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Abstract—Fingerprint-based indoor localization holds great
potential for the Internet of Things. Despite numerous studies
focusing on its algorithmic and practical aspects, a notable gap
exists in theoretical performance analysis in this domain. This
paper aims to bridge this gap by deriving several lower bounds
and approximations of mean square error (MSE) for fingerprint-
based localization. These analyses offer different complexity and
accuracy trade-offs. We derive the equivalent Fisher information
matrix and its decomposed form based on a wireless propaga-
tion model, thus obtaining the Cramér-Rao bound (CRB). By
approximating the Fisher information provided by constraint
knowledge, we develop a constraint-aware CRB. To more ac-
curately characterize nonlinear transformation and constraint
information, we introduce the Ziv-Zakai bound (ZZB) and mod-
ify it for adapt deterministic parameters. The Gauss–Legendre
quadrature method and the trust-region reflective algorithm are
employed to make the calculation of ZZB tractable. We introduce
a tighter extrapolated ZZB by fitting the quadrature function
outside the well-defined domain based on the Q-function. For
the constrained maximum likelihood estimator, an approximate
MSE expression, which can characterize map constraints, is also
developed. The simulation and experimental results validate the
effectiveness of the proposed bounds and approximate MSE.

Index Terms—Indoor localization, fingerprint-based localiza-
tion, constraint-aware, Cramér-Rao bound, Ziv-Zakai bound.

I. INTRODUCTION

G IVEN its ever-increasing social and commercial benefits,
high-accuracy indoor localization is becoming critical

for supporting ubiquitous location-based services (LBSs) in
the Internet of Things (IoT) [1]–[6]. In advanced LBS scenar-
ios, meter-level or even sub-meter-level accuracy is expected
[6], [7].

Characterized by obstacles, signal fluctuation, noise, and
environmental variations, indoor environments tend to be
more complex than outdoor scenarios, making the global
navigation satellite systems (GNSSs) unable to provide reliable
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coverage [8]. To this end, various alternative technologies,
such as light detection and ranging (LiDAR) [9], ultrawide
bandwidth (UWB) [10], Bluetooth [11], ZigBee [12] and Wi-
Fi [13] aided solutions, have been investigated. Due to the
pervasive deployment of Wi-Fi infrastructures indoors, Wi-
Fi-based localization has become an attractive solution [6].
Traditional trilateration localization approaches rely on line-of-
sight (LoS) measurements, which are difficult to obtain with
many obstacles and room partitions. To avoid the need for
LoS measurements, the Wi-Fi fingerprint-based localization
exploits the relationship between a position and its correspond-
ing signal pattern, such as received signal strength (RSS) [13],
which has become a promising method.

Existing works on RSS fingerprint-based localization have
been focus on algorithm development, while its theoretical
performance remains relatively scarce [14]–[20]. A question
yet to be resolved remains: What level of accuracy can
fingerprint-based localization ultimately achieve? As a pa-
rameter estimation problem, the accuracy of fingerprint-based
localization can be measured by the mean squared error
(MSE) and its lower bounds. Currently, there are two major
challenges in theoretical MSE analysis: firstly, the lack of
a comprehensive characterization of information flow from
fingerprint database to users’ positions; and secondly, the
difficulty in characterizing the a priori or constraint knowledge
and the nonlinear mapping between physical space and signal
space.

The log-distance path loss (LDPL) model is a credible
model for RSS measurements [21], [22]. The lower bounds of
MSE for RSS range-based localization has been extensively
studied based on the Cramér-Rao bound (CRB) [23], [24],
which is the most widely used performance analysis metric in
parameter estimation [25]. Since the CRB for RSS range-based
localization can characterize the effect of the propagation pa-
rameters and the access point (AP) deployment, some studies
suggest that it is also suitable for fingerprint-based localization
[26], [27]. However, this analysis method cannot depict the
relationship between the localization performance and the
data fields in the fingerprint database, such as, the number
of training data, the positions of reference points (RPs), the
uncertainties of the recorded fingerprints, etc. To address this
issue, based on the detection theory, the effects of the RP
intervals and the sampling sizes at each RP on localization
errors were discussed in [28] and [29], respectively. However,
the analyzable factors of these studies are one-sided, and their
depiction of localization errors is inaccurate because they
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only consider the nearest fingerprints. To establish a bound
characterizing the effect of training data, the technique of [30]
takes the grid size of RPs into account by employing a discrete
model based on the nearest neighbor method. The method of
[31] elucidates the role of training data in calibrating the path
loss exponents for RSS-based localization. However, these
approaches still cannot accurately depict the flow of position
information from training data to user.

The fingerprint-based localization is a typical constraint-
aware problem, in which the map information and the a
priori knowledge of propagation parameters can be modeled
as uniform distributions [32], [33]. The general CRB cannot be
applied directly to this problem since the probability density
function (PDF) of uniform distributions is not differentiable
[34], [35]. Another issue is that the fingerprints are highly
nonlinear with respect to the positions, hence the linearization
operation in the CRB calculation results in severely inaccuracy
when the signal-to-noise ratio (SNR) is low [36]. These
motivate the application of other theoretic inequalities of MSE.
Being substantially different from CRB, the Ziv-Zakai bound
(ZZB) was derived from a detection theoretic reformulation
of the MSE, relating the MSE to the probability of error of a
binary hypothesis testing problem [37]. As a “global” bound
based on integration of the probability of error, the ZZB is
able to characterize a priori information, and is almost tight
even under low SNR conditions. In [32], the ZZB has been
introduced to model a priori map information for localization,
and a semi-analytical expression was proposed. In [38], a new
evaluation metric “reliability” was proposed according to a
decision problem formulation of fingerprint-based localization,
which can be seen as a quasi-ZZB. However, since the reliabil-
ity is a metric independent of training data and constraints, the
analysis based on the reliability is not comprehensive. In fact,
due to the complexity of mapping, the application of ZZB for
fingerprint-based localization remains an open and challenging
issue.

The maximum likelihood (ML) estimator is asymptotically
optimal for deterministic parameter estimation [25], while the
fingerprint-based localization can be modeled as a constrained
ML (CML) estimation problem. The asymptotic nature of ML
estimators makes the MSE analysis of the CML estimator
tractable, which provides another perspective. Several studies
have analyzed the performance of the CML estimator with
differentiable constraint functions [39], [40], which, however,
are not suitable for constraint-aware localization. The method
of [41] provides two perspectives for approximating the MSE
of the CML estimator with non-differentiable constraints,
which has the potential to be extended to fingerprint-based
localization.

In this work, we present a series of novel advancements in
the performance analysis of fingerprint-based localization. To
characterize the relationship between localization performance
and training data, we derive a Fisher information matrix
(FIM) grounded in the LDPL model without presupposing
known propagation parameters, and bring forth a closed-
form expression of the equivalent FIM (EFIM) for the po-
sition. By using FIM to approximately characterize constraint
information, we develop a constraint-aware CRB (CCRB).

To more accurately analyze all relevant factors, we propose
a ZZB for addressing constraint knowledge and nonlinear
mapping, and significantly mitigate its computational demands
through the Gauss–Legendre quadrature [42] and the trust-
region reflective (TRR) algorithm [43]. To tighten the ZZB
further, we fit the complete quadrature function within all the
integration interval by using Q-function, thus developing an
extrapolated ZZB (EZZB). Based on a sub-optimal projection,
we present an approximate MSE (AMSE) expression for
the CML estimator, which can characterize map knowledge
with lower complexity compared with ZZB. We demonstrate
the superiority of the proposed bounds and AMSE through
simulations and experiments, where they demonstrate marked
improvements over existing benchmarks. For better clarity of
illustration, the features of the proposed performance analysis
method are boldly and explicitly contrasted to the existing
contributions in Table I.

The main contributions of this paper are summarized as
follows:

• We derive a closed-form expression of the EFIM for the
position estimation based on the LDPL model, assuming
all model parameters are unknown, which yields a CRB.
With an approximation of FIM for constraint information,
we develop a CCRB for fingerprint-based localization.

• We improve the ZZB for deterministic parameters
to make it tighter and apply it to fingerprint-based
localization. To reduce complexity, we employ the
Gauss–Legendre quadrature and the TRR algorithm for
approximating the ZZB.

• Starting from the MSE expression for estimation prob-
lems with Gaussian noise, we propose an extrapolation
method by using Q-function to fit the quadrature function,
thereby making the ZZB tighter. On this basis, we provide
an EZZB for fingerprint-based localization.

• Using the asymptotic nature of ML estimators, we
develop an AMSE expression for the CML estimator
of fingerprint-based localization by using a suboptimal
projection, which achieves a favorable tradeoff between
accuracy and complexity.

• We develop a localization prototype based on commercial
devices, and conduct extensive simulations and experi-
ments for evaluating the proposed metrics. The results
show that our methods are effective for quantitatively
characterizing localization performance.

The remainder of this paper is organized as follows. Sec-
tion III specifies the observation model and formulates the
fingerprint-based localization problem. In Section IV, we
derive the expression of the Fisher information and present
two CRBs. In Section V, we develop a modified ZZB and
its tighter extrapolation. In Section VI, an AMSE of the
CML estimator is presented. The numerical and experimental
results are shown in Section VII and Section VIII, respectively.
Finally, our conclusions are drawn in Section IX.

Notations: The letters a, a, A, and A represent scalars,
vectors, matrices, and sets, respectively. â denotes an estimate
of the variable a. ã indicates an item related to training data.
N (m,V ) denotes a Gaussian distribution with mean m and
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TABLE I
CONTRASTING OUR WORK TO THE EXISTING CONTRIBUTIONS FOR PERFORMANCE ANALYSIS OF FINGERPRINT-BASED LOCALIZATION

Performance Analysis Metrics MSE
Metric

Analyzable Factors
Solution Form

AP Training data Map Other constraints

[26] CRB ✓ ✓ N/A N/A N/A Analytical

[30] Variant of CRB ✓ ✓ Imprecise N/A N/A Analytical

[31] CRB ✓ ✓ Partial N/A N/A Analytical

[32]
Bayesian CRB ✓ N/A N/A ✓ N/A Analytical

ZZB (stochastic), Weiss–Weinstein bound ✓ N/A N/A ✓ N/A Numerical

[28], [29] Decision-dependent error N/A ✓ Partial N/A N/A Numerical

[38] Reliability N/A ✓ N/A N/A N/A Numerical

Our
work

CRB ✓✓✓✓✓✓✓✓✓ ✓✓✓✓✓✓✓✓✓ ✓✓✓✓✓✓✓✓✓ N/A N/A Analytical

CCRB ✓✓✓✓✓✓✓✓✓ ✓✓✓✓✓✓✓✓✓ ✓✓✓✓✓✓✓✓✓ Approximate Approximate Analytical

ZZB, EZZB (deterministic) ✓✓✓✓✓✓✓✓✓ ✓✓✓✓✓✓✓✓✓ ✓✓✓✓✓✓✓✓✓ ✓✓✓✓✓✓✓✓✓ ✓✓✓✓✓✓✓✓✓ Numerical

AMSE of CML estimators ✓✓✓✓✓✓✓✓✓ ✓✓✓✓✓✓✓✓✓ ✓✓✓✓✓✓✓✓✓ Approximate N/A Semi-analytical

variance V . 0k and Ik respectively represent a zero matrix
and an identity matrix, both of size k by k. The operation
a → b means that a is substituted by b. The notation [·]T
denotes the transpose of a matrix or vector; [·]−1 denotes
the inverse of a square matrix; |·| denotes the absolute value
of a scalar; ∥·∥ denotes the Euclidean norm of a vector.
The operator tr (·) denotes the trace of a square matrix;
diag (·) denotes the diagonalization operator. The function
p (·) represents the PDF of a variable. ε (·) represents the MSE
of a estimator. J (·) and Z (·) represent the FIM and the ZZB
of a variable, respectively. Pr (·) represents the probability
of an event occurring. Pmin (·) represents the probability of
error of a binary hypothesis testing problem. E (·) denotes the
expectation operator across all observations. Va (·) denotes a
symmetrical valley-filling operator centered around a. Q (·)
represents the Q-function. The notations f(·), g(·), and h(·)
are also employed to represent functions.

II. RELATED WORK

A. Fingerprint-Based Localization

Fingerprint-based localization techniques is pioneered by
RADAR [13]. Existing RSS fingerprint-based localization
methods can be broadly classified into deterministic, proba-
bilistic, and deep learning-based ones. Traditional determinis-
tic methods use the KNN approaches with signal similarity
measurement criteria including Euclidean distance [13] and
cosine similarity [44]. Additionally, some improved deter-
ministic methods have employed algorithms such as support
vector machine [45] and linear discriminant analysis [46].
Probabilistic methods, based on the Bayesian criterion, com-
bine user-collected fingerprint and fingerprint database to find
the most probable position. A typical method is Horus [47],
and other algorithms utilize factor graphs [15] and Bayesian
networks [48]. With the continuous advancement of intelligent
algorithms, the localization methods based on deep learning
have also been extensively researched [20], [49].

To reduce the effort involved in constructing the finger-
print database, the Gaussian process is a widely used semi-
supervised method, which models the relationship between
fingerprints and positions in a continuous space [16], [17].
Crowdsourcing is another feasible way to replace the costly
site survey with involuntary user participation [50]. The meth-
ods of GraphIPS [51] and LiFS [18] employ multi-dimensional
scaling algorithms to map distances to positions with graph
formulation. Within the Bayesian framework, The methods
of UCMA [19] and Zee [52] utilize hidden Markov models
and particle filters, respectively, to estimate the positions of
crowdsourcing data.

B. Localization Performance Analysis
A CRB-based analysis framework for wideband localization

is established in [23]. The analysis of performance limits and
geometric properties of array localization based on the CRB is
presented in [53]. The performance of cooperative localization
is in-depth discussed in [54] for wideband systems and in [24]
for massive networks, respectively. The fundamental tradeoff
of integrated sensing and communications based on the CRB-
rate region is discussed in [5]. For indoor localization, some
bounds, which can depict the a priori knowledge provided
by maps, are proposed in [32]. Disregarding applications as
fingerprints, there have been many studies focused on the
performance of RSS-based localization [31], [55]–[57].

For fingerprint-based localization, the CRB is leveraged to
investigate how the number of APs and RSS gradients affect
localization performance in [26] and [27]. The impact of the
statistical characteristics of fingerprint database on localization
performance is studied in [58]. Given a fingerprint database,
an approximate probability distribution of localization error is
developed using the concept of Voronoi diagrams in [59]. By
viewing fingerprint-based localization as a decision problem,
the reliability has been proposed to analyze the impact of the
AP deployment on localization performance in [38]. On this
basis, the effects of the RP intervals and the sampling sizes
at each RP on localization errors are further discussed in [28]
and [29], respectively.
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Fig. 1. Illustration of the fingerprint-based localization problem.

III. SYSTEM MODEL

Fingerprint-based localization aims to estimate the positions
of users based on the wireless fingerprint database (training
data) and the user observations. The fingerprint database,
denoted by D = {{r̃i, x̃i} , i = 1, 2, · · · , ND}, consists of
multiple pairs of RSS vectors and the corresponding RP
positions, while the user observation ru is the RSS vector
obtained from the user’s current position xu. Specifically,
ignoring diacritical marks, r· = [r·,1, r·,2, · · · , r·,NA ]

T are the
RSS observations from NA APs, and x· = [x·, y·]

T is the 2-D
physical coordinate. Assuming that all the RSS observations
are collected in the same wireless propagation environment,
according to the LDPL model, we have

r·,k = αk − 5βk lg
[
(x· − ak)

2
+ (y· − bk)

2
]
+ ωk, (1)

where ak = [ak, bk]
T represents the position of the k-th AP,

αk is the RSS at a distance of one meter away from the AP k,
βk is the path loss exponent, and ωk ∼ N

(
0, σ2

k

)
denotes a

Gaussian random variable.
Let R = {r̃i} and X = {x̃i} respectively denote the sets of

all RSS vectors and positions in D. Define κ as the vector of
propagation parameters given by κ =

[
κT
1 ,κ

T
2 , · · · ,κT

NA

]T
,

where κk = [αk, βk, ak, bk]
T. Given these definitions and in

the context of a constraint-aware scenario, a formulation of
the fingerprint-based localization problem is as follows

argmax
xu

p (ru,R|xu,κ,X ) (2a)

s.t. xu ∈ Au, (2b)
ak ∈ Aa, (2c)
αL ≤ αk ≤ αU, (2d)
βL ≤ βk ≤ βU, (2e)

In this formulation, Au and Aa represent 2-D bounded regions
associated with the users’ accessible area and the AP deploy-
ment region, respectively. The values αL (βL) and αU (βU)
denote the lower and upper bounds of αk (βk), respectively,
which are informed by engineering experience. An illustration
of the problem (2) is presented in Fig. 1.

The objective function in (2a) is the likelihood function with
respect to xu and κ, which can be further factorized as

p (ru,R|xu,κ,X ) =
NA∏
k=1

[
p (ru,k|xu,κk)

ND∏
i=1

p (r̃i,k|x̃i,κk)

]
. (3)

From (1), both terms p (ru,k|xu,κk) and p (r̃i,k|x̃i,κk) are
of the following form

p (r·,k|x·,κk) =
1√
2πσk

×

exp

−

{
αk − 5βk lg

[
(x· − ak)

2
+ (y· − bk)

2
]
− r·,k

}2

2σ2
k

 .

(4)

The optimal solution to (2) is a CML estimate [40]. When
the constraints are not binding at the optimal solution, this
estimator is asymptotically efficient [34], [36]. While obtaining
exact CML solution remains intractable, we often turn to
alternative approaches such as the K nearest neighbor (KNN)
algorithms [13], Bayesian methods [15], Gaussian processes
[16], and neural networks [60].

The primary performance metric for position estimation is
the MSE, which is defined as

ε (x̂u) = E
(
∥xu − x̂u∥2

)
. (5)

where E (·) denotes the expectation with respect to ru and R.
To establish benchmarks for localization algorithms and pro-
vide guidance for localization system deployment, it is crucial
to derive the algorithm-independent performance limits, i.e.,
the lower bounds of MSE.

Our analysis of localization performance treats the position
xu as a deterministic (non-random) parameter. This facilitates
the evaluation of estimation performance across any position
within Au, thereby enabling diverse optimization strategies.
Such strategies could either aim to ensure ubiquitous local-
ization accuracy across positions or focus on minimizing the
average localization error. From the perspective of Bayesian
inference for stochastic (random) parameters, the constraints
(2b)–(2e) can be interpreted as a priori information charac-
terized by uniform distributions [32]. Although the concept
of “a priori” is broadly used in deterministic parameter
estimation [36], [41], [61], to avoid confusion, we consistently
use the term “constraint” for all parameters. Since there are
unknown parameters κ when estimating xu, we construct
θu =

[
xT
u ,κ

T
]T

as the complete parameter vector.

IV. CRAMÉR-RAO BOUNDS

In the context of deterministic parameter estimation, the
CRB serves as a prevalent analytical tool for assessing the
asymptotic performance limits. According to [25], the FIM
for θu is calculated by

J (θu) = −E
[
∂2 ln p (ru,R|θu,X )

∂θu∂θT
u

]
, (6)
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which can be written as a block matrix

J (θu) =

[
Jxu,xu Jxu,κ

JT
xu,κ Jκ,κ

]
. (7)

For the position xu, the MSE of any unbiased estimate x̂u

satisfies1

ε (x̂u) ≥ tr
[
J−1

e (xu)
]

(8)

where Je (xu) is the EFIM for xu with respect to θu, which
is calculated by

Je (xu) = Jxu,xu
− Jxu,κJ

−1
κ,κJ

T
xu,κ. (9)

According to (3), the FIM for the parameters κ in (7) can
be further partitioned as

Jκ,κ =


Jκ1,κ1

Jκ1,κ2
· · · Jκ1,κNA

JT
κ1,κ2

Jκ2,κ2
· · · Jκ2,κNA

...
...

. . .
...

JT
κ1,κNA

JT
κ2,κNA

· · · JκNA ,κNA

 . (10)

For the off-diagonal submatrices of Jκ,κ, i.e., when k ̸= l, we
have

Jκk,κl
= −E

[
∂2 ln p (ru,R|θu,X )

∂κk∂κT
l

]
= 04, (11)

where 04 represents a 4 × 4 matrix of all zeros. Therefore,
Jκ,κ is a block diagonal matrix. The matrix Jxu,κ denotes the
contribution of the training data to the position information of
user, given by

Jxu,κ =
[
Jxu,κ1

Jxu,κ2
· · · Jxu,κNA

]
. (12)

Due to the block-diagonal form of Jκ,κ, we can simplify (9)
into a form with lower computational complexity as

Je (xu) = Jxu,xu
−

NA∑
k=1

Jxu,κk
J−1
κk,κk

JT
xu,κk

. (13)

Based on (13), we derive the following result.
Proposition 1 (EFIM for fingerprint-based localization):

When Condition 1 is satisfied, the EFIM for xu is determined
by

Je (xu) =

NA∑
k=1

γu,kPu,k. (14)

The matrix Pu,k represents the nominal ranging information
(NRI) provided by the k-th AP, which is calculated by

Pu,k =
uu,ku

T
u,k

σ2
k

. (15)

The scalar γu,k denotes the efficiency of training (EoT) in
extracting the information of the k-th AP, which is calculated
by

γu,k =
1

1 + sTu,k

(
S̃kS̃T

k

)−1

su,k

. (16)

1This formula applies only when the user is localizable (typically requiring
NA ≥ 3), and all the propagation model parameters can be determined by
the training data.
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Fig. 2. Illustration of the decomposition of the EFIM for fingerprint-based
localization.

The entities uu,k, su,k and S̃k are given by (44), (57) and
(58), respectively.

Proof: Please refer to Appendix A.
Condition 1: There exist at least 4 distinct RPs such that

any AP and these RPs are not all collinear, while for the 4
distinct RPs, one of the following conditions holds:
- There are at least 2 sets of RPs with different distances to
any AP, and these 4 RPs are not all collinear.
- There are at least 4 sets of RPs with different distances to
any AP.

According to (44), (57) and (58), the decomposition of the
EFIM is presented in Fig. 2, with the lines connected to the
NRI and EoT indicating the factors that influence their values.
The NRI Pu,k is a fundamental factor determining fingerprint-
based localization performance, which is related to the user’s
position, the AP’s position and its corresponding path loss
exponent. The NRI indicates the strength and direction of
the ranging information that each AP can provide to the
user. To obtain 2-D position information, the superposition
of the NRI from at least two APs is necessary, which has
been investigated in [53]. The EoT γu,k is a novel concept
introduced in fingerprint-based localization, determined by the
relative position relationships among the user, the AP and all
the training data. It is a scalar ranging from 0 to 1. When
the number of training data approaches infinity, the value of
γu,k asymptotically converges to 1. In fact, when γu,k = 1,
(14) will degenerate into the EFIM of RSS range-based local-
ization. Compared to the lack of characterization of training
data in [26] and the inaccurate portrayal in [30] and [31], the
proposed CRB comprehensively and accurately characterizes
the impact of training data on localization performance using
the EoT concept.

For optimizing the deployment of localization systems,
considering the complexity and the fact that the deployment of
APs and RPs usually occurs in different stages, it is necessary
to provide separate optimization strategies for them. Conve-
niently, the NRI and the EoT respectively provide the basis
for the optimization of AP and RP deployment. Particularly
in scenarios where the APs have already been deployed,
optimizing the spatial arrangement of RPs based on EoT might
be an effective low-complexity approach.

The CRB derived above is not tight enough under low
SNR conditions. Existing research indicates that the ambiguity
phenomenon in localization is not significant when the local-
izability conditions are satisfied [62]. This suggests that the
main factor affecting the accuracy of the CRB may not be
its “localness” but rather its disregard for nonlinearity and
constraints. Hence, there is an opportunity to improve the
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CRB by utilizing the constraint information. Drawing from the
approach of [32], we can present the FIM for θu of the CCRB
based on the approximate Fisher information of constraints as
follows

Jc (θu) = J (θu) + Ja (θu) , (17)

where J (θu) is as shown in (7), and Ja (θu) is a diagonal
matrix depicting the constraint knowledge. The matrix Ja (θu)
has the following block diagonal form

Ja (θu) =


Ja (xu) 0

Ja (κ1)
. . .

0 Ja (κNA)

 . (18)

Similar to (13), we can derive the EFIM for xu incorporating
constraint information as follows

Jc (xu) = [Jxu,xu
+ Ja (xu)]

−
NA∑
k=1

Jxu,κk
[Jκk,κk

+ Ja (κk)]
−1

JT
xu,κk

. (19)

When Au is a rectangle with the x-coordinate ranging be-
tween [xL, xU] and the y-coordinate ranging between [yL, yU],
Ja (xu) is calculated by

Ja (xu) = diag

[
cm

(xU − xL)
2 ,

cm

(yU − yL)
2

]
. (20)

Meanwhile, when Aa is a rectangle with the x-coordinate
ranging between [aL, aU] and the y-coordinate ranging between
[bL, bU], Ja (κk) is calculated by

Ja (κk) =

diag

[
cm

(αU − αL)
2 ,

cm

(βU − βL)
2 ,

cm

(aU − aL)
2 ,

cm

(bU − bL)
2

]
.

(21)

In (20) and (21), the constant cm is equal to 4 for deterministic
parameter estimation [41]. If we only consider the map con-
straint for xu, the CCRB will degenerate to the map-aware
CRB (MCRB), leading to a more concise expression of the
EFIM

Jm (xu) = Je (xu) + Ja (xu) , (22)

where Je (xu) is as shown in (14).

V. ZIV-ZAKAI BOUNDS

In this section, we first present a definition of the ZZB suit-
able for deterministic parameters and extend it to fingerprint-
based localization. Then, we propose a tighter EZZB based on
the Q-function fitting.

A. ZZB for Deterministic Parameters

Compared to the asymptotically achievable CRB, the ZZB is
tighter under low SNR conditions. However, it’s noted that the
classical ZZB is defined for stochastic (random) parameters.
Since we want to obtain a lower bound for the specific
value xu, it is necessary to modify the definition of ZZB to
accommodate deterministic parameters.

Proposition 2 (ZZB for deterministic scalar parameters):
Consider an unknown parameter θ with lower and upper
bounds given by θL and θU, respectively. The i-th observation
is

xi = f (θ, ti) + ωi, (23)

where f (θ, ti) is a function of θ, ti denotes other known
parameters, and ωi is the observation noise. The MSE of any
estimator for θ satisfies

ε
(
θ̂
)
≥ 1

2

∫ θU

θL

Vθ [Pmin (θ, φ)] |φ− θ|dφ, (24)

where Pmin (θ, φ) denotes the minimum probability of error
for the following binary hypothesis testing problem

H0 : xi = f (θ, ti) + ωi, i = 1, 2, · · · , N
H1 : xi = f (φ, ti) + ωi, i = 1, 2, · · · , N

(25)

with Pr (H0) = Pr (H1) = 0.5.
Proof: Please refer to Appendix B.
Subsequently, drawing inspiration from the method of [37],

we extend the ZZB for scalar parameters to the vector cases.
Proposition 3 (ZZB for deterministic vector parameters):

Consider an unknown parameter θ = [θ1, θ2, · · · , θK ]
T. The

lower and upper bounds of θk are θL,k and θU,k, respectively.
The i-th observation is

xi = f (θ, ti) + ωi, (26)

where f (θ, ti) is a function of θ, ti denotes other known
parameters, and ωi is the observation noise. The MSE of any
estimator for θk satisfies

ε
(
θ̂k

)
≥ 1

2

∫ θU,k

θL,k

Vθk

[
max

φ:wT
k φ=φ

Pmin (θ,φ)

]
|φ− θk|dφ

(27)

where wk is a K-dimensional column vector with one at
the k-th position and zeros elsewhere, Pmin (θ,φ) denotes
the minimum probability of error for the following binary
hypothesis testing problem

H0 : xi = f (θ, ti) + ωi, i = 1, 2, · · · , N
H1 : xi = f (φ, ti) + ωi, i = 1, 2, · · · , N

(28)

with Pr (H0) = Pr (H1) = 0.5.
Proof: Please refer to Section II-B in [37].
Our modified ZZB offers a more straightforward implemen-

tation for deterministic parameter estimation problems with
defined lower and upper bounds, compared to the formula
without specified integration limits in [63] and the complex-
structured expression with a loose integration limit in [36].
The proposed ZZB is tighter as it accounts for the possibility
of misjudgment at both ends of the true value.
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The MSE for fingerprint-based localization, represented by
the complete parameter vector, is given as

ε (x̂u) = E
(∣∣∣wT

x θ̂u

∣∣∣2)+ E
(∣∣∣wT

y θ̂u

∣∣∣2) , (29)

where wx = [1, 0, 0, · · · , 0]T wy = [0, 1, 0, · · · , 0]T are the
unit vectors corresponding to x and y, respectively. Based on
Proposition 3, we can derive the lower bounds for both terms
in (29), leading us to obtain the following result.

Proposition 4 (ZZB for fingerprint-based localization): For
the position xu, the MSE of any estimate x̂u satisfies

ε (x̂u) ≥ Zx (xu) + Zy (xu) , (30)

where Zx (xu) and Zy (xu) are calculated as (31), with
subscript z representing x or y uniformly. In (31), the function
f (xi,κk) is defined as (75), zL and zU respectively represent
the possible lower and upper bounds, and the unit vector wz

denotes wx or wy .
Proof: Please refer to Appendix C.
There exists a nonlinear optimization problem inside the

integral in (31), whose constraints include not only wT
z θ

′
u = z

but also (2b)–(2e) with the substitution θu → θ′
u. To mitigate

the computational overhead of repeatedly solving this opti-
mization, we employ the Gauss–Legendre quadrature method
to provide a numerical solution. This method employs the
roots of Legendre polynomials to approximate integrals via
weighted sums, allowing for high integration precision with
few sample points. For the embedded optimization problem,
we use the TRR algorithm, which is particularly adept at
addressing problems constrained solely by boundary con-
straints. By striking a balance between the trust region and
reflective steps, it can provide efficient and accurate solutions.
However, due to the high-dimensional and nonlinear nature of
the problem, the gradient-based TRR algorithm may converge
to a local optimum, potentially leading to a bound that is not
sufficiently tight. To address this, we introduce the true value
of θu as the initial value for θ′

u in its optimization process.
This strategy is intended to minimize the objective function of
the optimization problem specified in (31).

As a global bound, the ZZB is applicable in scenarios that
do not satisfy localizability condition and Condition 1. From
(31), it is evident that the performance of fingerprint-based
localization is actually related to αk, which can be considered
as the transmission power. This differs from what the Fisher in-
formation, presented in (14), suggests. This discrepancy arises
because the Fisher information only accounts for the local
sharpness of the likelihood function, which is independent
of αk. In fact, since the transmission power and path loss
can be freely combined to produce the same observation (i.e.
ambiguity phenomenon [36]), all free unknown parameters, in-
cluding αk, have implications for the localization performance.

The influence of the ambiguity phenomenon intensifies as the
SNR diminishes. On another note, the optimization and the
integration used in (31) capture the effects of the constraints
on xT

u and κ. In extremely low SNR conditions, localization
performance is primarily governed by the constraint informa-
tion. However, in the calculation of CRB, it’s challenging to
transform a uniform distribution into FIM. For example, as
σk approaches infinity, the term Q (·) in (31) converges to
0.5, leading the ZZB to remain finite, while the CRB tends
towards infinity. These factors indicate that, in comparison to
the CRB, the ZZB holds the potential for a more accurate
depiction of localization performance.

B. Extrapolated ZZB Based on Q-Function Fitting

Although the ZZB outperforms the CRB in depicting con-
straint information and nonlinear observation equations, the
operation of discarding the integration interval from (68) to
(69) results in a ZZB, as shown in (24), that is not sufficiently
tight. Considering the case of Gaussian noise, we propose
a method that employs the Q-function to approximate the
quadrature function outside the well-defined domain, resulting
in an EZZB.

Proposition 5 (EZZB for estimation with Gaussian noise):
Consider an estimation problem for θ ∈ [θL, θU]. The i-th
observation is

xi = f (θ, ti) + ωi, (32)

where ωi ∼ N
(
0, σ2

i

)
is a Gaussian noise. The MSE of any

estimator for θ satisfies

ε
(
θ̂
)
≥ 1

2

∫ θU

θL

Vθ

[
Q

(
N∑
i=1

|φ− θ|
2σi

)]
|φ− θ|dφ

+
1

2

∫ 2θU−θ

θU

Q [dU (φ+ eU)] |φ− θ|dφ

+
1

2

∫ θL

2θL−θ

Q [dL (φ+ eL)] |φ− θ|dφ (33)

where dU and eU are determined by fitting the function to

the points
[
θU,Q

(∑N
i=1

|θU−θ|
2σi

)]T
and [2θU − θ, δ]

T, and dL

and eL are determined by fitting the function to the points[
θL,Q

(∑N
i=1

|θL−θ|
2σi

)]T
and [2θL − θ, δ]

T.
Proof: Please refer to Appendix D.
An example of the quadrature function in the ZZB and

its extrapolation in the EZZB, excluding the term |φ− θ|, is
depicted in Fig. 3. Since the entire integration interval is fully
considered, the EZZB is tighter than the ZZB. Meanwhile,
using a small positive number δ in function fitting ensures that
the EZZB remains a lower bound. By extending Proposition 5
to the vector cases, we can obtain the EZZB of fingerprint-
based localization.

Zz (xu) =
1

2

∫ zU

zL

Q

 min
θ′
u:w

T
z θ′

u=z

√√√√ NA∑
k=1

[f (xu,κk)− f (x′
u,κ

′
k)]

2
+
∑ND

i=1 [f (x̃i,κk)− f (x̃i,κ′
k)]

2

4σ2
k

 |z − zu|dz (31)
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Fig. 3. Quadrature functions in the ZZB and the EZZB, excluding the term
|φ− θ|.

Proposition 6 (EZZB for fingerprint-based localization): For
the position xu, the MSE of any estimate x̂u satisfies

ε (x̂u) ≥ Z ′
x (xu) + Z ′

y (xu) . (34)

Using the subscript z to represent x or y uniformly, Zx (xu)
and Zy (xu) have the following form

Z ′
z (xu) = Zz (xu) + ZU,z (xu) + ZL,z (xu) , (35)

where Zz (xu) is defined as (31). The two adjustment terms
are respectively calculated by

ZU,z (xu) =
1

2

∫ 2zU−z

zU

Q [dU (z + eU)] |z − zu|dz (36)

and

ZL,z (xu) =
1

2

∫ zL

2zL−z

Q [dL (z + eL)] |z − zu|dz. (37)

where dU, eU, dL and eL are obtained by fitting the Q-function
in the same manner as in Proposition 5.

Proof: Please refer to Appendices C and D.

VI. APPROXIMATE MSE OF THE CML ESTIMATOR

To achieve a trade-off between accuracy and complexity
in performance analysis, we propose an MSE approximation
method based on the suboptimal estimator described in [41].
Considering a position xu in a rectangle Au with dimensions
[xL, xU]× [yL, yU], the possible solutions of (2a) is presented
in Fig. 4. The orange dashed curves represent the levels of the
objective function (2a). When the unconstrained ML (UML)
estimate neglecting the constraints (2b)–(2e) lies outside Au,
the optimal CML estimate is a projection of the UML es-
timate onto the boundaries of Au in a complicated manner
[41]. Analyzing the performance of such optimal estimators
is generally intractable. An alternative suboptimal estimator

Fig. 4. Some estimates of a position with certain observations.

involves applying the following projection functions to the
UML estimate

hx (x) =


xL, x < xL,

x, xL ≤ x ≤ xU,

xU, x > xU.
(38)

hy (y) =


yL, y < yL,

y, yL ≤ y ≤ yU,

yU, y > yU.
(39)

Subsequently, the MSE of the suboptimal estimator is calcu-
lated as

ε (x̂u) =

∫ ∞

−∞

∫ ∞

−∞

{
[hx (x̂u)− xu]

2
+ [hy (ŷu)− yu]

2
}

× g (x̂u, ŷu) dx̂udŷu (40)

where g (x̂u, ŷu) represents the PDF of the UML estimator.
Obtaining the exact expression of g (x̂u, ŷu) is extremely
intractable, but fortunately, it is asymptotically equivalent to
the PDF of a Gaussian distribution with xu as the mean and
J−1

e (xu) as the variance [25].
By substituting the PDF of the 2-D Gaussian distribution

N
(
xu,J

−1
e (xu)

)
for p (x̂u, ŷu|xu,κ,X ) in (40), we obtain

an AMSE of the suboptimal estimator. Since the performance
of the suboptimal estimator only slightly degrades compared to
the CML solution, (40) can also be regarded as a representative
of the AMSE for the CML estimator.

VII. NUMERICAL RESULTS

We employ numerical simulations to evaluate the proposed
bounds for fingerprint-based localization error. In simulations,
we construct a 10m×10m square room as the area of interest
for localization (localization area). The APs are deployed
within a 20m × 20m area centered around the center of the
room. The APs within the localization area are considered to
have a LoS connection, while those outside are treated as non-
LoS (NLoS). The ratio of LoS to NLoS APs is fixed at 1 : 3.
The LDPL model parameter α is set to range between −40 and
−20 dBm, while β varies between 1.6 to 2 for LoS and 2 to
44 for NLoS cases. The training data comprises the uniformly
sampled RPs on an n× n grid, while the RSS readings from
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Fig. 5. Evaluation of the proposed bounds versus different NA and ND with
σk = 6.

different APs are observed only once at each RP. The test
data consists of the points sampled on a 10 × 10 grid. The
number of Gauss–Legendre quadrature nodes is set to 100 for
the calculation of the ZZB and 200 for the EZZB, respectively,
due to their different integration intervals. For the localization
algorithms, the Monte Carlo simulations are conducted 1,000
times.

A. Tightness of the Proposed Bounds

To verify the tightness of the proposed bounds, we compare
them against two localization techniques: the classical KNN
algorithm, and an approximate CML (ACML) estimator using
the TRR algorithm. In the KNN algorithm, we set K = 4, a
choice that has been demonstrated as optimal in most cases
by existing studies. To ensure the identification of the global
optimum when solving problem (2) with the TRR algorithm,
we use the true values of the unknown parameters as initial
values.

While the standard deviation of the observation noise,
denoted as σk, is set to 6 dBm, we vary the number of APs,
denoted by NA, and the number of training data, represented
as ND, in our comparisons. The MSEs of the algorithms
and the bounds averaged over 100 instances of test data are
illustrated in Fig 5. It is observed that, when both NA and
ND are large, all the proposed lower bounds are able to
depict the performance of the ACML estimator. However,
when NA is small, i.e. NA = 3, the CRB and the CCRB
significantly overestimate the MSE, and no longer serve as
lower bounds. This is attributed to the inadequacy of the Fisher
information in capturing constraint knowledge. Nevertheless,
with our modifications, the CCRB is more effective than the
CRB, especially for cases with a small ND, i.e. ND = 4.
In contrast to the bounds derived from Fisher information,
both variants of ZZB consistently serve as lower bound for
localization MSE even with small NA and ND. Meanwhile,
the EZZB is tighter than the ZZB.

Keeping σk fixed while varying NA and ND can be regarded
as changing the SNR of observation. To more intuitively

Fig. 6. Evaluation of the proposed bounds versus σk within different regions
with NA = 20, ND = 25.

demonstrate the behavior of the various bounds under different
SNRs, we fix NA = 20 and ND = 25 and vary the value
of σk, and present the results in Fig. 6. As the variance of
noise increases, we can observe a transition from asymptotic
region to ambiguity region, and finally to constraint region
(a priori region in [36], [37]). The threshold delimiting the
constraint region can be defined as the value of σk where the
EZZB reduces to half of the constraint (a priori) performance
level [36]. The threshold marking the asymptotic region can be
determined by the condition where the EZZB closely matches
the CRB [36]. Here, we adopt the value at which the EZZB
equals 90% of the CRB. It is noted that the thresholds dividing
the three regions are not strict, while the localization error
shows a smooth transition within these regions.

As shown in Fig. 6, within the asymptotic region, all the
proposed bounds except the CRB are close to the MSE of the
ACML estimator, serving as tight lower bounds. The existing
literatures suggest the range of σk is typically between 3
and 8 [64]. Under these conditions, the estimate operation
predominantly lies in the asymptotic region, hence the pro-
posed bounds are almost tight. Within the ambiguity region,
we observe that neither the ZZB nor the ACML estimate
exhibits the pronounced “peaking” and surpassing of the CRB,
in contrast to what is reported in [36]. This suggests that
the “localness” of CRB is not the main factor affecting its
accuracy in fingerprint-based localization. Therefore, using
constraint knowledge to improve CRB is convincing, which
is proved by the values of the CCRB under moderate SNR
conditions. When σk is too large, the two bounds based on
Fisher information apparently overestimate the localization
MSE, even exceeding the constraint MSE level, because they
do not capture the constraints on propagation parameters. In
contrast, the proposed ZZB and EZZB are effective lower
bounds in all three regions.

We can observe from Fig 5 and 6, as a biased estimator,
the KNN algorithm could outperform the ACML estimator
under poor conditions (characterized by small NA, small
ND, or large σk). It is inspiring that the ZZB and EZZB
remain capable of globally characterizing the performance
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Fig. 7. Evaluation of the proposed AMSE versus different NA and ND with
σk = 6.

of this biased estimator. In summary, the proposed EZZB is
sufficiently tight in most scenarios, while the other proposed
bounds characterize the asymptotic localization performance.

B. Precision of the Proposed AMSE

To evaluate the accuracy of the proposed AMSE, we com-
pare it with the MSE of the ACML estimator. Considering
that the AMSE can only characterize map information, the
degenerate version of the CCRB, i.e. the MCRB, is compared.
The CCRB is also included in the comparison to illustrate
the accuracy loss when only considering map constraints. We
present the results under different values of NA and ND, as
shown in Fig. 7. It is observed that when ND = 4, only
the CCRB that characterizes all the constraints is reliable.
As ND increases, the MCRB and the CCRB become almost
identical, indicating that the map provides the most important
constraint information. At lower values of NA or ND, both
the AMSE and the MCRB overestimate the MSE of the
ACML estimator. The convergence of the three curves at
NA = 100 indicates that the AMSE is asymptotically precise.
Additionally, with smaller NA or ND, the values of the AMSE
tend to be greater than that of the MCRB, and vice versa.
This behavior is consistent with the relationship of MSE for
estimators with hard-constraints (corresponding to the AMSE)
and soft-constraints (corresponding to the MCRB) as reported
in [41].

C. Comparison with Existing Bounds

We compare our work with there existing bounds for
fingerprint-based localization error. The first one, referred
to as the basic CRB, neglects the impact of training data
[26], which essentially represents a bound for RSS range-
based localization. The second one, augmenting the basic CRB
with the RP position error compensation (RPEC), serves as a
modified bound [30]. The third one is tailored for RSS range-
based localization with path loss exponent calibration (PLEC)
[31], which can also be viewed as a CRB for fingerprint-based
localization error.

Fig. 8. Comparison of various bounds versus different NA and ND with
σk = 6.

As shown in Fig 8, the basic CRB remains constant re-
gardless of changes in the number of training data. Although
the RPEC-based bound attempts to depict the relationship
between localization performance and the number of RPs,
its characterization is notably imprecise. Since the PLEC-
based CRB accounts for only one parameter within the signal
propagation model, it underestimates the role of training data.
The proposed CRB, the RPEC-based bound, and the PLEC-
based CRB all converge to the basic CRB as the number
of training data approaches infinity. It is observed from the
results averaged over the test data, the proposed CCRB and
EZZB are the tightest bounds, while the proposed AMSE is
almost precise. To better compare the accuracy of the various
proposed metrics, we further present them for each set of test
data instead of average values in the following subsection.

D. Numerical Heatmaps

To facilitate a more intuitive and comprehensive compari-
son, we generate numerical heatmaps for all the bounds, the
proposed AMSE, and the MSE of algorithms, as illustrated in
Fig 9, where the parameters are set to NA = 8, ND = 16 and
σk = 6. Instead of relying on the average results over the test
data, the heatmaps yield a detailed visualization of their trends
and patterns throughout the room. These heatmaps enable a
precise assessment of which metric can serve as the most exact
characterization of localization performance.

In comparing the heatmap of the ACML estimator, it is ap-
parent that the proposed CRB, the proposed CCRB, the basic
CRB, the RPEC-based bound and the PLEC-based CRB can
no longer serve as reliable lower bounds. In these bounds, apart
from the RPEC-based bound, the other four exhibit similar
patterns because their values are all fundamentally determined
by the NRI. Benefiting from the heatmaps, we can observe that
although the CCRB and AMSE have similar average values,
the AMSE and the MSE of the ACML estimator demonstrate
more closely aligned details. This reaffirms that the map is the
most crucial constraint, as the AMSE cannot depict other con-
straints, while the AMSE outperforms the CCRB in portraying
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Fig. 9. Heatmaps depicting various metrics and the MSE of algorithms with NA = 8, ND = 16 and σk = 6.

the map information. Upon applying the constraint knowledge,
the proposed ZZB serves as lower bound, but it lack the
requisite tightness to characterize the localization performance.
Both the proposed EZZB and AMSE exhibit details most
similar to the MSE of the ACML estimator. Despite a uniform
underestimation, the EZZB closely mirrors the MSE in terms
of variation patterns. The AMSE shows some inconsistencies
with the MSE, which are mainly caused by the nonlinearity of
the localization problem. Yet, compared to the EZZB, which
requires numerous optimization operations, the AMSE benefits
from significantly lower computational complexity, potentially
appealing for practical applications. Moreover, although the
performance of the biased KNN algorithm is difficult to
characterize accurately, the values of the proposed ZZB and
EZZB stably maintain lower than the MSEs of the KNN
algorithm throughout the localization area.

E. Localization Errors with Different NA and ND

Benefiting from the high accuracy within asymptotic region
and the low complexity of the proposed AMSE, we are able
to provide some macroscopic numerical results regarding the
deployment of localization systems. We conduct 100 Monte
Carlo simulations by varying the positions of APs under each
fixed set of NA and ND values with σk = 6, and illustrate
the contour map of the AMSE as depicted in Fig 10. The
contour lines indicate the approximate number of APs and
training data required to achieve a certain level of localization
accuracy under this noise condition. Since the contour lines
merely delineate the lower bound, more APs and training
data would actually be needed in practice. The solid red line
represents the threshold curve where increasing ND beyond
a certain NA results in less than a 1% decrease in AMSE.
The dashed blue line represents the threshold curve where
increasing NA beyond a certain ND yields less than a 1%
decrease in AMSE. In this scenario, when NA reaches 96 and
ND reaches 30, further increases in both APs and training data
yield marginal gains. This results can be generalized to other
scenarios, offering insights into the deployment quantities for
APs and training data.

Fig. 10. Contour map of the proposed AMSE by varying NA and ND with
σk = 6.

VIII. EXPERIMENTAL RESULTS

To further verify the proposed performance bounds, we
collect Wi-Fi fingerprint data using the Samsung Galaxy S7
smartphones inside a typical office building. To facilitate the
collection of fingerprint data, we develop an app for collecting
Wi-Fi fingerprints using Android Studio. The scene of data
collection and the app are shown in Fig. VIII. Considering
the significant differences between LoS and NLoS propagation
environments, we select a corridor with a few obstacles where
it is easy to determine whether an AP is in LoS as our
localization area, having the size of 32.4 m × 2.8 m. On
a grid with 0.6 m intervals, we alternately select 132 RPs and
132 test points, as presented in Fig. 12. At each RP and test
point, 40 groups of fingerprint data are collected. To obtain
the MSE at the test points, 1000 tests are conducted. In each
test, one group is randomly selected from the 40 groups of
fingerprint data for each RP and test point.

Among more than 100 APs which can be detected, we select
12 of them and measure their exact positions. Subsequently,
we employ all the fingerprint data and the actual position of
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Wi-Fi AP

Smartphone

Fig. 11. Experimental scene and fingerprint data collection app.

Fig. 12. Localization area, along with the layout of RPs and test points.

an AP to fit the corresponding parameters αk, βk and σk as
accurate as possible. For the four LoS APs, the fitted values
of αk, βk and σk are in the ranges of −49.09 ∼ −37.86,
1.61 ∼ 1.88, and 3.78 ∼ 6.49, respectively. Meanwhile,
for the eight NLoS APs, the corresponding value ranges are
−50.00 ∼ −20.00, 2.23 ∼ 5.57, and 4.02 ∼ 6.64. The lower
bounds are calculated by using the precise values of ak and
bk, and the fitted values of αk, βk and σk. The calculated
parameter values are consistent with engineering experience
[21], [64]. The RSS observations from NLoS APs exhibit
greater observation noise compared to those from LoS APs,
which aligns with intuitive understanding.

We vary NA and ND by respectively removing APs and
RPs, and present the values averaged over the test data in
Fig 13. Since the ACML estimator is sensitive to parameter
errors, we only conduct the KNN algorithm. It is noted that
the basic CRB is not affected by variations in training data.
As the lower bound for RPEC-based bound, PLEC-based
CRB and the proposed CRB, the basic CRB significantly
overestimates the MSE, implying that other bounds are even
poorer. This is because, in situations with fewer APs, the
constraint knowledge is a significant factor affecting the lo-
calization performance, and these bounds are unable to depict
this information. In contrast, the proposed CCRB, EZZB and
AMSE exhibit values and trends close to the MSE of the
KNN algorithm, effectively characterizing the performance of
fingerprint-based localization. Particularly, the EZZB is tighter
than the CCRB under poor conditions. Despite the inaccuracy

Fig. 13. Evaluation of the proposed metrics versus different NA and ND
based on experimental data.

of model parameters, we can still discern the effectiveness of
the proposed metrics in the actual experimental data, which is
crucial for data-driven fingerprint-based localization.

IX. CONCLUSIONS

This paper provides novel metrics for quantitatively analyz-
ing the performance of fingerprint-based indoor localization,
including some lower bounds and an approximation of MSE.
By deriving the EFIM and its decomposed form based on the
LDPL model, we established the CRB. To incorporate con-
straint knowledge, we developed a CCRB based on an approx-
imation of Fisher information. For better characterization of
nonlinear mapping and constraint information, we introduced
and refined the ZZB for fingerprint-based localization. The
Gauss–Legendre quadrature and the TRR algorithm were used
to reduce the computational complexity. By extrapolating the
quadrature function beyond its well-defined range through the
Q-Function fitting, we developed an EZZB, which is tighter
than the ZZB. For the CML estimator of localization, we
proposed an AMSE calculation method based on a suboptimal
projection. The simulation and experimental results validated
the tightness of the proposed bounds and the precision of the
proposed AMSE. This work not only contributes to the theo-
retical underpinnings of fingerprint-based indoor localization
but also paves the way for its practical implementations in the
IoT paradigm.

To further advance the research, we identify several pivotal
directions for our future work: Firstly, we plan to develop
new metrics to leverage the information from absent RSS
observations by modifying the observation model; Secondly,
we aim to refine our metrics for multi-room buildings to better
depict localization performance through geographic zoning
or fingerprint clustering; Thirdly, we will explore optimizing
localization system deployment using our metrics with convex
optimization or heuristic methods; Fourthly, we intend to
extend the proposed metrics to other problems, establishing
a unified theoretical framework for indoor localization.
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APPENDIX A
PROOF OF PROPOSITION 1

The first element of (13) is calculated as

Jxu,xu
=

∂rTu
∂xu

C−1
u

∂ru
∂xT

u

, (41)

where the covariance matrix of the RSS observations is

Cu = diag
(
σ2
1 , σ

2
2 , · · · , σ2

NA

)
. (42)

The Jacobian matrix in (41) can be represented as

∂rTu
∂xu

=
[
uu,1 uu,2 · · · uu,NA .

]
(43)

According to (1), we have

uu,k =

[
10 (ak − xu)βk

d2u,k ln 10
,
10 (bk − yu)βk

d2u,k ln 10

]T
, (44)

where d2u,k = (xu − ak)
2
+ (yu − bk)

2. By substituting (42)
and (43) into (41), we can obtain

Jxu,xu
=

NA∑
k=1

1

σ2
k

uu,ku
T
u,k (45)

The FIM for κk is calculated as

Jκk,κk
=

∂rT:,k
∂κk

(
σ2
kIND

)−1 ∂r:,k
∂κT

k

, (46)

where r:,k is defined by

r:,k = [ru,k, r̃1,k, r̃2,k, · · · , r̃ND,k]
T
. (47)

Then, the Jacobian matrix in (46) can be represented as

∂r̃T:,k
∂κk

=
[
vu,k ṽ1,k ṽ2,k · · · ṽND,k

]
(48)

According to (1), we have

vu,k =

[
1,−5 lg d2u,k,

10 (xu − ak)βk

d2u,k ln 10
,
10 (yu − bk)βk

d2u,k ln 10

]T
,

(49)

and

ṽi,k =

[
1,−5 lg d̃2i,k,

10 (x̃i − ak)βk

d̃2i,k ln 10
,
10 (ỹi − bk)βk

d̃2i,k ln 10

]T
.

(50)

where d̃2i,k = (x̃i − ak)
2
+ (ỹi − bk)

2. By concatenating the
column vectors ṽi,k row-wise into a matrix

Ṽk =
[
ṽ1,k ṽ2,k · · · ṽND,k

]
, (51)

we can transform (46) to

Jκk,κk
=

1

σ2
k

(
vu,kv

T
u,k + ṼkṼ

T
k

)
. (52)

Additionally, we can derive that

Jxu,κk
=

1

σ2
k

uu,kv
T
u,k. (53)

Combining (13), (46), (52) and (53), we have

Je (xu) =
NA∑
k=1

uu,ku
T
u,k

σ2
k

(
1− vT

u,k

(
vu,kv

T
u,k + ṼkṼ

T
k

)−1

vu,k

)
.

(54)

When ṼkṼ
T
k is full rank, according to the Sherman-Morrison

formula, (54) can be simplified to

Je (xu) =

NA∑
k=1

uu,ku
T
u,k

σ2
k

[
1 + vT

u,k

(
ṼkṼ T

k

)−1

vu,k

] . (55)

The matrix ṼkṼ
T
k being full-rank is equivalent to the matrix

Ṽk having a rank of 4. Based on (50), we can ascertain that
this requirement is met when Condition 1 holds.

For the term vT
u,k

(
ṼkṼ

T
k

)−1

vu,k, by utilizing block ma-
trix operations, we can further eliminate βk, resulting in

Je (xu) =

NA∑
k=1

uu,ku
T
u,k

σ2
k

[
1 + sTu,k

(
S̃kS̃T

k

)−1

su,k

] , (56)

where

su,k =

[
1,−5 lg d2u,k,

10 (xu − ak)

d2u,k ln 10
,
10 (yu − bk)

d2u,k ln 10

]T
, (57)

S̃k =
[
s̃1,k s̃2,k · · · s̃ND,k

]
, (58)

and

s̃i,k =

[
1,−5 lg d̃2i,k,

10 (x̃i − ak)

d̃2i,k ln 10
,
10 (ỹi − bk)

d̃2i,k ln 10

]T
. (59)

Subsequently, by introducing the definitions of NRI and EoT,
we can obtain (14).

APPENDIX B
PROOF OF PROPOSITION 2

When the observation equation is as shown in (26), the MSE
of estimating θ can be expressed as

ε
(
θ̂
)
=

∫ θU−θ

θL−θ

ϵ2p (ϵ|θ) dϵ, (60)

where ϵ = θ̂− θ denotes the estimation error of the estimator
θ̂. To obtain a performance bound independent of the specific
estimator, we draw upon the analytical insights provided by
ZZB.

As for (60), considering the integral part where ϵ > 0 and
using integration by parts, we can obtain∫ θU−θ

0

ϵ2p (ϵ|θ) dϵ (61)

= ϵ2 Pr (ξ < ϵ|θ)|θU−θ
ϵ=0 − 2

∫ θU−θ

0

ϵPr (ξ < ϵ|θ) dϵ (62)

= (θU − θ)
2
Pr (ξ < θU − θ|θ)− (θU − θ)

2

+ 2

∫ θU−θ

0

ϵPr (ξ > ϵ|θ) dϵ, (63)
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where ξ is a random variable representing the estimation error.
Since the optimal estimate is definitely less than θU, it can be
considered that the estimation error will not exceed θU − θ at
most, i.e., Pr (ξ < θU − θ|θ) = 1. Therefore, we have∫ θU−θ

0

ϵ2p (ϵ|θ) dϵ = 2

∫ θU−θ

0

ϵPr (ξ > ϵ|θ) dϵ. (64)

Subsequently, by using the approximation [36]

Pr (ξ > ϵ|θ) ≈ Pr (ξ < −ϵ|θ + 2ϵ) , (65)

we have

Pr (ξ > ϵ|θ) ≈ 1

2
Pr (ξ > ϵ|θ) + 1

2
Pr (ξ < −ϵ|θ + 2ϵ) .

(66)

The right side of (66) can be considered as the probability
of error for the following binary hypothesis testing problem

H0 : xi = f (θ, ti) + ωi, i = 1, 2, · · · , N
H1 : xi = f (θ + 2ϵ, ti) + ωi, i = 1, 2, · · · , N

(67)

with Pr (H0) = Pr (H1) = 0.5. Consequently, we can obtain
the following inequality∫ θU−θ

0

ϵ2p (ϵ|θ) dϵ ≥ 2

∫ θU−θ

0

ϵPmin (θ, θ + 2ϵ) dϵ, (68)

where Pmin (θ, θ + 2ϵ) denotes the minimum probability of
error for the problem (67) based on the optimal detection
criterion. It should be noted that the hypothesis H1 in (67)
is related to f (θ + 2ϵ, ti), and the function f (θ + 2ϵ, ti) is
well-defined only when θ+2ϵ ≤ θU, i.e., ϵ ≤ (θU−θ)/2. Con-
sequently, the integration interval in (68) is halved, resulting
in the following inequality∫ θU−θ

0

ϵ2p (ϵ|θ) dϵ ≥ 2

∫ θU−θ

2

0

ϵPmin (θ, θ + 2ϵ) dϵ. (69)

Similarly, the integral part for ϵ < 0 in (60) can be written
as ∫ 0

θL−θ

ϵ2p (ϵ|θ) dϵ = 2

∫ 0

θL−θ

|ϵ|Pr (ξ < ϵ|θ) dϵ. (70)

Utilizing the approximation

Pr (ξ < ϵ|θ) ≈ Pr (ξ > −ϵ|θ + 2ϵ) , (71)

we have∫ 0

θL−θ

ϵ2p (ϵ|θ) dϵ ≥ 2

∫ 0

θL−θ

2

|ϵ|Pmin (θ, θ + 2ϵ) dϵ. (72)

By combining (69) and (72), and introducing the substitution
φ = θ + 2ϵ, we can obtain the following inequality

ε
(
θ̂
)
≥ 1

2

∫ θU

θL

Pmin (θ, φ) |φ− θ|dφ. (73)

Revisiting (64) and (70), we note that for both Pr (ξ > ϵ|θ)
and Pr (ξ < ϵ|θ), the closer ϵ approaches zero, the greater they
become. Consequently, the corresponding minimum probabil-
ity, Pmin (θ, θ + 2ϵ), should also increase as ϵ approaches zero.
This suggests that the function of φ, expressed in the form
of Pmin (θ, φ), is non-increasing on both sides of θ. Hence,

we introduce a “valley-filling” function to further improve the
inequality. Diverging from the classical definition, our valley-
filling function is a symmetric operator with respect to θ,
defined as

Vθ [f (x)] =

max
ξ:ξ≥0

f (x+ ξ) , x ≥ θ,

max
ξ:ξ≥0

f (x− ξ) , x < θ.
(74)

Applying the modified valley-filling function to (73), we are
able to obtain the expression of ZZB as shown in (24).

APPENDIX C
PROOF OF PROPOSITION 4

To apply Proposition 3 to derive the ZZB of fingerprint-
based localization, we first define the function

f (xi,κk) = αk − 5βk lg
[
(xi − ak)

2
+ (yi − bk)

2
]
. (75)

According to (1), we can construct the following binary
hypothesis testing problem

H0 : r̃i,k = f (x̃i,κk) + ωk (i = 1, 2, · · · , ND) ,

ru,k = f (xu,κk) + ωk, k = 1, 2, · · · , NA

H1 : r̃i,k = f (x̃i,κ
′
k) + ωk (i = 1, 2, · · · , ND) ,

ru,k = f (x′
u,κ

′
k) + ωk, k = 1, 2, · · · , NA

(76)

where x′
u = [x′

u, y
′
u]

T and κ′
k = [α′

k, β
′
k, a

′
k, b

′
k]

T. Since ωk

is assumed to be Gaussian white noise, we can present the
minimum probability of error for this testing problem as (77).
In (77), Q (·) denotes the Q-function, and the column vector θ′

u

is formed by concatenating x′
u and κ′

k. Since the Q-function
is a monotonically decreasing function, the maximization
operation in (27) can be transformed into a minimization
operation within the Q-function, to reduce the computational
complexity. Therefore, we can obtain the expression (31).

APPENDIX D
PROOF OF PROPOSITION 5

Considering the case of ϵ > 0, to address the issue that
Pmin (θ, θ + 2ϵ) is not well-defined for ϵ > θU−θ

2 , we return
to the MSE expression represented by (64). When the noise
follows a Gaussian distribution and the observation equation
is linear, the probability Pr (ξ > ϵ|θ) takes the form of the
Q-function. Meanwhile, when the observation equation is
nonlinear, approximating Pr (ξ > ϵ|θ) with the Q-function
becomes a reluctant but sub-optimal choice. Therefore, we
assume the probability has the following form

Pr (ξ > ϵ|θ) ≈ Q [dU (θ + 2ϵ+ eU)] . (78)

To determine the values of dU and eU, we need to fit
this function to two sets of data. Considering the continuity
of the quadrature function, using ϵ = (θU − θ) /2 and the
corresponding well-defined Pmin (θ, θU) as one set is a natural
choice. The second set comes from an assumption that at
the boundary, specifically at ϵ = θU − θ, the probability
Pr (ξ > ϵ|θ) approaches zero. To ensure that the fitting is
feasible, we choose a small positive number δ close to zero
for Pr (ξ > ϵ|θ) at the boundary, such as 10−4.
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Pmin (θu,θ
′
u) = Q


√√√√ NA∑

k=1

[f (xu,κk)− f (x′
u,κ

′
k)]

2
+
∑ND

i=1 [f (x̃i,κk)− f (x̃i,κ′
k)]

2

4σ2
k

 . (77)

The same procedure is applied for the case of ϵ < θL−θ
2 to

obtain

Pr (ξ < ϵ|θ) ≈ 1−Q [−dL (θ + 2ϵ+ eL)]

= Q [dL (θ + 2ϵ+ eL)] (79)

Applying the substitution φ = θ + 2ϵ to (78) and (79), and
combining them with (24), we can obtain the expression of
EZZB as presented in (33).
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