried Lk
Maximum flight duration Tmaer
Resource value vU
Maximum range disire®
Fuel quantity fuel;

TABLE II TARGET ATTRIBUTE PARAMETER

Attribute Parameter
Target number NT
Position X]T
Weapon resources required Lk
Target value v
Is it known ITkn;

In order to complete the task, UAVs need to cooperative
to execute the mission against all the targets. The execution
process can be divided into three stages: flight stage, waiting
stage and execution stage. In the flight stage, the UAV flies
from its current location to the target location. In the waiting
stage, after the UAV reaches the target location, it has to
wait for the arrival of other cooperative UAVs. While in the
execution stage, the UAV performs its assigned relevant tasks
against the targets. In this paper, the jamming task time is
set to be 10 minutes, and the attack task time is 5 minutes.
The jamming UAV first performs 5 minutes of jamming,
and the subsequent 5-minute jamming tasks are performed
simultaneously with the attack tasks of other attack UAVs [43].
Fig. 1 shows the distribution relationship between UAV, target
and task.

The task assignment structure of UAVs based on DT
consists of two parts: the actual space and the simulation
space. The UAVs interact with the command center during
the whole flight process. The command center obtains various
performance parameters of the UAVs and the targets. The
parameters data is put into the simulation space for analysis
and integration through existing algorithms. After the assign-
ment scheme is obtained, the final strategy is fed back to the

actual space for implementation. The connection of these two
spaces depends on DT to interact. Due to the dynamic changes
of the environment, the DTs of the UAVs and targets need
to collect the corresponding changes and then transfer them
to the simulation space. The simulation space dynamically
adjusts the strategy according to the DT information, so that
the scheme of the actual space can be updated quickly and
efficiently. Fig. 2 shows the simulation actual interaction based
on DT.
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Fig. 2. Simulation actual interaction based on DT.

The system constructed in this paper consists of UAVs, tar-
gets and DT. As for the digital layer, the digital representation
of physical entities (UAVs and targets) provides the operational
dynamics of how the task assignment system operates, and the
parameter data listed in Table I and Table II can be transmit-
ted so as to calculate the assignment strategy. In particular,
when environmental information or the parameters of the tar-
get change, the DT captures the change in the system, such as
the emergence of new targets, the change of target location and
so on, and synchronously calculates the assignment strategy.
DT will eventually update a general strategy to the entity layer,
guiding the UAVs to execute corresponding tasks during the
subsequent movement. When the new target is discovered, DT
will get the new target information quickly and give the appro-
priate assignment scheme in time. The establishment of DT
can help make intelligent and predictive resource assignment
decisions with little communication overhead.

B. Task Assignment Model

We use DT technology to conduct data interaction between
actual space and simulation space, which can be expressed as

DT:{(U,U),(T,T)}, (1)

where U and T represent the physical entities of UAV and
target, Uand T represent the virtual copies of UAV and target
copied by DT. Because data interaction through DT exists
certain delay deviation At in time, the impact of delay At
needs to be considered in the subsequent processing of the
task assignment modeling.

Since the UAV resources are limited, and the task is
expected be completed with minimum time and cost, the task
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target set

Fig. 1. UAV, target and task assignment diagram.

assignment should be optimized. Under the above constraints,
in this part, four cost functions, that is the scheduling cost,
path cost, risk cost and total task time cost are optimized to
find a series of Pareto optimal solutions. The calculation of
each cost function is as follows.

a) Scheduling Cost: The scheduling cost of UAVs during
operation can be equivalent to the cost consumption of total
operation time of different UAVs, which can be defined as

M N

DD @y Vi

i=1 j=1

sdu

<Tz};ly + Til,ujait + T;’ujork) , (2)

where x; ; represents the decision variable. If UAV ¢ is
assigned to target j, then z; ; = 1. Otherwise, z; ; = 0. Tj;ly,
T“’“” and T’”"”“ represent the flight time, waiting time and
executlon tlme of UAV 1 assigned to target j to perform tasks
respectively.

b) Path Cost: Different assignment schemes will form
different flight paths of UAVs. The longer the path is, the
greater cost of the corresponding UAV becomes. The path cost
can be defined as

M N

path = szz,] 0,99 3)

i=1 j=1

where D; ; represents the length of the flight path from the
UAV i to the target j, D; ; = [|X] — X[||. It's obvious that
the flight path length of the UAV is mainly reﬂected in the
distance traveled within the flight time Tzf le, Tzf W _ D, j/v;.
This paper assumes that the possible extra ﬂlght path length
produced while the UAV is at waiting and execution stages is
short and negligible [32].

c) Risk Cost: As the UAV’s mission time increases, the
UAV’s remaining fuel will decrease. If the remained fuel gets
fewer, the UAV will be at greater risk when performing the
mission. At the same time, if the UAV waits around the target
for a longer time, the possibility of exposure may increase,
and it will bear a greater risk from target threat. Thus, the risk

attack uav
cost is defined as
M N
Frisk =Y > @iy (Fuij+ Wt j), “)
i=1j=1
FuelPaX —fu,; Fui s
10X 15 0 < e <0.2
Fuetmax
Fui Sfui,
where Fu;; — { 5X 133 7%, 0.2 < e <0.3
Fuetmax
1x 215 ™0, 0.3 < it <04
0, others

is the risk from the decrease of remaining fuel when the
UAV i is performing task against the target j, and Wt;; =

Twalt ijork7 3Tu)ork < Twazt
5 >< (3Twork Twmt) , 2Twork < Twazt < 3Twork
T;Uja“, Twork: < Tw]azt < 2Two7k

07’ 0 < Twa,zt < Twork:

is the risk generated when the UAV i is at the waiting stage
against the target j. fu;; means the remaining fuel of UAV
¢ when performing the task of target j. fuel;"** represents
the maximum fuel value of UAV i.

d) Total Task Time Cost: As mentioned earlier, the UAVs
assignment optimization is to guarantee that all tasks can be
allocated with resources and executed as quickly as possible.
Different assignment schemes and execution sequences will
affect the completion time of each task, resulting in changes
in the final total time consumption, which is defined as

Fiime = Time, Laet + At ()

where At represents the delay deviation caused by DT [10].
The task execution order of all targets is sorted according to the
value of the j-th target’s VjT in descending order. The larger
VT is, the earlier the UAV will be assigned to the target. The
subscrlpt jlast represents the sequence number of the target
whose value is the smallest. In complex dynamic scenarios,
j'@st should be updated according to the reordering result if a
new target is found. Time;’:l"ﬂt indicates the completion time

of the attack task of the j'**-th target.
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To some extent, the flight path length of UAVs can be con-
verted into flight time. But path cost does not need to consider
the value of UAVs. Besides, the existence of waiting time
makes flight time and path length not equivalent. Under the
prerequisite that all the tasks must be completed, the above
cost functions to be optimized will conflict with each other.
For example, if we want a smaller path cost, we can make the
UAV choose the nearby distributed target. But the waiting time
for other cooperative UAVs may be longer, thus increasing the
risk cost. If we want to spend less time on the total task to
complete the last task as soon as possible, we should use more
UAVs to participate in the assignment. But it may increase
the scheduling cost. If we need to find a better path, it may
increase the path cost. At the same time, the phenomenon of no
UAV participating in the assignment must be avoided because
the constraint that the target task must be executed needs to
be satisfied. Therefore, this paper establishes the assignment
model as a multi-objective optimization model to refrain from
weighting these cost functions. The multi-objective function
of UAVs assignment optimization problem is expressed as

min (—FSdm Fpa,tha Fl"i,sk',a Fti'rne) (6)
my M
&t.in,j >1, Z T, > 1 (6-a)
=1 i=mi+1
M
le, -resSuk ZresRef (6-b)
1=1
N
> iy disi; <dis?™ (6-c)
j=1
N
Z x; 5 - time; j <time;"™ (6-d)
j=1
M
Z Tij (Fuiv]- + Wti,,j) <risk™* (6-¢)
=1
x5 €{0,1},V(i,j) € M x N. (6-)

In the formula, Fyqyu, Fpath, Frisk and Fiime are jointly
optimized to minimize the costs as much as possible. Con-
straint (6-a) means that for any target j, there must be at
least one jamming UAV and one attack UAV assigned to it.
In constraint (6-b), resSu;C means the number of weapon
resources k that UAV ¢ can contribute, and 7'esRe’; means
the number of weapon resources k required by the target j,
k € {k1,ka, ks, kq}. For any target j, the number of weapon
resources k contained in UAV team for a feasible scheme must
not be less than the demand of target j for weapon resources
k. Constraint (6-c) means that the sum of the flying distance of
UAV i to the assigned targets must be within its range dis]"*".
Constraint (6-d) means that the sum of the flying time of UAV
i to the assigned targets must be within its maximum flying
time time]"**. And constraint (6-e) means that the sum of
the risk coefficients of the UAV team assigned to each target
J cannot be higher than the maximum risk coefficient risk™**
during the task execution. This constraint mainly limits that
a UAV shouldn’t participate in too many target tasks, and

the proportion of waiting time should be reduced as much
as possible.

C. Dynamic Scenarios

The actual environment is changing rapidly, and the amount
of information presented at different time varies greatly. It
makes the problem model and solution algorithm more com-
plex and more difficult to obtain the desired optimal solution.
Dynamic research mostly focuses on the continuous movement
of targets and the discovery of obstacles during the flight of
UAVs in unknown environments. The UAVs are assumed to
be able to detect the emergence of new targets within the
action radius RZ°**“* during operation. At the same time,
dynamic changes such as the change of target weapon resource
requirements and the change of the number of targets in the
satellite detection area are also considered.

a) Change in Target Quantity: In a given environment, apart
from the already known targets, there may be some undetected
targets that can be found by UAVs in the process of task
execution. New targets may also fly into the current area.
So before the assignment scheme is obtained, the number of
targets may increase. If the target ;7 changes from unknown to
known, we can note as

IKn; =0= IKn; =1, (7

when a new target is found, it needs to be allocated with
UAV resources immediately without affecting the original
assignment scheme.

b) Change of Target Weapon Resource Demand: The target
weapon resource demand is assumed to be known through
previous satellite reconnaissance and evaluation [7]. But in the
process of assignment, the target’s demand for different types
of weapon resources may increase or decrease. If the weapon
resource requirements of target j are: one jamming weapons
k1, one jamming weapons ko and one attack weapons k4, we
can note as

k1 _ ko ks __ ka _
NP =1, NF2 =1, N}» = 0, N} =1, (8)

if target j’s demand for attack weapon resource k3 increases
and its demand for jamming weapon resource ko decreases,
we can note as

Ni#=0=N»=1

Ni2=1=N»=0" ©
J J

no matter how the weapon resource demand of the target
changes, the assignment scheme of the target must meet the
constraint (6-b). Therefore, when such a change occurs, the
assignment scheme needs to be adjusted.

c) Change of target coordinates: Compared with the above
two changes, the changes of the coordinates of the targets
occur more frequently. In the real environment, the targets
may not always stay in the same position. If the coordinates
of the target change, the calculation of each cost function also
changes. If the coordinates change a lot (its calculation method
is reflected in Section IV), the assignment scheme of the target
needs to be re-evaluated. Other generated assignment schemes
will need to make corresponding adjustments.
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IV. ALGORITHM DESIGN

To solve the multi-objective optimization model (6), this
paper proposes an improved dynamic multi-objective adaptive
weighted particle swarm algorithm. In order to adjust to the
dynamic complex scenarios, the response strategy to environ-
mental change in different situations are given in this part.

A. Overall Algorithm Description

The main flow chart of the algorithm proposed in this paper
is shown in Fig. 3.

Parameter settings

Initialize population
and archive

no

Found new target?

Update PS plan
Choose the desired
plan

The environment
changed?

ChangeResponse

adaptive mutation

Main group and
subgroups update with
adaptive weight

Update archive

Reach the maximum
iteration number?

no

Fig. 3. Flowchart of improved algorithm.

Once the environment is changed, it performs the change
response. Then it mutates adaptively and update the group
and archive until the PS (Pareto-optimal Set) plan is obtained.
After the iteration of the algorithm is completed, if a new
target is discovered during the execution process of the current
scheme, two types of UAVs will be assigned with new tasks
against it preferentially: those that haven’t been assigned with
tasks, and those that are in the waiting stage but can complete
the newly assigned task before the current task starts. The
detailed operation steps are designed in the following parts.

B. Encoding

In order to facilitate the subsequent calculation of the
algorithm and reduce the redundancy of data, this paper
encodes the assignment relationship between UAVs resources
and targets as shown in Fig. 4.

In Fig. 4, the scheme that UAVs assigned to all the N
targets is exhibited as an individual consisting of M x N
codes, where code 0 means the UAV is not assigned to the
target, and code 1 means the opposite. This coding method
can reflect the many-to-many assignment relationship better.
The population is recorded as pop, and the individual in the
population is recorded as pop,,.

( 1/ 10 )
|0|1|...|1|0||1|1|...|1|0| ...... |0|1|

u ..U, u

my U1 ==y

Fig. 4. Chromosome coding.

C. Heuristic Initialization

In initialization phase, most individuals use the chaos initial-
ization [44] to cover a wider solution space. For one part of
the rest individuals, the assignment schemes are determined
according to the distance between the UAV and the target.
In this way, the UAV is assigned to the nearest target, and
the maximum number of UAVs allocated to the same target is
constrained. For the other part of the rest individuals, all targets
are randomly assigned one jamming UAV and one attack
UAV. If the scheme does not meet the constraint of weapon
resources, the UAV is randomly added to meet the constraint.
The above methods can make the algorithm generate multiple
effective optimal solutions quickly to guide the subsequent
evolution of the population and accelerate the convergence
speed of the population.

D. Adaptive Mutation

The intelligent optimization method is easy to fall into the
local optimum in the process of evolution. Therefore, this
paper proposes an adaptive mutation method to increase the
diversity of the Pareto solution set and prevent the algorithm
from falling into the local optimum convergence. The mutation
algorithm mainly includes three mutation operators:

1) Mutation Operator 1: This mutation operator is mainly
aimed at the bit-flip mutation between the same pop,
[45]. pop, is randomly divided into two parts P4 and
Pp. And then part P4 is randomly divided into 3
segments. The 3 segments are randomly sorted and
combined. Data in part Pp is randomly mutated, O to 1
or 1 to 0.

2) Mutation Operator 2: Randomly select two targets in
the current pop,, and exchange their corresponding
assignment schemes;

3) Mutation Operator 3: Calculate the number of UAVs
allocated to each target in the current pop,. Then find
out the target assigned with the largest number of UAVs.
If the number of UAVs assigned to it is greater than the
threshold of UAV number, one UAV is randomly deleted
from the target assignment plan.

Whenever a mutation operation is required, one of the
three operators is randomly selected with the same probability.
That’s because compared with other selection probabilities,
it can improve the diversity and optimum convergence per-
formance of the adaptive mutation further from the point of
uncertainty and comentropy. For the operation of the mutation
method, part of the flow chart is shown in the Fig. 5.

In Fig. 5, the input individuls in the popolation chooses
whether to mutate according to probability pm, and then
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Fig. 5. Adaptive mutation selection.

outputs a new population. var_rate represents the preset
mutation probability pm. w represents the change coefficient
of the mutation rate after the environment changes. In this
paper, w = 2. r represents the current number of iterations.
change_cs represents the iteration number before the environ-
mental changes, and num represents the number of iterations
using the new mutation rate after environmental changes.
num = 10 is taken in this paper. SelectMutationOperator()
represents to select one of the three mutation operators with
the same probability and to mutate. ParticleUpdate() repre-
sents the update function of particle position and velocity.
Through this adaptive mutation selection, the population pop
can traverse more solution spaces in the new environment and
accelerate the convergence speed.

E. Use of Subgroups

In this part, a method of joint optimization of multiple
subgroups is designed. On the basis of reference [46], this
paper divides the population pop into the main group pop™ai"
and four subgroups pop“*97°"P. The main group pop
searches for the Pareto optimal solution according to the nor-
mal algorithm flow. And each subgroup pop**b97°*P optimizes
a single objective function to find the optimal solution of
a single objective. However, in the proposed algorithm, the
subgroup pop“*97°uP and the main group pop™*™ share an
external archive A, which stores the non-dominated solution
in the main group pop™®" and the optimal solution in the
subgroup pop*UP9ToUuP 1In each iterative update, the subgroup
selects the optimal individual pop, of its corresponding ob-
jective function from the external archive A as the guide at
first. Then, the updated optimal individual pop, within the
subgroup takes the place of the dominant solution in the
external archive A. If the number of solutions stored in the
external archive exceeds the given size, the farthest priority
selection method [47] is used to delete the spare solution. The
use of subgroups can increase the diversity of the final Pareto
optimal solution set, especially the boundary solution to each
objective function.

main

F. Dynamic Processing Scheme

For the dynamic multi-objective optimization problem, the
solution algorithm should be able to deal with different sce-
narios. The following two points need to be guaranteed as far
as possible [48]:

1) If the environment changes, the algorithm must ensure
that it can sensitively detect the changes of the en-
vironment and effectively respond to the environment
changes.

2) If the environment does not change, the algorithm should
track the Pareto front of the current environment as
quickly as possible.

This section mainly discusses the processing of dynamic en-
vironment: environmental change detection and environmental
change response.

a) Environmental Change Detection: This paper proposes
to generate several detection individuals pop. by heuristic
initialization according to the current environment after the end
of each generation and before the start of the next generation.
They are used to detect whether their objective function
values have changed in the subsequent environment. Then,
it generates several new detection individuals pop/C according
to the subsequent environment. These individuals pop/c are put
into the old environment for detection. Through such detection,
it can accurately reflect whether the environment has changed
with a smaller computational cost.

As shown in Fig. 2, when the environment changes are
detected, DTs obtain the details of the changes and inter-
acts with the simulation space in time. Through the above-
mentioned environmental change detection measures, we can
detect changes in the environment in time, and take a series of
measures to ensure the diversity and convergence of population
pop in the new environment.

b) Environmental Change Response: Different dynamic
situations have different effects on the population pop. If
the target’s location changes significantly, some assignment
schemes may need to be adjusted or even reconstructed. The
discovery of new targets will also greatly affect some of the
existing assignment schemes. Therefore, this paper proposes
to take the following response measures according to the
situations and severity of environmental changes.

Firstly, the severity of environmental change can be defined
as [40]:

6(t):1 1

Bl
=

F K
SO AL (s0l) = pa (9)l,  (10)
u=1v=1

fu(soly,g)—fu(soly,g—1)
Pu(9)—lu(9)

where Af, (sol,) and 1, (g) =

K
+ > Afu(sol,), F = 4 represents the number of objective
1

funchions, K represents the number of individuals in the pop-
ulation pop, f,(sol,,g) represents the u-th objective function
value of the v-th individual in the g-th environment, p,(g) and
1 (g) represent the maximum and minimum values of the u-th
objective function in the g-th environment.
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Then, the centroid of the Pareto front set obtained at time
t can be calculated as [38]:

|PS|

Z PSy;,

1

Cp=—o
LTPS

(1)
where | PS| represents the number of solutions corresponding
to the Pareto-optimal set of the population pop at time ¢, and
| PSy;| represents the function value corresponding to the i-th
individual in the frontier set at time ¢.

Assuming that the environment at the time ¢+1 has changed
compared to the environment at the time ¢, the degree of
change of the centroid after change is

Si = |Cey1 — Ctl| -

In fact, it is equal to the Euclidean distance between them.

Next, the lowest point composed of the maximum vavlues
of each objective in the Pareto-optimal set in the new envi-
ronment can be found as [49]

(12)

mad

2z = max Fy, (z*) 2" € PS, (13)

where F,(z*) represents the function value of the u-th cost
function. Compare S; with the distance betwen zg”“d and Cy,
the new change intensity str(t) can be obtained as

S
10 ===l

It indicates the degree to which the moving distance of the
centroid relative to the moving distance in the worst case of
the change.

Finally, The response strategy to environmental change in
different situations is shown in Algorithm 1.

In this algorithm, the assignment scheme is initial-
ized by single_init() only for newly emerging targets.
farthest_selection() indicates the farthest priority selection
method [36]. heuristic_initialization() indicates the heuristic
initialization method. And pop_selection() means to add the
solution set in archive A to the population in the new envi-
ronment at first. Then, if the number of schemes in archive
A is insufficient, it is filled with randomly selected optimal
historical individuals of the population. popgbest_selection()
means to extract the optimal historical individuals of the
population. judge_domination() means to judge whether there
is a dominant solution in the new archive after adding the non-
dominanted solution of the population. If it exists, delete the
dominant solution.

str(t) = (14)

G. Complexity and Scalability Analysis

In this part, we analyzed the complexity and scalability of
the proposed algorithm in detail. As shown in Fig. 3, the pro-
posed framework consists of the following three parts:

1) Environmental change detection and response: environ-
mental change detection is to give some special solu-
tions for calculation, which is negligible compared with
the environmental change response. In most cases, the
response to environmental change requires the transfor-
mation of every individual in the population, so the com-
putational complexity can be recorded as O(N?).

Algorithm 1 ChangeResponse()

Input: pop (population), A (archive), K (population size);
Output: pop/ (new population), A (new
archive);

1: if found a new target then

2 stgpop; = single_init(K);

3 5Lgp0p2 single_init(3K/4);

4: pop} = farthest_selection(pop, K /4, sigpops /4);
5 popy = heuristic_initialization(K /4);
6

7

8

9

popy = pop_selection (pop, A, K/2, sigpopa/2);
popy = popgbest selectlon (pop7 sigpop1);
pop, = [popy, popy, pops, pom

: pop = farthest selectlon(pop K);
10 A = judge_domination(pop/);
11: else if §(¢) < str(t) then
12: pop; = farthest_selection(pop, 3K/5);
13 pop, = heuristic_initialization( X /5);
14:  popy = mutations (pop, K/5)
15: pop = [pop), popy, popy;
16: A" = judge_domination(pop );
17: else if o(t) > str(t) then
18: pop} pop_selection (pop, A, K/2);
19 pop, = farthest_selection(pop, K /4);
20:  popy = heuristic_initialization( /4);
21: pop’ = [pop), popy, pops;
2 A= = judge_ domination(pop );
23: end if
24: return pop/,A/;

2) The main body of AWPSO-based algorithm: the com-
putational complexity is O(M N?). Specifically, M rep-
resents the number of objective functions that is much
smaller than N [50].

3) The verification and detection of the final scheme: it is
necessary to evaluate each of the solution in the resulting
Pareto solution set, so the computational complexity is
O(N).

According to the above analysis, the computational com-
plexity of the proposed algorithm is O(N?).

Then, the complexity of the proposed algorithm is com-
pared with other three algorithms, that is, dynamic NSGA-II
(DNSGAI) [33], steady-state and generational evolution al-
gorithm (SGEA) [38], AWPSO. While the AWPSO algorithm
is originally a single-objective optimization algorithm. So we
add dynamic change detection and response as well as multi-
objective processing to adapt to the scenario, named DMOAW-
PSO. It can be seen from Table III that, the complexity of
the proposed algorithm is the same as that of the other three
algorithms compared.

As for the scalability, the proposed algorithm has strong
scalability and can be used in combination with other algo-
rithms and techniques. It consists of several operation steps
that can be extracted to other artificial intelligence algorithm.
Besides, the proposed algorithm can be used to solve most
dynamic multi-objective problems, such as vehicle network
communication and job shop scheduling.



IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS

TABLE III COMPARISON OF COMPLEXITY OF DIFFERENT ALGORITHMS

DNSGA-II SGEA DMOAWPSO

proposed

Algorithm complexity o (]LI N 2)

0 (MN?)

O (MN?) O (MN?)

V. EXPERIMENTAL ANALYSIS

In this section, the feasibility, effectiveness and superior-
ity of the proposed algorithm compared with other algorithms
are verified by simulation experiments. There are many kinds
of evaluation indexes for dynamic multi-objective optimiza-
tion algorithms:(1) Accurate measurement index: GD (Gener-
ational Distance), SR (Success Ratio) and SC (two Set Cov-
erage) [51], etc. (2) Diversity index: S (Spacing), PD (Pure
Diversity) [52] and CS (Coverage Scope), etc. (3) Comprehen-
sive index: IGD (Inverted Generational Distance), HV (Hyper-
volume) [53] and HVR (Hypervolume Rate), etc. The num-
ber of indexes is relatively large. It is impossible for all in-
dexes to be used in the experiment. This paper comprehen-
sively analyzes the performance of the algorithm in terms of
convergence, distribution and diversity through four evaluation
metrics: the Number of Pareto Solutions (NPS) [54], HV, PD
and SC. These four evaluation indicators selected above can
balance accuracy, diversity, and comprehensiveness, compre-
hensively reflecting the superiority of the proposed algorithm
in practical applications.

Assume that the simulation scenario is in a three dimen-
sional space with size of 500kmx500kmx 10km. There are
7 targets and 12 UAVs, including 4 known targets and 3
newly emerging targets. The relevant parameters of the UAVs
and targets can be set similarly to [31], [32]. The number
of environmental changes is 8, including 5 changes of target
position, 2 changes in the requirement of weapon resources
for the target and 1 change in the discovery of a new target.
The delay deviation value caused by DT At can be referred to
[10]. Both of the population pop K and the maximum number
of iteration are set as 100.

A. Effectiveness Testing on the Changes on the DMOAWPSO

This part conducts the comparison experiments of different
changes that can be made to the orignal DMOAWPSO. Among
them, the changes adopted in the proposed algorithm can be
found in Section II and IV. Then, the effectiveness of our
proposed processing steps is reflected in the Table IV and
Table V.

In Table IV, the items in the first column from top to
bottom are the original DMOAWPSO algorithm, DMOAW-
PSO with heuristic initialization, DMOAWPSO with sub-
group, DMOAWPSO with heuristic initialization and sub-
group, DMOAWPSO with adaptive mutation as well as heuris-
tic initialization and subgroup, respectively. The last item
represents our proposed method. From the results of the three
evaluation indicators, we can see that the optimization effect
of the proposed method is the most obvious. All of the three
indicators have been improved.

Table V mainly focuses on the performance comparison
of different combination of dynamic schemes. The items in

the first column from top to bottom are: DMOAWPSO with
re-evaluation detection and complete initialization response,
DMOAWPSO with steady-state mode detection and response,
DMOAWPSO with the steps in the last item in Table IV
and steady-state mode detection and response, the proposed
algorithm. From the results of the three evaluation indicators,
it can be seen that the proposed algorithm has the best
performance compared to other combination schemes.

For the mutation part, one of the three mutation operators
needs to be selected randomly with equal probability. To verify
the effectiveness of the equal selection probability, its per-
formance is compared with other mutation operations with
different selection probability of the three mutation operators
shown in Table VI.

The items in the first column in Table VI represent the selec-
tion probabilities of the three mutation operators. Specifically,
the first row and the last row represent the comparison of the
three evaluation indexes when the mutation operator is not
used and the three mutation operators are selected with the
equal probability, respectively. It can be seen that both the
NPS and the PD are best when selecting the mutation oper-
ator with the equal probability. The HV is the best when the
variation operators are selected with probabilities represented
by the third row. But in this instance, the improvement of other
indicators is not as good as selecting the mutation operators
with the equal probability. Moreover, the difference of HV
between instances is not much. So, this paper adopts the equal
probability to select three mutation operators. It means that the
selection probability of each of the three mutation operators
is 1/3.

B. Simulation Results of Proposed Algorithm

The initial simulation scenario is shown in Fig. 6

3D distribution map of resources and targets
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Fig. 6. Initial distribution of UAVs and targets.

There are 4 known targets and 3 unknown targets in the
initial state. These unknown targets may be found in the
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TABLE IV COMPARISON OF DIFFERENT STEP COMBINATIONS

Different improvements NPS HV PD
DMOAWPSO 7.3667 0.2463 6.8787E+07
DMOAWPSO_init 7.7667 0.2762 5.0883E+07
DMOAWPSO_subgroup 8.7000 0.2797 6.9047E+07
DMOAWPSO_init_subgroup 8.6000 0.2936 7.2691E+07
DMOAWPSO_init_subgroup_advari 9.4000 0.3011 9.3251E+07

TABLE V COMPARISON OF DIFFERENT STEP COMBINATIONS

Different improvements NPS HV PD
DMOAWPSO_randinitdy 7.3667 0.2463 6.8787E+07
DMOAWPSO_SGEAdy 10.2333 0.3017 7.2035E+07
stepimprove_SGEAdy 12.2000 0.3330 1.1934E+08
stepimprove_dyimprove 13.1667 0.3413 1.3105E+08

TABLE VI COMPARISON OF MUTATION WITH DIFFERENT SELECTION PROBABILITY OF OPERATORS

Mutation operator NPS

0,0,0 8.3667
1,0,0 10.9000
0,1,0 11.9000
0,0,1 12.6000
0.5,0.25,0.25 12.2000
0.25,0.5,0.25 13.0000
0.25,0.25,0.5 13.3000
0.33,0.33,0.33 13.3000

HV PD
0.2863 8.8787E+07
0.3234 1.0250e+08
0.3528 1.2238e+08
0.3256 1.1560e+08
0.3489 1.0607e+08
0.3493 9.9903e+07
0.3401 1.0276e+08
0.3467 1.3034e+08

subsequent dynamic process or finally in the flight process of
the UAV. After completing the simulation of the maximum
number of iterations, the obtained optimal solution set is
analyzed to determine whether each solution has the ability
to discover unknown targets. If any unknown target is found,
it needs to be assigned UAVs immediately.

Because there are 4 objectives to be optimized in this paper,
the parallel coordinate visualization [55] is adopted to display
the final Pareto frontier. In order to compare the advantages
and disadvantages of each scheme in terms of four cost metrics
intuitively, this paper uses the z-score method to process the
data. The final Pareto solution set can be represented as show
in Fig. 7.

From Fig. 7, it can be seen that different schemes have
different advantages and disadvantages on each cost. The final
assignment scheme can be determined according to the re-
quirement of practical scenarios. If we need lower scheduling
and path costs, scheme 12 is the most suitable one. While if
we are more concerned about risk costs and total task time,
scheme 1 or 5 can be chosen. The performance of the schemes
in the middle part are relatively average.

Taking Scheme 4 in Fig. 7 for an example. Fig. 8 shows
the orign scheme after the simulation iteration. It shows the
UAV assignment plan in the upper subfigure (a), in which the
dotted line and the solid line represent the motion trajectories
of the attack UAV and jamming UAV respectively. The lines
of the same color represent the motion trajectory of the same

5 Parallel Coordinate Visualization
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Fig. 7. Parallel coordinate visualization of final frontier solution set.

UAV. For the mission schedule in the lower subfigure (b), the
green virtual line represents the mission completion time of
each target. For instance, the green five-star indicates that the
UAV 9 discovered a new target 7 at the moment indiated by
the red vertical line during its flight time. Fig. 9 shows the
change of UAV assignment plan and schedule after the first
unknown target is found.

From Fig. 9, after the UAV 9 discovers the unknown target
7, the system assigns the UAV 2, UAV 5 and UAV 7 to
perform the tasks of the target 7. Among them, UAV 5
and UAV 7 are idle UAVs thaSt have not participated in
the assigned tasks before. They start to fly and execute the
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UAV and target path planning diagram
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Fig. 8. Assignment plan and schedule when UAV is not moving.

mission after the discovery. UAV 2 has to execute task of
target 7 after completing all the current assigned tasks. At the
same time, UAV 6 also finds the second unknown target 6
during the subsequent flight process (the time indicated by
the red vertical line in the subfigure 8(b)). Fig. 10 shows
the changed assignment plan and schedule of UAVs after the
second unknown target is found.

As shown in Fig. 10, after the unknown target 6 is found,
the system sends the UAV 5 and UAV 10 to perform the task of
the target 6. It is worth noting that UAV 5 is just at idle waiting
time when performing the current task. So it can execute the
subsequent task by using the idle time effectively. In this case,
it can reduce the risk cost and the total time of the task. By
this time, after all the targets are assigned with UAVs, the
assignment scheme in Fig. 10 is the final form.

C. Comparison of Different Algorithms Under Multiple Met-
rics

In order to evaluate the performance of the proposed algo-
rithm, this paper compares it with the other three classical and
popular algorithms: DNSGA-II, SGEA, DMOAWPSO. How-
ever, their original application scenarios are different, making
it unsuitable to the scenario constructed in this paper. The
modifications of the comparison algorithms are needed.

UAV and target path planning diagram
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Fig. 9. Assignment plan and schedule after the first unknown target is
discovered.

Among them, the NSGA-II algorithm is a multi-objective
optimization algorithm. We add the dynamic change detec-
tion and dynamic change response to adapt to the scenario as-
sumed in this paper. While the AWPSO algorithm is originally
a single-objective optimization algorithm. So we add multi-
objective processing, dynamic change detection and dynamic
change response methods to adapt to the scenario.

The variation curves of HV metric of four different algo-
rithms during the iteration are provided in Fig. 11. The results
are the average of 30 times experiments for each algorithm.

It can be seen that the proposed algorithm has a faster
convergence speed. That’s because the application of heuristic
initialization method makes it have a higher starting HV. At
the same time, the proposed algorithm has faster recovery
ability and more stable response to dynamic changes. For
DMOAWPSO algorithm, it is obvious that it can not adapt
to the new environment quickly after the dynamic change of
the environment. That’s mainly because it loses the diversity
of the previous environment and the search scope in the
new environment is limited. For SGEA algorithm, it also
has good stability in the face of dynamic changes in the
environment. But it falls into local optimization to a large
extent, and there is no good method to jump out of local
optimization. As for DNSGA-II algorithm, because of its slow
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UAV and target path planning diagram
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Fig. 10. Final assignment plan and schedule.
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Fig. 11. Average HV change curve of different algorithms.

convergence speed, it needs more iterations to achieve better
results. Therefore, when the environment changes dynamically,
its response strategy will affect the previous results, further
making its diversity lost and convergence worse.

In addition to the comparison of different algorithms by
the comprehensive measurement metric HV under the above
scenario, this paper further designs 9 groups of different test
instances to compare the NPS, HV, PD and SC metrics of each
algorithm. The results are the average of 30 times experiments
for each algorithm. The test results of different metrics are

shown in Tables VII to X.
Take the first test instance 5_5_5_0_0 for an example. The

meaning of the digits in the test instance is that it consists
of 5 jamming UAVs, 5 attack UAVs, and 5 targets, among
which there is 0 newly emerging targets, and 0 changes. By
that analogy, we can recognize the difference of different test

instances.

It can be seen from Table VII that the proposed algorithm
achieves the maximum NPS value among all the test instances.
Because the problem considered in this paper is discrete, and
the final solution set may contain a large number of repeated
solutions, it is particularly important to consider the number
of non-repeated Pareto solution sets. Higher NPS metric can
improve the quality of decision-making [48]. Overall, the
difference of NPS in each test instance is not very large. But
the larger the scale is, the smaller the metric NPS will be.
Due to the complex constraints, it will be more difficult to
find a new effective Pareto optimal solutions in a larger-scale
scheduling.

Table VIII shows that the proposed algorithm can achieve
the maximum HV value in all test instances. In the test
instances with fewer changes and smaller scale, the proposed
algorithm can obtain larger HV. That’s because smaller scale
and especially fewer targets will make the cost reduced accord-
ingly. It is worth noting that in the test instance 4_8_8_3_10,
the HV metric is obviously small. The possible reason is that
compared with the number of the targets, the jamming weapon
resources are relatively too few to perform jamming task in
both the jamming and the subsequent attack mission stages.
Each jamming UAV needs to be assigned to different targets
as much as possible, which leads to the greatly increased risk
cost of the jamming UAV, thus affecting the HV metric.

We can see from Table IX that the proposed algorithm
can obtain the maximum PD value in most test instances.
But for the first group of test instance 5_5_5_0_0 in a static
environment, it is obvious that the congestion calculation and
elite retention strategy in DNSGA-II algorithm and SGEA
algorithm can provide better diversity. At the same time, in
the test instances 8_8_10_3_10 and 10_10_10_4_10 with large
scale and many changes, the diversity of DNSGA-II algorithm
and SGEA algorithm is relatively better than the proposed
algorithm. In addition to the different strategies adopted by the
two algorithms mentioned above, the possible reason is that
in a larger scale environment, complex constraints are more
stringent, which limits the generation of better solutions. This
is similar to the phenomenon in Table III. While DNSGA-
II algorithm and SGEA algorithm retain more suboptimal
solutions in each iteration process. In these frequent changing
environment, the proposed response strategy does not cover
enough optimization space. Its memory based retention strat-
egy will lose a certain diversity. But this stragety significantly
improves the convergence speed.

Table X shows the two set coverage SC between two of the
four algorithms. It can intuitively reflect the domination of the
solution set obtained by one algorithm over the solution set
obtained by another algorithm. Its calculation formula is as
follows [51]
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TABLE VII MEAN AND STANDARD DEVIATION VALUES OF NPS METRIC OBTAINED BY FOUR ALGORITHMS

Instance DMOAWPSO DNSGA-II SGEA Proposed
avg std avg std avg std avg std

55500 10.2333 3.9800 4.9667 2.3122 8.26607 2.9235 12.5667 1.6955
55615 12.8667 5.2439 4.8333 1.9313 3.0667 1.3880 18.1333 3.8483
55725 6.8667 3.0708 2.4667 1.1366 2.8667 1.1666 10.1667 3.9136
6_6_7_3_8 8.7333 2.9353 2.9667 1.5643 2.7000 1.1788 13.1667 4.1778
7_7_72_8 8.6000 3.3383 3.3667 1.9911 2.8333 1.4162 13.2667 4.0593
8_8_10_3_10 7.3667 4.7885 3.9667 1.4735 4.3333 1.6259 10.7333 5.2976
10_10_10_4_10 7.0667 4.2825 3.4667 1.2243 2.8333 1.1769 10.9667 4.9999
4.8.8_3_10 7.5333 3.5402 3.1667 1.6626 3.5333 1.7167 13.5667 3.4709
8.4 8310 8.0667 3.6287 2.7000 1.5790 4.5667 2.4870 10.1667 4.6984
Average 8.5926 3.8676 3.5445 1.6527 3.8889 1.6755 12.5259 4.0179

TABLE VIII MEAN AND STANDARD DEVIATION VALUES OF HV METRIC OBTAINED BY FOUR ALGORITHMS

Instance DMOAWPSO DNSGA-II SGEA Proposed
avg std avg std avg std avg std

5.5.5.0_0 0.4730 0.0514 0.2732 0.0700 0.4087 0.0312 0.5188 0.0205
55615 0.4536 0.0447 0.2300 0.0465 0.3178 0.0568 0.5341 0.0349
55725 0.2356 0.0297 0.0882 0.0447 0.1626 0.0341 0.2891 0.0219
6_6_7_3_8 0.2832 0.0454 0.1075 0.0459 0.1708 0.0363 0.3413 0.0255
77728 0.2434 0.0376 0.0894 0.0398 0.1232 0.0323 0.3126 0.0348
8.8.10_3_10 0.1466 0.0530 0.0071 0.0114 0.0522 0.0209 0.2184 0.0423
10_10_10_4_10 0.1676 0.0469 0.0265 0.0242 0.1000 0.0327 0.2540 0.0462
4.8.8.3_10 0.1136 0.0319 0.0247 0.0172 0.0679 0.0255 0.1957 0.0336
848310 0.2163 0.0522 0.0634 0.0279 0.1444 0.0322 0.2769 0.0340
Average 0.2592 0.0436 0.1011 0.0364 0.1720 0.0336 0.3268 0.0326

TABLE IX MEAN AND STANDARD DEVIATION VALUES OF PD METRIC OBTAINED BY FOUR ALGORITHMS

Instance DMOAWPSO DNSGA-II SGEA Proposed
avg std avg std avg std avg std

5.5.5.0_0 4.5768E+07 | 1.9540E+07 | 8.2460E+07 | 4.6441E+07 | 1.2557E+08 | 4.6195E+07 | 4.7251E+07 | 2.6209E+07
5.5.6_1.5 5.8475E+07 | 3.8912E+07 | 7.9775E+07 | 4.5234E+07 | 5.3882E+07 | 4.7228E+07 | 8.9094E+07 | 4.1671E+07
55725 4.7943E+07 | 3.2430E+07 | 4.1639E+07 | 3.7298E+07 | 6.1939E+07 | 4.6229E+07 | 7.7265E+07 | 3.8400E+07
6_6_7_3_8 6.5223E+07 | 3.6328E+07 | 6.0329E+07 | 4.9757E+07 | 5.0847E+07 | 3.8994E+07 | 1.3105E+08 | 4.2748E+07
77728 6.9937E+07 | 4.1060E+07 | 6.2431E+07 | 5.9149E+07 | 6.6418E+07 | 4.7553E+07 | 1.0428E+08 | 5.8581E+07
8_8_10_3_10 5.7888E+07 | 4.7935E+07 | 9.0396E+07 | 5.3134E+07 | 1.5812E+08 | 1.0170E+08 | 1.0111E+08 | 5.1122E+07
10_10_10_4_10 | 6.2506E+07 | 5.3940E+07 | 1.0709E+08 | 7.3004E+07 | 8.1458E+07 | 6.0468E+07 | 9.3790E+07 | 6.3963E+07
4.8.8_3_10 7.4331E+07 | 4.6146E+07 | 9.3093E+07 | 9.2035E+07 | 1.0854E+08 | 8.3137E+07 | 1.4590E+08 | 7.9726E+07
8_.4.8.3_10 6.7171E+07 | 4.2849E+07 | 5.9053E+07 | 6.4040E+07 | 9.8800E+07 | 7.3302E+07 | 1.1380E+08 | 7.1836E+07
Average 6.1027E+07 | 3.9904E+07 | 7.5141E+07 | 5.7788E+07 | 8.9508E+07 | 6.0534E+07 | 1.0039E+08 | 5.2695E+07

to 1, the better the former algorithm is. While the closer

C(A,B) = b€ BlF3ac Aa=<) (15) the SC metric to 0, the better the latter algorithm is. As

7 |B| we can see from Table VI, the proposed algorithm is far

C (A, B) better than DNSGA-II algorithm and SGEA algorithm, with

SC(A,B) = (16)  an average SC of more than 0.9. Similarly, the DMOAWPSO

C (A, B)+C(B,A)

where A, B represents the frontier set obtained by two
different algorithms, C'(A, B) represents the proportion of
individuals in set B dominated by individuals in set A,
SC(A, B) represents the percentage of individuals in set B
dominated by individuals in set A in the total dominated
proportion of the two algorithms. The closer the SC metric

algorithm is far better than DNSGA-II algorithm and slightly
better than SGEA algorithm. At the same time, the proposed
algorithm is also better than the DMOAWPSO algorithm. With
the increase of scale and change frequency, the overall trend
of SC metric is also increasing. This shows that the proposed
algorithm can track the changing frontier more effectively
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TABLE X COMPARISON OF SC COVERAGE OF TWO EPISODES

Instance Proposed vs | Proposed vs | Proposed vs | DMOAWPSO | DMOAWPSO | SGEA vs

DNSGA-II SGEA DMOAWPSO | vs DNSGA-III vs SGEA DNSGA-II
55500 0.9843 0.9472 0.5863 0.9110 0.7580 0.6311
55615 1.0000 09112 0.6172 0.9974 0.6725 0.6866
55725 1.0000 0.9414 0.5993 0.9856 0.6932 0.6565
6_6_7_3_8 1.0000 0.9564 0.5216 0.9813 0.7871 0.6157
7_7_72.8 0.9567 0.9365 0.6363 0.8776 0.8269 0.5133
8_8_10_3_10 1.0000 1.0000 0.6392 0.9955 0.8701 0.8125
10_10_10_4_10 1.0000 0.9705 0.7418 0.9258 0.7066 0.7798
4.8.8_3_10 1.0000 0.9460 0.7316 0.8828 0.6664 0.7310
8.4.8.3_10 1.0000 0.9271 0.6507 0.8897 0.7597 0.6255
Average 0.9934 0.9485 0.6360 0.9385 0.7489 0.6724

than the DMOAWPSO algorithm in complex and changeable
environments. The quality of the solution set is higher.

VI. CONCLUSION

In order to allocate jamming and attack UAVs resources
to different targets with lowest cost in dynamic confrontation
scenarios, this paper applies dynamic DT to establish a multi-
objective task assignment optimization model. Aiming at the
above problem, an improved dynamic multi-objective adaptive
weighted particle swarm optimization algorithm is proposed.
The proposed environmental change detection and response
strategy can ensure the convergence and diversity of the
population in the new environment. The proposed algorithm is
compared with three classic and popular algorithms. The NPS,
HYV, PD and SC results verify that the proposed algorithm has
better convergence, diversity and higher decision quality in
most test instances.

The model and algorithm proposed in this paper can be
used not only in the field of task assignment, but also in the
field of the next-generation communication, air-assisted vehi-
cle network, epidemic prevention and control, path planning
and so on. Besides, the proposed algorithm has strong scala-
bility and can be used in combination with other algorithms
and techniques, such as clustering algorithm, deep learning
algorithm and so on. In future work, researches on more exact
optimization indicators and constraints processing with DT are
worth to focus on to adapt to more complex dynamic scenarios.
At the same time, the issues of data transmission delay and
etfective transmission rate cannot be ignored [56].
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