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Enhancing Physical Layer Security with RIS under
Multi-Antenna Eavesdroppers and Spatially
Correlated Channel Uncertainties

Zongze Li, Qingfeng Lin, Yik-Chung Wu, Derrick Wing Kwan Ng, and Arumugam Nallanathan

Abstract—Reconfigurable intelligent surface (RIS) has the ca-
pability to significantly enhance physical layer security by recon-
figuring the propagation in wireless communications. However,
due to the cascaded channel brought by the RIS and the hostile
nature of potential eavesdroppers, acquiring perfect channel state
information (CSI) of the eavesdroppers is challenging. Worse still,
if the eavesdroppers are equipped with multiple antennas and
there exists spatial correlation at the RIS due to closely spaced
RIS elements, the random channel matrices are complicatedly
coupled with the phase shift and other wireless resources in
the outage probabilistic constraint, making their optimizations
intractable. To date, there has been no systematic and feasible
approach to address such a challenge. To fill this gap, this paper
for the first time reveals an analytical transformation for handling
the intractable outage probabilistic constraint. It is theoretically
established that when the maximum tolerable outage probability
is smaller than a threshold around 0.4, which generally holds
in practice, the proposed transformation is exact and suffers no
performance loss. As an illustrative example of the developed
constraint transformation, the secure energy efficiency maxi-
mization is selected as the objecitve function and the resultant
resource optimization is handled by the alternating maximization
framework. Numerical results are presented to show the rapid
convergence behavior of the proposed algorithm and unveil
that the proposed probabilistic constraint transformation has
superiority over the Bernstein-Type Inequality approximation.
Compared with several baseline schemes (e.g., random phase-
shift, fixed phase-shift, RIS ignoring CSI uncertainty, and secure
transmission without RIS), the proposed scheme significantly
boosts the performance, underscoring the significance of ap-
propriately managing the probabilistic constraint outage and
optimizing RIS phase shifts for secure transmission against multi-
antenna eavesdroppers.

Index Terms—QOutage probability, physical layer security,
reconfigurable intelligent surface, channel uncertainty, multi-
antenna eavesdroppers.

I. INTRODUCTION

Reconfigurable intelligent surface (RIS) has recently at-
tracted tremendous attention from both industry and academia
because of its abundant spatial degrees of freedom and revo-
lutionary programmability. Compared to the traditional active
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nodes approach, which actively transmits the signals, a RIS
shapes the impinging signal by altering the phase shift coeffi-
cients of the reflecting elements that could possibly establish
virtual end-to-end line-of-sight (LoS) links between a base
station (BS) and its desired mobile users even though the direct
LoS path is blocked [1]. In addition, RIS could also provide a
new means for effective physical layer security provisioning.
To be specific, when the legitimate users and the eaves-
droppers are in proximity, the traditional beamforming [2],
which focuses the transmitted energy on legitimate receivers,
may also benefit the decoding at eavesdroppers. In contrast,
the employment of RIS can reduce the information leakage
and improve transmission security by providing additional
transmission links to the users while nulling the directions
towards the eavesdroppers [3].

Previous works on RIS-aided secure transmission assume
the availability of perfect channel state information (CSI) of
the eavesdroppers’ channels [4], [5]. Under this assumption,
secure transmission with optimized RIS phase shift could
achieve a better transmission performance than the scheme
with random phase shift [6] or fixed phase shift [7]. While
these results are promising, the perfect eavesdroppers’ CSI
assumption is generally invalid in practice due to inevitable
estimation errors and hardware limitations. As such, RIS-
aided secure transmission taking into account eavesdroppers’
CSI uncertainty has been designed recently [8]-[10]. However,
they only investigate the case of single-antenna eavesdroppers
with limited application scenarios [6]. Since eavesdroppers in
practice could be equipped with multiple antennas for effective
wiretapping and those results obtained from the single-antenna
cases are not applicable, investigating the secure transmission
strategy under multi-antenna eavesdroppers in RIS-aided sys-
tems is paramount from the wireless communication security
point of view [11].

Due to the imprecise knowledge of eavesdroppers’ channels,
practical RIS-aided secure transmission design should incor-
porate the notion of outage probability [12], which unluckily
does not always admit tractable closed-form expressions. For
instance, analyzing the outage probability for the situation of
single-antenna eavesdroppers has been shown to be a nontrivial
task [8]. On the other hand, for the generalized multi-antenna
cases, the related outage analysis is undoubtedly more complex
since the uncertain random channel matrices are non-trivially
coupled with the optimization variables in the outage prob-
ability constraint. The situation is even more challenging if
there exists spatial correlation in the uncertain channels due to
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the closely spaced RIS elements [13], [14]. Yet, a systematic
and tractable approach for handling the complicated outage
probabilistic constraint has not been studied before.

To overcome the above challenges and fill this gap, this
paper for the first time reveals an efficient transformation to
handle the outage probabilistic constraint taking into account
the existence of multi-antenna eavesdroppers. In particular,
the properties of the unitary matrix, matrix identities, and the
Kronecker product [15] are non-trivially leveraged to compute
the outage probability. Although this result manages to trans-
form the probabilistic constraint into a deterministic form, it
does not facilitate the design of a secure transmission system
due to strongly coupled optimization variables. To this end, a
constraint subset of the outage probability is further proposed
based on a property of regularized gamma function [16]. It
is shown that if the maximum tolerable outage probability is
smaller than a threshold, which is determined by the number
of antennas at the eavesdropper, adopting the subset constraint
will not incur any performance loss. On the other hand, when
the maximum tolerable outage probability is greater than the
derived threshold, a guideline on minimizing the performance
loss is also proposed based on the monotonic behaviors of the
upper incomplete gamma function.

Compared with the conventional Monte Carlo sampling
method [17] for tackling complicated probabilistic constraints,
the proposed tight problem transformation provides an ana-
Iytical expression that can be applied seamlessly to a wide
class of wireless resources allocation optimization problems.
Furthermore, compared to the widely used Bernstein-Type In-
equality (BTI) safe approximation, the proposed approach does
not lead to performance loss for a large range of maximum
tolerable outage probability. As an illustration to demonstrate
the strength of our proposed framework in handling the com-
plex probabilistic constraint in secure transmission, this paper
studies the secure energy efficiency (EE) maximization under
multi-antenna eavesdroppers and spatially correlated channel
uncertainties. Due to the proposed novel probabilistic con-
straint transformation, the resultant problem becomes tractable
under the alternating maximization (AM) framework [18],
where the closed-form optimal solution is obtained for the RIS
phase shift, while the concave-convex procedure [19] and rank
property of the positive semidefinite matrix are employed to
handle the optimization of data covariance matrix. Simulation
results are presented to show the convergence behavior of the
proposed algorithm, the performance gains from the proposed
tight problem transformation over the BTI safe approximation,
and its superior secure EE over the baseline schemes of ran-
dom phase shift (RPS), fixed phase shift (FPS), RIS ignoring
CSI uncertainty, and secure transmission without RIS.

The rest of this paper is organized as follows. System
model and the secure transmission problem are formulated
in Section II. The outage probabilistic constraint in secure
transmission system is handled in Section III. In Section IV,
the optimization methods for solving secure EE maximization
problem are detailed. Finally, simulation results are presented
in Section V and conclusion is drawn in Section VI.

Notation: Column vectors and matrices are denoted by low-
ercase and uppercase boldface letters, respectively. Conjugate
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Fig. 1. RIS-aided secure MIMO network with multiple users and eavesdrop-
pers.
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transpose, transpose, Frobenius norm, trace, the modulus of
a scalar, the vectorization of matrix X, the determinant of
matrix X, and the (4,5)*" element of matrix X are denoted
by (). ()T |- llps Tr(), |- |, vee(X), det(X), and X; ;.
respectively. E{-} stands for the mathematical expectation,
and diag{z1,...,x N} represents a diagonal matrix with the
diagonal components being 1, ...,zy. The notations Pr(-)
and [z]* stand for the probability of an event and max{z, 0},
respectively. The real part of a complex-valued variable, the
Hadamard product between two matrices, and the Kronecker
product are denoted by R[], o, and ®, respectively. N (-, -)
and CN (-, -) denote the normal distribution and the circularly
symmetric complex normal distribution, respectively. Exp(-)
denotes the exponential distribution. The upper incomplete
gamma function is defined as y(y, z) = [ t¥~te~dt [20].

II. SYSTEM MODEL AND PROBLEM FORMULATION

We consider a downlink secure multicast system, as it is a
spectrally and energy-efficient transmission, which supports
efficient, reliable, and scalable group communication ser-
vices [21]. As shown in Fig. 1, there are one N-antenna base
station (BS), one RIS with M reflecting elements (controlled
by the dedicated communication-oriented software), K single-
antenna legitimate users, and J independent idle subscribed
users who act as passive eavesdroppers (Eves) intercepting
the muticasting of confidential messages to other users with
Eve j equipped with N; antennas, Vj € {1,...,J}. All the
users and eavesdroppers are located in a single-cell homo-
geneous environment. In particular, it is assumed that users
are not moving in high speed such that the coherence time
is sufficiently long compared with the transmission duration.
Also, we consider an urban area with a lot of scatters in the
environment but the direct links from the BS to the user are
blocked by obstacles, e.g., buildings, and communications can
only be established via the RIS. However, due to the malicious
behaviour of eavesdroppers, it is assumed that there exist direct
links from the BS to eavesdroppers. Considering a narrowband
transmitted signal in such a rich scattering environment, all the
wireless channels are modeled as quasi-static Rayleigh flat-
fading [7].

Let the channels from the BS to the RIS, from the RIS to
user k, from the BS to Eve j, and from the RIS to Eve j be
denoted by H € CM*N 'h, e CM*t vk e K ={1,...,K},
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W; € CV*Ni and G; € CMNivj € 7 = {1,...,J},
respectively. Since the users and Eves are located in a single-
cell homogeneous environment, they share the same channel
and thermal noise statistics. Therefore, by observing the users’
channels, the BS can acquire the statistical CSI of W; and G
with vec(W;) ~ CN(0,Iyy,) and vec(G;) ~ CN(0,Iy;, ®
Skis ), where Sgis € CM>*M s the spatial correlation matrices
at the RIS.!Here, we include the correlation at the RIS as the
elements of an RIS might be placed close to each other and
the RIS spatial correlation is expressed as [14]

2 ni,n
[ERIS]nl,nQ = sinc (26272> 9 vnh”? S {1a e 7N}7 (1)

where z,, ,,, denotes the distance between the n}" and the n%?
RIS element, and d is the wavelength. On the other hand, the
phase-shift coefficients?of the RIS are collected in a diagonal
matrix © = diag{e®,... e} € CM*M  where 2 = —1,
and 6, € [0,27) with m € {1,..., M}.

Let the transmitted signal from the BS to all the users be
denoted by x with the covariance matrix Q = E{xx} €
CN*N_ With flat-fading channel, the received signals at user
k and Eve j are respectively given by

yr = varhf @Hx + ny,, Vk, 2
yj = \/oTij@HX—i— Jﬁ?WfX-i— n;, Vj, )

where ay, and ny ~ CN(0,032) are the path loss coefficient
and the receiver noises at user k, respectively. Furthermore,
a; and 3; are the path loss coefficients for the links RIS-Eve
J and the BS-Eve j, respectively. n; is zero mean additive
white Gaussian noises with the covariance matrix UJZ.I.

Based on (2) and (3), the channel capacities of user k£ and
Eve j are respectively given by

Ry} =log, (1 + ax(hy ©H)Q(h{!©@H)" /o}) , Vk, (4)
R} = log, det (T+ (a;GI'OH + \/GWI) Q
H
« (vaGlen + VBEWI) " jo?), i ()

For Eve j’s channel, since the BS is unable to acquire its
perfect estimate, the knowledge of the channel capacity of Eve
7 is generally uncertain [25]. Consequently, a secrecy outage
event occurs at the BS when R/ exceeds the redundancy rate
of user k. Denoting the redundancy rate as Dy, ;, the secrecy
outage probability (SOP) of user £ due to Eve j is given by

phd :Pr{pk,j <log, det (1 + (Va;GIOH + /B;WiHQ

x(@Gf@H+W7ij)H/o?)}. ©

IExisting RIS-assisted physical layer security tasks are mainly based on
the idealistic assumption of an independent and identically distributed (i.i.d.)
channel model at the RIS [22], [23]. In this paper, we consider a spatially
correlated Rayleigh fading model that is more practical when the elements of
an RIS are placed close to each other [14], [24].

2This paper mainly considers the continuous phase shift model. For the
discrete phase shift case, one possible approach is to first obtain the optimized
phases from Algorithm 2 in Section IV and then quantize them to the nearest
allowable discrete values.
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Considering the non-colluding eavesdropping case, the
instantaneous secrecy rate at user k achieved by the
BS for all potential eavesdroppers is r‘ni?[logQ(I +

JjE

ar(h?OH)Q(hTOH) /62)— Dy, ;]*. Since the achievable
secrecy rate for multicast network is determined by the worst
communication link [26], the multicast achievable secrecy rate
is expressed as
min
keK,jeT
+
10g, (1+ ax (b ©H) Q (hOH)" /o) — Dy 5|
(7

which is the minimum achievable secrecy rate of all the users.

On the other hand, the total energy consumption of the RIS-
assisted downlink system constitutes four major components:
1) the transmit power at the BS; 2) the hardware static
power at BS and users; 3) the static power consumption of
RIS arises from both the control circuits and impedance-
adjusting semiconductor components, which are crucial for its
operational functionality; 4) the dynamic power consumption
of RIS arising from channel estimation. Then, the energy
consumption model is given by [27], [28]

%Tr (Q)+ P, + KP.+ M(Ps + P./T}), (8)

where 7 € (0, 1) is the power amplifier efficiency and Tr (Q)
is the transmit power at the BS. P, and P, are the hardware-
dissipated power at the BS and the circuit power at each user,
respectively. P is the static power consumption associated
with a single reflecting element due to control circuits and
impedance-adjusting. P, is the dynamic energy consumption
for channel estimation during a frame duration 7'y [28].

Our objective is to optimize the secure EE subject to
SOP constraint, phase shift constraint, and transmit power
constraint. The secure EE is adopted to quantify the effec-
tive secrecy rate in the wireless system while considering
the energy consumption. With the secure EE defined as
the achievable secrecy rate (7) per unit of the total power
consumption (8) [29], the corresponding optimization problem
is formulated as

P1) max
Q.©,{Dx,;}

min _[log, (14 ax(hff ©H)Q(h/f®H)" /07)— D),

]+
kek,jed

2T (Q) + Py + KP.+ M(Ps + P./Ty)

(9a)

s.t. pll <e, Vk,j, (9b)
|®m| =1, Vm, (9¢)

Tr (Q) < Prax, Q= 0, rank(Q) =1, (9d)

where £ € (0,1) denotes the maximum tolerable SOP, and
Phax is the maximum transmit power at the BS. The phase-
shift coefficients constraint (9c) means that the amplitude of
the reflecting elements of the RIS operates at 100% reflection
efficiency.

In fact, problem P1 provides a generalized formulation for
evaluating the RIS-aided secure transmission performance via
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the objective function defined in (9a). If we set 1/n = 0, the
denominator of the objective function becomes a constant and
the fractional objective function reduces to a non-fractional
form, which corresponds to secrecy rate maximization. It is
important to note that all derivations and results remain valid
in this case. Hence, P1 can be employed to investigate not only
secure EE maximization but also secrecy rate maximization. If
P1 can be solved, the corresponding objective function value is
the achievable secure energy efficiency, while the correspond-
ing solution for the transmit covariance matrix, phase shift
design, and redundancy rate are the system parameters that
lead to the secure energy efficiency’ given by the optimized
objective function value.

Notice that P1 is a stochastic nonconcave optimization
problem with a probabilistic constraint (9b). Even if we
consider other objective functions rather than that in (9a), the
probabilistic constraint still exists and remains an obstacle in
solving the problem at hand. In general, the Monte Carlo
simulation-based method [17] can be employed to tackle
the probabilistic constraint. However, this approach requires
solving P1 numerous times, thus introducing prohibitively
large computational load. To avoid the heavy computational
burden, another widely used approach is to adopt the BTI
to transform the probabilistic constraint (9b) into a more
conservative but deterministic one [31]. To be specific, notice
that since vec(G;) ~ CN (O IN ® ERIS) it can be rewritten
as vec(G;) = (Ly, ®2RIS) vec(Gj), where vec(Gj) ~
CN(0,Iy/n,). Then, the probabilistic constraint (9b) can be
rewritten as

4

Hermitian matrix X, the deterministic constraint (12) does
not facilitate the optimization of problem P1 and transmission
system design. To overcome the above challenges, in the next
section, we provide a novel method to handle the probabilistic
constraint (9b).

Remark 1. In general, there are two practical eavesdropping
models: the colluding model and non-colluding model [4].
In the colluding model, eavesdroppers collaborate to process
their received private information jointly. In contrast, the non-
colluding model involves eavesdroppers acting independently,
each with the ability to individually intercept private infor-
mation. In this paper, since the eavesdroppers are regarded
as the independent idle subscribed users who act as passive
eavesdroppers, we adopt the non-collaborative eavesdropping
model. For the colluding case, it is a promising topic for future
research.

III. HANDLING OF THE PROBABILISTIC CONSTRAINT

The imperfect CSI of Eves is characterized by the outage
probabilistic constraint p¥J < ¢ For the single-antenna
Eves, the exponentially distributed received signal power under
Rayleigh fading channels has been employed to transform the
probabilistic constraint into a deterministic one [8]. However,
for the cases with multi-antenna Eves, the SOP constraint is
more complicated and hence deriving a closed-form expression
is nontrivial.

More specifically, using (6), the SOP constraint can be
rewritten as

phi = Pr{(QDk,j - l)aj2-< [vec(éj) ,vec(W3) }(X @1In;) phi = Pr{ 2Pk < det (1 + (\/oTijG)H + /@'Wf)Q

{Vec(é) Vec(Wj)H]H <e, (10)

where matrix X is given by

_ (EﬁISQHQ(EEISQH V05 ERISQHQ]
Va5 Q(S 4 OH) " 5iQ
(1)
Since  vec(G;) and vec(W,) are independent,
- H
[Vec(Gj)H,VeC(Wj)H ~  CN(0,T(yay,). Then,

a smaller subset constraint to constraint (10) can be obtained
by using the BTI [32]:

2Pk —1)0? < Tr(X @ Iy,) + /2In(e 1) X @ Ly, ||
+In(e™!) [Amax(X @ Iy,)] ° (12)

where Amax(-) denotes the largest eigenvalue of the input ma-
trix. Although (12) is a deterministic constraint, it is generally
a safe approximation, i.e., (12)=-(10), which inevitably causes
performance loss due to the restrictive feasible set. Worse still,
since the optimization variables ® and Q are coupled in the

3Considering the multicast channel model, the dirty paper coding-based
scheme [30] could be adopted to achieve the optimized secure energy effi-
ciency, and the coding scheme depends implicitly on the channel uncertainties
of Eves through the solution of P1.

x(y/a;GHOH + \/[Tjwjf)H/af)} <e,Vk,j.
(13)

To handle the probabilistic constraint (13), we present the
following lemma, which provides an equivalent deterministic
form. The equivalence is leveraged on properties of unitary
matrix, matrix identities, and the Kronecker product [15], and
the detailed proof is presented in Appendix A.

Lemma 1. Given vec(W;) ~ CN(0,1yx;) and vec(Gj) ~
CN (O,INj ®ERIS), the SOP constraint of (13) can be
equivalently expressed as:

7 (0 45
n = — o e Yki (9
where A = Tr (X) with X =
aj (ERISGHQ(Elgl.S@H mERISQqu
Vai B Q2 0m) 5,Q

To visualize the equivalence between (13) and (14), pséj is
plotted with respect to Dy, ; with N = 64, M = 10, K = 2,
J=4,{N; = 4}?:1 in Fig. 2 (other settings will be detailed
at the beginning of Section V). It can be seen that the SOP
from (13) and (14) perfectly coincide with each other even
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Fig. 2. SOP versus Dy ; with N = 64, M = 10, K = 2, J = 4,
{N; = 4}?:1

when SOP is below 1073, which validates the accuracy of
Lemma 1.

While we explicitly obtain an expression for the SOP
in (14), the optimization variable Dy ; appears inside the
upper incomplete gamma function such that the constraint
is still intractable from optimization perspective. By further
leveraging the property of the incomplete gamma function, we
provide the following theorem for handling the constraint (14).

Theorem 1. Ifc € (O ﬂ’((N 1)’)} constraint (14) is equivalent
to

N;
Dk7j210g2<1+ (1+ 21n(u;})+ln(u2,}))

]

x Tr (o; SrsO®HQ(OH)” + 8,Q) |,k j,
15)
with the tunable parameter |1, ; satisfying
5 (Nj,Nj (1 + 21n(,uk )+ ln(,uk])>)
=c. (16)

(N; = 1)!

On the other hand, if € € (’Y(N”Jf),), 1], constraint (15) is

always tighter than the constraint (14).

Proof. Please see Appendix B. O

The importance of Theorem 1 is that when the maximum
tolerable SOP ¢ is smaller than 7((]\, ];[),), the SOP admits an
equivalent tractable form. In case the maximum tolerable SOP

€ is greater than AY(%V If), , (15) provides a more conservative

constraint than (14). Notice that when {N; = 1}] 1, (15)
reduces to the result of [8].

Since it is known that the objective function of problem (9)
is a monotonic function on Dy, ;, maximizing (9a) is equivalent
to minimizing Dy, ;. Exploiting Theorem 1, the maximizer

Under review for possible publication in

Dg, j of (9) must activate (15), which yields
o N —1 —1
Dy j=logy( 14+ — (14 4/2In(k, ;) +In(y ;)
]

x Tr (o; ZpisOHQ(OH) + 8,Q) |, Vk, .
(17)

y(N;, N

From Theorem 1, if ¢ € (0, o~ __1), ] adopting (17) does not
’Y(NJaNJ) the

lead to any performance loss. However, if ¢ > N, =TT

obtained D;; of (17) serves as a conservative solutlon and the
choice of jiy ; would affect the degree of conservatism. The
following property is provided to minimize the conservatism.

Lemma 2. To ensure Dy, j be the closest to that of the optimal

solution of (9) when € > "’(( J’ - )f the tunable parameter iy,
in (17) should be chosen as py ; = 1.

Proof. Please see Appendix C. O

The relationship between the tunable parameter pi ; and
€ is determined by (16) and Lemma 2, and we illustrate the
relationship in Fig. 3(a). It can be observed that the tunable

parameter (i, ; increases in ¢ € (0, W(Sf[VJ’N),)] and reaches

1 when ¢ = V(N If),). Moreover, it can be seen from the

enlarged part of the figure that % takes value around 0.4

when N; = 2 and the value of M is increasing in IV,
y(N;,N;)

which means that N, 1), will generally larger than 0.4 even
the eavesdropper employs more antennas. As we usually aim
to control the outage to be a small value, there is a high chance
that € < ((N” )9,) in practice and (17) does not lead to any
loss. Since A’((N] J) does not depend on ¥Rig, the threshold
value 0.4 is 1ndependent of the spatial correlation. On the
other hand, the maximizer DO/, k. of (9) would be different in
uncorrelated and correlated cases, as it depends on XRig as
shown in (17).

To show the tightness of the realized outage probability, we
plot the realized outage probability for various ¢ in Fig. 3(b).
The realized outage probability is obtained by first computing
x5 according to (16) and Lemma 2, then DZJ in (17), and
finally the left hand side of (14). Correspondingly, we also
plot the obtained outage probability given by the BTI in (12).
In particular, we can take the equality sign in (12), solve for
Dy, ;, and then put the resultant Dy, ; into the left hand side
of (14). It can be seen that the realized outage probability of
the proposed transformation match exactly € from 0 to about
0.4. Although it becomes flat after ¢ is greater than 0.4, the
achieved outage probability of the proposed method is still
much tighter than that of the BTI method.

IV. SECURE ENERGY EFFICIENCY MAXIMIZATION

To demonstrate the usage of the result in Section III, we
focus on the secure energy efficiency maximization problem in
P1. By virtue of (17), P1 is transformed into (18), shown at the
top of the next page, where the pi ; is chosen to satisfy (16)

if e € (0, ((]f,\z N)’)] and pg; =1if e € ( ((N ]If)j!),l]. Despite
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Fig. 3. The relationship between the tunable parameter jiy ; and €. (a) The tunable parameter pi ; versus € under different values of Nj; (b) The realized

outage for various € with N; = 2.

1+ai(hi’ @H)Q(hy @H)Y /o

+
min lo ,
kEK.jET [ 82 (HN;;(1+\/21n(uk}J)+1n(,bk}j))Tr(ajlese)HQ(eH)H+BjQ))]

o=

P2 ; 18
2 8% I (Q) + Pu + KP, + M(P, + P./Ty) (182)
st |Omm| =1, Vm, (18b)

Tr (Q) < Puax, Q = 0, rank(Q) =1, (18¢)

the absence of a probabilistic constraint in P2, tackling it
remains difficult because of the non-differentiable and non-
convex nature of the objective function (18a), and the rank-one
restriction.

For the non-smooth objective function, we notice that the
denominator of (18a) does not depend on & and j. Hence, (18a)
is equivalent to

+
1+ai (b’ @H)Q(hf ®@H)Y /o
log, -
14+ —5 &, Tr(o; s OHQ(OH) # + 5, Q)
min !

k.j 2T (Q) + Py + KP.+ M(Ps + P /Ty)

b

(19)
where & ; = 1+ 4/2In(u; %) + In(, ). Therefore, P2 is

equivalently transformed into

+
1 Ltay (hi! ©H)Q(hy! ©H) " /o}
082 NiSk.j H
14+ =4 Tr(a; Tris OHQ(OH) ¥ 45, Q)
J

max min

QO kj ST (Q) + P+ KP.+ M(Ps + P./Ty)
(20a)
st [Opmm| =1, Vm, (20b)
Tr (Q) < Pmax; Q = 0, rank(Q) = 1. (20¢)

Since the inner objective function of (20) only depends
on one k or j, and the parameters {ay, a;, itk j, 05, 0%, Nj}

are independent of the optimization variables {Q, ®}, the
operations of maximization and minimization in (20) are
interchangeable. As a result, problem (20) can be solved by in-
dependently solving K J maximization problems in a parallel
manner under the modern multi-core computing architecture,
and then choosing the minimum value. For the optimization
subproblem for user k£ with Eve j, it is expressed as

+
1 1+a(hf©@H)Q(LFOH)F /0?2
082 Ni€k,j H
1+T’I‘r(o¢j2ms®HQ(®H) JrBJQ)
J

max 1
Qe 5 (Q) + Po + KP. + M(Ps + P /Ty)
(21a)
st. |Omm|=1, Vm, (21b)
Tr (Q) S Pmaxa Q i 05 rank(Q) = 1' (Zlc)

Notice that constraints in (21) are not coupled when either
Q or O is fixed, the optimization problem can be solved
under the alternating maximization (AM) framework [18]. To
be specific, when variable Q is fixed, the closed-form optimal
solution to the subproblem of (21) can be derived based on
the rank property of the positive semidefinite matrix and trace
property of symmetric matrices of 3gjs and ®. On the other
hand, when variable ® is fixed, the subproblem of (21) can
be solved by concave-convex procedure (CCP) and Dinkelbach
algorithm, where a stationary solution is obtained.
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A. Updating ©
When Q is fixed, the optimization problem for updating ®
becomes

0Ol : max
5}
1+ aip(hZOH hZeH)" /o2
log, N k( . )Q( . ) / ‘ (22a)
1+ =22 Tr (o Zris @HQ(OH)H +3;Q)
J
st |Omm| =1, Vm, (22b)

where the pointwise operation [-]T is removed since the
objective function value of optimization problem (21) must
be non-negative at the optimality. To handle the unit modu-
lus constraint (22b), existing standard methods include: the
semi-definite relaxation, the penalty method, the majorization
minimization, the manifold optimization, the gradient descent,
or the convex relaxation [33]. Not to mention these methods
incur high computational complexity, none of them guarantee
optimal solution of Q1. In the following, we reveal that Q1
has a special structure such that deriving the global optimal
closed-form solution of ® is possible.
Firstly, we rewrite Tr (o, Sris @ HQ(OH)” + 3,Q) as

Tr (o, Sris®HQ(OH) " + 53,Q)
=Tr (ajHQHH@HERIs@) + Tr(8;Q) (23)
=Tr (o, HQH" @7 ©gss) + Tr(53;Q) 24)
=Tr (OéjHQHHZRIS) + Tr(8;Q), (25)
where (23) follows from cyclic permutations property of trace
operation, (24) is obtained due to the symmetric matrices of
Sris and ©, and (25) follows from @7© = I,,. Based

on (25) and denoting e = [e%1, ... ¢M]H a5 the diagonal
elements of ®, Q1 is equivalently rewritten as

1+ aref’Yre/o?

max log _
© 1+ HEei Tr (o HQHP Sis + 5, Q)
‘ (26)
where Y, =  diag(hf)HQ(diag(hZ)H)?. Since
rank (Y;) < rank(Q) always holds [34, Lemma 4]

and it is known that rank(Q) = 1, Y is a rank-one positive
semidefinite matrix. As a result, Y can be decomposed as
Y, = FL}CH,};{ with kK = ["ik,lv' . .,/ikyM}H e CMxL, Then,
problem (26) can be equivalently expressed as

1+ aglef ki|?/o?

max log,
e

27

Notice that maximizing (27) is equivalent to maximizing
the quadratic function |ef k|2, which can be expressed as

M
) ) 2
\ean\z :‘ E |f£k’m|ezé’€’“"6_’9m . (28)

m=1
Since |eky|? reaches its maximum value | SN [k 0|2

when 0, = Zkj m, Ym, the maximizer e* of problem (27) is
given by e* = [e},...,e%,] with e, = e“**m_ Since Q1 is
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equivalently transformed into (26) and then (27) without any
approximation, the solution

©* = diag{e!“r 1, ... ei4rnar) (29)

is the optimal solution for Q1. With ®* being a closed-
form solution, the corresponding algorithm is convenient for
efficient hardware implementation.

B. Updating Q
When O is fixed, the optimization problem for updating Q
is
CQI*
Tr(Q)+ P, + KP. + M(Ps + P./Ty)
(30a)
st. Tr(Q) < Pnax, Q =0, rank(Q) =1, (30b)

D1 : max
Q

3=

where I" (Q) is given by

1+ ax (hi! ©H)Q(hi/ OH)" /o

2\ 1+ e Ty (o HQHY Syis + 5;Q)

€2V
Due to the fractional form inside the logarithm function I' (Q),
the objective function of D1 is non-concave. Fortunately,
since T' (Q) can be rewritten as a difference of two concave
functions, the concave-convex procedure (CCP) [35] can be
employed to locally concavify T'(Q) at a feasible point Q(™)
as f‘(Q; Q™). This results in a lower bound at the point Q")
as

rQ; Q")
=log, (1 + oy, (hf ©H)Q(h©H)" /07)

J
fokj Tr (o H(Q — Q)H" Zgis + 5;(Q — Q™))
(1 + 7Nj§;k’j Tr (a; HQWHH S5 + ﬁjQ(n))) 2
(32)

N.& -
— log, (1 + %Tr (ajHQ(n>HHERls + 5jQ(n))>

By virtue of I'(Q; Q(™), D1 can be iteratively handled by
solving a subproblem at the (n + 1)*" iteration being*

max f(Q; Q™) (33a)
Q-0 [Tr(Q)+ Py + KP.+ M(Ps + P./Ty)’
st. Tr(Q) < Ppax, rank(Q) = 1. (33b)

Since f‘(Q;Q(")) is concave on Q, the objective func-
tion (33a) is in a concave-convex form. Accordingly, the
Dinkelbach algorithm [36] can be employed to transform (33)
into a sequence of subproblems, with the [** subproblem given

“The operation of pointwise maximum []T is omitted without loss of
optimality, since the objective function value of D1 must be non-negative
at the optimality.
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8

Algorithm 1 CCP and Dinkelbach Method for Solving D1

Algorithm 2 The Overall Algorithm for Handling P2

1: Initialize Q(® and set n := 0.

2: repeat

3:  Initialize 1y and set [ := 0.

4:  repeat

5 Solve problem (35) with Q™ and denote the optimal

value of (35) as Q°.

Update Q = Q° and ¢; with the objective function
value of (33a).

7: Update iteration: [ := 1+ 1.

8:  until Stopping criterion is satisfied.

9:  Update Q"1 = Q and iteration n :=n + 1.

10: until Stopping criterion is satisfied.

a

by
(n)
max rQ; Q™)
— (;Tr (Q)+ P, + KP. + M (P, + Pe/Tf)>
(34a)
st. Tr(Q) < Ppax, rank(Q) =1, (34b)

where ; is the objective function value of (33a) with Q
substituted by the optimal solution of (34) at the (I — 1)**
iteration. To tackle the rank one constraint in (34b), (34) can be
relaxed by dropping constraint rank(Q) = 1, and the relaxed
problem is given by

max 1(Q; Q™)

Q>0
wl<;TI‘(Q) +Pa +KPC+]W'(PS +P.3/Tf)>
(35a)
st. Tr(Q) < Prax, (35b)

which is a strongly concave optimization problem and can be
efficiently solved via the interior-point method [37] to obtain
the optimal solution. The property of the solution to (35) is
revealed by the following theorem.

Theorem 2. The optimal solution of (35) is always rank-one.
Proof. Please see Appendix D. [

The entire procedure for solving D1 is summarized in
Algorithm 1, which includes the outer iterations over n with
the CCP method and the inner iterations over [ with the
Dinkelbach method. Theorem 2 states that the rank relaxation
does not cause any performance loss. Hence, the optimal
solution to (35) is also the optimal solution to (34). Since (34)
is the Dinkelbach’s reformulation of (33), the iteration with
respect to [ is guaranteed to converge to the global optimal
solution to (33) [36]. Furthermore, with linearized f(Q; Q™),
the iteration over n with CCP method is guaranteed to
converge to a stationary solution of D1 [35]. On the other
hand, the computational complexity order of Algorithm 1 is
O (Z1Z2N35) [38, Theorem 3.12], where Z; and Z, are the
required iteration numbers for the Dinkelbach method and the
CCP method to converge, respectively.

1: The feasible point of (Q, ®) is initialized based on (18b)
and (18c).

2: For each £k € K and j € J, compute the objective
function (21a).

3: repeat

4:  Update © based on (29).

5:  Update Q by exploiting Algorithm 1.

6: until Stopping criterion is satisfied.

7: Select the minimum among K J objective function values
of (21).

C. Overall Algorithm and Discussions

With the alternative update of Q and ©, the optimization
problem (21) can be effectively handled under the proposed
AM framework. Since P2 is equivalent to problem (20) and
the latter comprises K .J parallel subproblems each in the form
of problem (21), the overall algorithm for solving P2 reduces
to solving subproblems (21) in parallel for all £ and j, and
is summarized in Algorithm 2. Notice that the computational
complexity is dominated by the alternating updates of vari-
ables ® and Q. Specifically, the obtained ® is derived in a
closed-form expression based on the decomposition of matrix
Y, which entails the complexity order of O (M?). On the
other hand, the complexity of updating Q is O (Z;Z,N35).
Hence, the computational complexity of the Algorithm 2 is
O (T (M3 +IyZ,N3%)), where T is the required iteration
number for the AM framework to converge.

V. PERFORMANCE EVALUATION AND DISCUSSIONS

In this section, we evaluate the secure transmission per-
formance of the proposed algorithms through simulations.
The simulation results are performed on MATLAB R2021b
on a Windows x64 desktop with 3.2 GHz CPU and 16 GB
RAM. For each point in the figure, it is obtained by averaging
over 100 random simulation trials, with independent Eves’
locations, channels, and noise realizations in each trial. Unless
otherwise specified, the simulation set-up is as follows and
kept throughout this section. There are 2 legitimate users and
4 Eves in the whole system. We adopt the carrier frequency
of 3.3 GHz according to the 3GPP Rel-15 specification [39].
Then, the wavelength d is 0.09 m. The distance from the
BS to the RIS is fixed at 20 m, and the distance from the
RIS to the user is fixed at 10 m. The distance from each
eavesdropper to the RIS is randomly generated between 5 m
and 50 m, and the path-loss exponent is set to 3.76 [27].
As a result, the path loss coefficients of user & and Eve j
can be respectively obtained based on the signal propagation
model [40]. The RIS is equipped with a uniform rectangular
array with the distance between the adjacent elements being
d/3. The spatial correlation matrix is computed according
to (1). The small-scale fading vectors from the RIS to all
Eves and the user are generated according to CN (0, Xgis).
vec(W;) is generated from CN(0,Iny;), and vec(H) is
generated from CAN (0, Xgjs ® Iv). Since the users and Eves
are located in a single-cell homogeneous environment, the
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Fig. 4. Convergence behavior of the proposed algorithms with N = 64,
M =10, {N; = 4}‘}:1, K = 2, J = 4, ¢ = 0.3. (a) The iteration of
Algorithm 1; (b) The AM iterations in Algorithm 2.

noise power spectral density of Eves is identical to the users,
ie, 02 = 072- = —99 dBm/Hz [39]. The power amplifier
efficiency is set to be 7 = 0.3, and the hardware-dissipated
power at the BS and each user are P, = 39 dBm, P. = 20
dBm [7], respectively. The static power consumption asso-
ciated at single reflecting element is P; = 10 dBm [7].
The dynamic energy consumption for channel estimation is
P, = 20 dBm during T = 244 ms duration of a frame [28].
To avoid repeating descriptions of figures, the settings for
(e, M,N,{N;}, K, J, Pyax) are provided in the caption of
each figure.

First, to demonstrate the convergence behaviour of the
proposed algorithms, we provide the simulation results as
shown in Fig. 4. The initial value of Q is chosen as Q = qq”/,
where q = [\/PmaX/N,...,\/PmaX/N]T € RN*1 The
stopping standard for each layer of Algorithm 1 is the relative
change of the two consecutive objective function values being
less than 10~%. The convergence results for Algorithm 1 for
solving D1 are shown in Fig. 4(a). It is observed that the
proposed algorithm achieves fast convergence under different
values of Pp,x. To verify the convergence of AM iteration
for solving problem (21) in Algorithm 2, Fig. 4(b) shows the

Under review for possible publication in

objective function value (21a) versus the AM iteration. It can
be seen that the proposed AM algorithm converges rapidly
within 10 iterations under different values of P ..

Next, we provide the numerical results to demonstrate the
performance gains of the proposed probabilistic constraint
transformation over the BTI safe approximation. It can be seen
from Fig. 5 that the performance gaps between the proposed
transformation and BTI method are significant, with around
50% improvement from the proposed method under various
M and K as shown in Fig. 5(a) and Fig. 5(b). This is due to
the tight probabilistic constraint realization from the proposed
transformation in Section III. Furthermore, from Fig. 5(a),
it can be seen that the average secure EEs increase in M
due to more degrees of freedom provided by the increases of
the RIS elements. On the other hand, as shown in Fig. 5(b),
since the multicast secure EE is determined by the worst-case
users’ channel conditions, the performance deteriorates with
an increase in the number of users K.

To show the effect of the direct link between the BS
and the eavesdroppers on secure transmission performance,
we compare the average secure EEs with that of secure
transmission without the direct link, which is a special case
of the proposed formulation if we set 5; = 0 in problem (18)
and all the derivations remain unchanged. Fig. 6 shows the
average secure EEs when there are two eavesdroppers. It can
be observed that the performances with or without direct links
are close to each other under different values of ¢ and Py,.x.
This indicates that although the existence of a direct link
from the BS to the eavesdroppers would degrade the system
performance to a certain extent, the proposed method can
effectively mitigate this loss.

To demonstrate that the proposed solution can also address
the special case of secrecy rate maximization (i.e., by setting
1/n = 0 in problem (9)), the simulation results of the
average secrecy rate with respect to Pp,,x and M are provided
and shown in Fig. 7. Compared to the RIS-aided secure
transmission that ignores the channel uncertainty of single-
antenna eavesdroppers [5], the proposed method significantly
increases the average secrecy rates, especially under high
transmit power. Furthermore, it should be emphasized that the
proposed algorithm is capable of handling the more general
scenarios where the eavesdroppers possess multiple antennas.
In fact, the performance metrics of the proposed framework
cover both the more general energy efficiency and the special
case of secrecy rate maximization.

Finally, the proposed RIS scheme is compared with several
baseline schemes under the same security requirement. To be
specific, the simulation results of the following competing
schemes are provided:

1) Random phase shift (RPS): In this scheme, the
coefficients of phase shift are randomly generated
with equal probability, having a complexity order of
O (T(1+TiZoN3P));

2) Fixed phase-shift (FPS): In this scheme, the coefficients
of phase shift are fixed. Hence, © is fixed as ® = I,
with a complexity order of O (7 (1 + Z;Z,N39));

3) Ignoring CSI uncertainty: This scheme ignores the un-
certain CSI for RIS-aided secure transmission with a

|IEEE Transactions on Communications
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complexity order of O (T(M? + I, I,N3P));
4) Secure transmission without RIS: This scheme has a
complexity order of O (Ill'gN ‘35)

In Fig. 8(a), we demonstrate the impact of the maximum toler-
able SOP parameter € on the secure transmission performance.
It can be seen that all average secure EEs increase with ¢, but
the proposed solution always achieves a significantly higher
average secure EE than other baseline schemes. In particular,
the FPS scheme enjoys a better performance than the RPS
scheme since some optimized phase shift coefficients are quite
close to 1. Moreover, for transmission without RIS, due to the
strong capability of multi-antenna eavesdroppers, the average
secure EEs are almost zero. The simulation results validate
that an RIS can significantly improve the secure transmission
performance against strong eavesdroppers and even if the out-
age requirement is stringent (i.e., small ). Furthermore, it can
be seen from Fig. 8(b) that the proposed scheme improves the
transmission performance compared to the other RIS schemes
under different values of Pj,x, with the performance gaps
between the proposed solution and other baseline solutions
increasing in P, indicating that the strategically designed
phase shift of RIS can efficiently utilize the transmit power.
The results from Fig. 8 show that both the proper handling of
uncertain CSI and optimization of phase shift are indispensable
in secure transmission.

VI. CONCLUSION

This paper studied the RIS aided secure networks with
multi-antenna Eves and spatially correlated channel uncer-
tainties, and proposed efficient numerical optimization algo-
rithms to maximize the secure EE. To tackle the complicated
probabilistic constraint incurred by imperfect CSI and multi-
antenna Eves, a novel transformation was established for
the first time to transform the probabilistic constraint into a
deterministic one and a guideline was established to guarantee
no or minimal performance loss. An optimization algorithm
was further proposed to determine the transmit covariance

matrix, phase-shift design, and redundancy rate. Simulation
results demonstrated that due to the tight outage control,
the proposed probabilistic constraint transformation leads to
substantially higher secure EE than that provided by the
conventional BTT safe approximation. Furthermore, compared
with other baseline schemes, the resultant scheme can improve
the secure transmission performance, showing the importance
of proper handling of the outage probabilistic constraint and
optimization of RIS phase shifts in secure transmission against
multi-antenna eavesdroppers.

APPENDIX A
PROOF OF LEMMA 1

From [34, Lemma 4], we have
rank ((, /a;G'OH +/3;Wi)Q

x (Ja;GIOH + /3;WHH /a§> < rank(Q)
(36)

always holds. Moreover, from constraint (9d), it is known that
rank(Q) = 1. Hence, we have the following equality:

rank ((\/oTij(BH +/BWHQ

x (/a;GI'OH + \/ﬁjwf)H/af> =1. @37

On the other hand, for the identity matrix Iy, and a matrix
X € CNi*N; it is known that

det (Iy, + X) > 1+ Tr(X) (38)
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with the equality holds when rank(X) =
with (37), we have

1. Together

det <1Nj + (Va;GFeH + /B;WIHQ
< (mefem s W)
=1 +Tr< (\/047(;§1’(9HJr \/EWJH) Q

x (\/oTijG)H + \/EWf)H /a—f.). (39)

Then, the SOP constraint in (13) can be equivalently trans-
formed into

Py = Pr{(2D“ — 1)o7} < TY((\/OTij@H +/B,WiHQ

% (Va;GJl OH + /3, Wil )H)}

=Pr{(2"% —1)o} < Tr(X; +Xo + X3+ X4)} <¢,

(40)
where Xl = a]GfQHQ(GH)HG], X2 =
\/Oéjﬁng{@HQWj, X3 = \/OéjﬂjoHQ(GH)HGj and
X4 = ijj[ij Given vec(Gj) ~ CN(O,INj & 2RIS),
we have

1 -
= (INJ X ERIS) 2 vec(Gj), (41)
where vec(G;) ~ CN(0,Iyy;). By leveraging the ma-
trix identities and (41), Tr(X;), Tr(Xs3), Tr(Xj3) and
Tr(X4) in (40) can be respectively given by

vee(G;)

Tr(Xy) = VeC(G ) (ayIn; ® (ERISGHQ(Z:RISG)H) )

X vec(Gj) (42)
Tr(Xs) = vee(G;)" (/o Bi1In, ® ERISG)HQ)VeC( i)s
(43)
Te(X3) = vee(W;)" (\/a; Bilx, @ Q(Si@H) Jvec(G),
(44)
Tr(Xy) = vec(Wj)H(ﬂjINj ® Q)vec(W;). (45)
Based on (42)-(45), we can rewrite (40) as
p];g)j :Pr{(QD’W' — 1)0]2- < [VGC(GJ')H,VGC(WJ')H}
(46)

. H
x Q; {VQC(G )V VQC(W]')H} } <e,

where matrix €2; is given by (47), shown at the top of the
next page. To derive a closed-form expression of (46), we
first reveal the following properties.

12

Proof. First, we decompose X =
1
o, 22 OH 1 .

iy > q] A (SheOm Fat| it
Q = qq”. Since q € CV*! is a column vector and X is
the outer product of two vectors, rank (X) = 1 always holds.
Therefore, we have Tr(X) = A; with the non-zero eigenvalue
of X being \;.

On the other hand, notice that matrix £2; can be rewritten
as

Q, =
a; (EEISGHQ(?%S@H)H) Vi Bj ZRISGHQ ® Iy,
VB Q(2Rs©H) 7 5iQ
—Xoly,. (48)

Based on the property of Kronecker product [15], we have
rank(€;) = N; with all N; non-zero eigenvalues being A;.
O

Based on Lemma 3, €2; can be diagonalized with a unitary
matrix P € CIVHMIN; X(N+M)N; and expressed as

My, 0

0 0 (49)

PAQ,P = [ }
(N+M)N;x(N+M)N;

Based on (49), we have

{VGC(Gj)HyveC(Wj)H} Q; [Vec(é Vi vec(Wj)H]H

N
=vH [ /\%NJ 8 } V= )\12”1’27
. (50)
where v = PH Vec(éj)H,Vec(Wj)H} , and v; is the i*"
element of v. By putting (50) into the inner part of (46), we
have

2Dks — 1)g2
(Ai)J<Zvi2 <e. 51D
1

i=1
Due to the fact that P is a wunitary matrix, and

N H
[VQC(G]‘)H,VGC(WJ')H} ~ CN(0,I(nyann,)s

v =

pH [Vec(éj)H,vec(Wj)H]H ~ CN(0,I(x ann,) too.
Therefore, v; ~ CN(0,1) such that v? ~ Exp(1), and
25\21 v;? ~ G(Nj;, 1), which is the gamma distribution with
shape N; and scale 1. Notice that p¥y is expressed in the
cumulative distribution function (CDF) of vazjl v;. A closed-
form deterministic constraint of (51) can be derived as

< E vl
D
(2 ,3_1)aj

1 A1
S tNi—let g
(N, — 1)!/0 ‘

2Du 1o
ph) ="Pr @ = oy

Lemma 3. rank(Q;) = N; with all N; non-zero (2Pk5 _1)02
elgenvalues being /\1, Where A= Tr(X) with X = v (Nj, )\lj)
aj(ER,SGHQ(EfQ,S@H VB ER,SG)HQ] = P <e. (52)
\% O‘jﬂjQ z3RIS®H) /BJQ (M+N)x(M+N)
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Iy, ® (EEISGHQ(?}%S@H)H) VaiBiln, ® Eg©@HQ
VaiBiln, © Q(Eg©H)!

j =
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1 (47)
Biln, ® Q

APPENDIX B
PROOF OF THEOREM 1

At the beginning, we provide the following property with
respect to constraint (14).

Ny, N; (144/2In(ug D) +In(ug
Lemma 4. If ¢ < ’Y( ( \{NTS‘J) (u,w))) it
Pyl
pr,j € (0,1, the constraint in (14) is a tighter constraint
than (15).
Proof. Since ¢ < v (5. (1+m+ln(u;§)))

—Ty , together

(N;
with the constraint (14), we have ’

(2Dk,j 1 O’?
(v 2

(N; — 1)t

0 (Nj, N, (1 + \/m+ ln(uij))) .

B (N; = 1)t

It is known that the upper incomplete gamma function
Y(y,x) = [°tv~te~dt is decreasing in x [41]. Hence, we
can obtain the following inequality based on (53):

(2Pri —1)0?

N = > N; <1+ 2ln(uk})+1n(ukj)>- (54)

Furthermore, from [34, Lemma 4], we have
rank ((, /a;G'OH + /3;Wi)Q

X (\/OTJ-Gf{@H + \/EW;{)H/UJZ> < rank(Q)
(55)

always holds. Since it is known that rank(Q) = 1 from the
constraint (9d), we have

rank ((@Gf@H +/BWHQ

% (V&G OH + /W >H/a?> ~1. (56

From Lemma 1, it is known that \; is the largest eigenvalue
of matrix Q; = X ® Iy, and \; = Tr(X) with X =

O‘j(zéls@HQ(IE%SGH)H) vV ajﬁjzéls(aHQ
Vi B;Q(2zs©H) 7 5;Q

we have

. Hence,

Tr (O‘jzéls@HQ(Eélng)H + ﬁjQ)
=Tr (o;Tps®HQOH)” + 3,Q) =\, (57)

Applying (57) into (54), we can obtain
(2Pkg — 1)o7
Tr (OéjERls®HQ(@H)H + BJQ)

> N, (1 +/2In(ch) + ln(uk,§)> SN

By re-arranging (58), we can obtain the following inequality:

N.
Dy, > log, (1 n 7‘5 (1 +/2In(p; ) +1n(ukj))

J

x Tr (a,; Zris®HQ(OH) + 3,Q) >7 (59)

which is identical to (15). Hence, the constraint (14) is a
tighter constraint than the one in (15). ]

Then, we provide the following property with respect to the
constraint in (15).

N N; (144 /2In(p; D +In(p L
Lemma 5. If ¢ > 7( : ]< (Nj—(q;d) (MM)D with
ki € (0,1), the constraint (15) is a tighter constraint
M,

than (14).

Proof. By re-arranging (15), we can obtain the following
inequality:

(2Pri — 1)o7 >N; <1 + \/2111(;1,;,;-) + ln(u,;;))

x Tr (a; Trpis@HQ(OH) Y + 3,Q). (60)

By substituting Tr (ajERIsG)HQ(GH)H + BjQ) of (57)
into (60), we obtain

(2Pri —1)o? - _
E e (1 Pl ) )60

It is known that the upper incomplete gamma function
Y(y,x) = [° v~ e~dt is decreasing in x [41]. Hence, we
can obtain the following inequality based on (61):

(2P —1)0?
()

(N; —1)!
7 (N5 N (1 /2 }) + (i) ))
< (N, — 1)1 . (62)
i i 1/2In 1 n(p
Since it is known that W(NWN](H (jvlj_(;;;’])ﬂ (H’w))) <,

together with (62), we can conclude that

2Pk —1)o2
, (Nj <A>)
<e, (63)

(N; = 1)t -
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which is identical to (14). Therefore, (15) is a tighter constraint
than constraint (14). [

Based on Lemma 4 and Lemma 5, we can conclude that
constraint (15) is equivalent to constraint (14) if and only

_ (N (12 ) +nGs ) p,; € (0,1].

if ¢ = 1!
Since y(y,z) = [ tY"le~'dt is decreasing in x [41],

and N; (1 +

21n(ukj) +ln(pkj)) is decreasing in g j,

(NN (1442 )+ ) )

the composite function N =)
€ (0,1]. As a result, we have

increasing in piy ;

0 (vaNj (1 +/2In( ;) +1H(M;§3))> _ (N, N)
= (N; = 1! -V = Db
(64)
Ny, Ny (14+4/2 (g 2)+In(pg
Since € = W( ( h (Njfl:;‘!’J)+ (Hk”))), we can conclude
that € € (0, (%VJ’]I{) )] and the constraint (15) is equivalent to
constraint (14) if ¢ € (0, %]

On the other hand, if € € ( ((]\I,V JI’)‘)»

(893, (12T D o )

€ > ;=1 always holds. Accord-
ing to Lemma 5, constraint (15) is a tighter constraint than
the one in (14).

1], together with (64),

APPENDIX C
PROOF OF LEMMA 2

By substituting D%j of (17) into (14), p’;g,j is rewritten
as (65), shown at the top of the next page, where (66) is
obtained by substituting (57) into (65). Since the upper incom-
plete gamma function y(y,z) = [ t¥"te~'dt is decreasing

in z [41], and N; (1 +4/2 ln(u,;;) + ln(,u,;;.)> is decreasing

in gk, p&I (g ;) is increasing in . ; € (0,1]. Since it is
known that p%:7(0) = 0 and pfyJ (1) = M

N;—1)!> pso (N’k J)
N;,N; Nj,Nj
(0, 'v((Nj._l.)!)]_ If £ > W((Nj_l)!), we have p%J(uk ;) < e, and

setting gy, ; = 1 could make p¥7(uy ;) be closest to e.

On the other hand, it is known that the objective function
of (9) is a monotonic function with respect to D}, ; and hence
maximizing (9) is equivalent to minimizing Dy, ;. Since the
upper incomplete Gamma flénction Yy, @) = [t e tdt

2Pk —1)0?

decreases in x [41] and ~ - increases in Dy ;, the
@7k —1)02
composite function N1 decreases in Dy, ;. To-

gether with constraint (14), ‘the optimal Dy  of optimization
problem (9) satisfies

2Pki —1)0?
k.j ! <Nj7 | M J)
E — —
ey = o, = 1)1 =c. (67)

Hence, to make D5, k. be the closest to D,ﬁ ., we should select
I (1uk,;) be closest to €. This happens
would be the

proper i, ; such that phs
when py,; = 1, and the corresponding D7, k.
closest solution to the optimal solution of (9).

14

APPENDIX D
PROOF OF THEOREM 2

The Lagrangian function of problem (35) is given by
£(QA,¢) =—2"(Q) +((Tr(Q) — Puax) — Tr(AQ),
(68)
where ®(")(Q) is given by
*"(Q) =1(Q; Q™)
— 4y (;Tr (Q)+ P, + KP.+ M(P, + Pe/Tf)>- (69)

A€ (Cf *N and ¢ > 0 are the dual variables for constraints in
problem (35). Then, the optimal solutions of (35) must satisfy
the following KKT conditions:

Vo™ (Q) + A = (I,
AQ=0, A>0, (70)
Tr (Q) — Pax <0, ¢ >0,

where the gradient of ®(")(Q) is derived as
(bl ©H)" (n} OH)
(02 /ou + (th@H)Q(thH)H) In2
Ljfgk’j (OéjHHERlsH + 5jIN)

Vo =

Page 14 of 38

(1 + NS Ty (0 HQUWH Ss + ﬁij))) In2
- —IN. (71)

Based on the KKT conditions, the optimal primal variable
Q?°, and dual variables {A°,(°} should satisfy

PR PR U
1 (2 + (b 0H)Q° (b OH)" ) In2
it ’(aJHHERISH + 5,IN)

+ 5 .
(1 + NSy (aJHQ VHH Sgys + 57Q<n>)) In2

(72)

By putting A° into condition AQ = 0 of (70), the optimal
Q° must satisfy

(b OH)" (b} OH)
(o7 o + (W OH)Q® (W OH)7) 2

where B is given by

Be (e y)n

Ljfg_k’j (OszHZ:RlsH + ﬁjIN)
J

Q°=BQ°, (73)

+

(1 4 Ngfgk,j Tr (%,HQ(”)HHERIS + 5jQ(n))) ln2.

(74)

Notice that matrix B of (74) is invertible. As a result, (73)
can be rewritten as

(hi’®H)" (hj'©H) Q°

(a,%/ozk + (thGH)Q°(th@H)H) In2 "’

(75)

QO _ B—l
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pféj (k) =

(le— N’ (

7 (NN (1 2 + (i)

(N; = 1)!

15
\/m +In(py, ))Tr (a;Zrs®@HQ(OH) + 53,Q) (65)
(66)

Then, taking the rank of a matrix on the both sides of (75),

we

have the following rank relation

rank(Q°)

IN

) (h®@H)" (h}/ ©@H) R
rank (B (07/ai, + (h ©H)Q° (b} ©H)H )ln2Q )
(hi’®H)" (h}@H)
rank ( (0% /ar + (WTOH)Q° (WO ) n ) (76)
rank ((hy ©H)"” (h{/©H)) , (77)

where (76) follows from [34, Lemma 4].

On the other hand,

it is known that rank(q) =

rank (qq”) < 1 always holds for q € CV*! [42]. By substi-

tuting (h7 ©@H)H
1. By excluding the trivial solution of Q° =

= q into (77), we can obtain rank(Q°) <
0, we can

conclude that rank(Q°) = 1 holds and then the optimal
solution of (35) is always rank-one.
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