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Abstract—Integrated sensing and communication (ISAC) is
pivotal technology for future sixth-generation (6G) commu-
nications. It aggregates wireless sensing and communication
functionalities into one system while sharing spatial, temporal,
and frequency resources. In this article, a review on artificial
intelligence (AI)-enhanced ISAC is provided, by introducing AI
algorithms to ISAC for performance gain. We first present a
general system framework for AI-enhanced ISAC, delineating its
advancements from the collaboration of sensing, communication,
and AI. Subsequently, several potential usage scenarios are
outlined, together with the specific requirements and oppor-
tunities. Furthermore, we delve into the technical challenges
that AI-enhanced ISAC must address. Finally, critical techniques
and future research directions are highlighted to leverage the
intelligence and adaptability of AI-enhanced ISAC within the
prospective 6G ecosystem.

I. INTRODUCTION

As emerging services and ecosystems evolve, the perfor-
mance requirements for both sensing and communication in
wireless networks are escalating. To enhance spectrum uti-
lization, sixth-generation (6G) communication systems aspire
to reuse radar frequency bands, thereby achieving radar-
communication spectrum sharing. Since radar and commu-
nication systems exhibit commonalities in hardware archi-
tecture and signal processing, the integrated sensing and
communication (ISAC) technique [1] has been proposed to
incorporate such two individual capabilities into a unified
system. It enables intelligent systems to leverage radio waves
to observe the physical world and construct a digital twin in
a virtual realm for ubiquitous intelligent connectivity. Due
to its potential of enhancing spectral-, energy-, as well as
hardware-efficiency, the ISAC technique is currently receiving
considerable attention from both industry and academia [2].

Despite significant progress in current research process,
there are still notable shortcomings in practical applications.
Firstly, existing ISAC systems exhibit limitations in informa-
tion processing and analysis, especially when dealing with
large-scale data. The processing latency and precision can
hardly meet the demands of real-time applications. Secondly,
ISAC systems struggle with resource scheduling and transmis-
sion strategy decision-making in large-scale networks and lack
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the capability to intelligently adapt to time-varying network
environments and task requirements, which could result in
resource wastage and network congestion. Additionally, ISAC
systems may encounter privacy and security concerns during
the data processing stage, particularly in sensitive domains like
healthcare and transportation.

To overcome these limitations, artificial intelligence (AI)
technologies are introduced to enhance the ISAC system
performance [3]. The utilization of AI technologies, including
deep neural network (DNN), convolutional neural network
(CNN), and deep reinforcement learning (DRL), etc., has sig-
nificantly advanced sensing and communication [4], [5], which
offers potent solutions to tackle ISAC system challenges. It is
envisioned that leveraging the robust data processing, learning,
and reasoning capabilities of AI, ISAC systems are able
to achieve improved real-time responsiveness, adaptability,
and security in complex environments, better meeting the
increasing demands of future novel services [6].

This paper aims to review the AI-enhanced ISAC technique,
and shed lights on its future developments. The general
system framework for AI-enhanced ISAC network, together
with use cases and opportunities are firstly presented. Several
technical challenges are then elaborated. Finally, we highlight
the critical techniques and future research directions.

II. AI-ENHANCED ISAC: GENERAL SYSTEM
FRAMEWORK AND OPPORTUNITIES

In this section, we introduce a general system framework
for AI-enhanced ISAC network, and discuss its opportunities
in diverse use cases. Note that the sensing defined in tradi-
tional ISAC systems usually refers to the ability of wireless
signals to detect target and environmental features, while the
generalized sensing adopted here encompasses the acquisition
and understanding of information across multiple dimensions,
from physical space to networks, services, and users.

A. General System Framework

In future networks, the ISAC system is expected to adopt
an endogenous design pattern to support AI functionalities,
rather than a simple stacking or add-on mode. Figure 1 depicts
a general system framework for AI-enhanced ISAC network,
where the AI module is tightly coupled with sensing and
communication modules from following perspectives.
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Fig. 1. General system framework and potential use cases of AI-enhanced ISAC.

1) Sensing-assisted AI: The sensing module is envisioned
to collect massive sensing data, from various sources such as
radars, microphones, cameras, and sensors. These multimodal
sensing data provide rich learning materials for the AI module
to train machine learning models in offline or online manners.
Through extracting valuable information from the data, the AI
module deepens its comprehensive understanding of intricate
patterns, occurrences, and attributes present within the ambient
environment, thus enhancing the intelligence of the ISAC
system, i.e., the capabilities of adaptive learning, situational
awareness, and autonomous decision-making derived from
complex sensing data.

These intelligent capabilities help the ISAC system effec-
tively respond to unexpected situations or rapid changes in
environments, achieving a higher degree of automation and
resilience. For example, AI can learn behavioral patterns of
unknown targets from extensive historical and real-time sens-
ing data to assist in informed decision-making and prediction.
Moreover, sensing data can also aid AI models in anomaly
detection during continuous learning. By monitoring changes
and outliers in sensing data vigilantly, the AI module is poised
to recognize potential crises in advance and take preventive
measures to improve system robustness.

2) Communication-assisted AI: The primary task of the
communication module is to establish bridges between dif-
ferent nodes in ISAC systems, achieving high-speed and
stable transmission for information sharing, status updates, and
synchronization. Specifically, the communication module ag-
gregates multi-node data, including sensing, communication,
and control data. It then transmits these aggregated data to the
AI module via networks, thereby supporting the AI module to
access richer information for learning and prediction.

Additionally, it is essential for the communication module
to relay the decisions or commands from the AI module to
various nodes and adapt data transmission strategies based
on the AI module’s needs and network conditions. For in-
stance, in an autonomous driving scenario, network limitations
might hinder real-time transmission of all node data to the
AI module. If path planning is entailed, the communication

module could preferentially transmit relevant data such as the
vehicle’s location and destination, to ensure the AI module
has timely access to crucial information, thereby improving
decision-making efficiency.

3) AI-enhanced Sensing: The applications of AI-enhanced
sensing in ISAC systems are two-fold. On one hand, it helps
achieve rapid processing of vast data and extract valuable
features, elevating the efficiency and accuracy of sensing.
Leveraging machine learning techniques, the AI module can
unearth profound correlations and hidden insights in raw sens-
ing data that are indiscernible through traditional methods. For
instance, in radar applications, where traditional Fourier trans-
form methods may struggle with time and frequency resolution
trade-offs [7], employing AI methods can rapidly process
high volumes of radar returns and outperform in speed and
resolution for object detection and tracking. Meanwhile, AI
can also unify multimodal sensing data to enhance detection
accuracy and environment perception by jointly interpreting
multi-source heterogeneous information.

On the other hand, after receiving the feedback from the
AI module, the sensing module can intelligently optimize
data collection strategies to improve data quality and effi-
ciency. This mechanism boosts the ISAC system’s ability to
monitor environmental changes, including network congestion
and spectrum utilization, particularly in intricate situations.
For tasks like object detection, AI can dynamically adjust
sensor parameter configurations in real-time based on task
requirements and environmental conditions, resulting in pre-
cise localization, speed estimation, and angle measurement of
targets.

4) AI-enhanced Communication: Wireless signals are sus-
ceptible to interferences and noise, engendering data errors
or loss. The AI module, however, can exploit the inherent
correlation within data series to recuperate compromised in-
formation, thereby bolstering data integrity and mitigating
communication disruptions. Besides, AI techniques are also
applicable to communication-centric tasks such as channel
estimation and signal detection, which contribute to fortifying
the communication quality in ISAC systems.
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TABLE I
ADVANCEMENTS OF AI-ENHANCED ISAC NETWORK IN POTENTIAL USE CASES.

Use Cases Characteristics Merits of Deploying AI-enhanced ISAC Network

Intelligent manufacturing • Incorporate massive devices and machinery
• Entail intelligent and automatic production

• Obtain environmental information via sensing
• Adjust operations with environmental changes
• Learn environmental changes from historical data

Smart transportation • Ask for real-time road monitoring
• Require quick access to traffic information

• Realize fast monitoring of traffic status
• Assist communications among vehicles
• Chart optimal route for autonomous vehicles

Climatic monitoring • Rely on wired or wireless sensor networks
• Suffer from high deployment and maintenance costs

• Avoid the reliance of dedicated sensor networks
• Lower deployment and maintenance costs
• Adapt to different environments and monitoring tasks

Medical health • Require wearable devices for contact-based detection
• Involve sensitive information in video-based monitoring

• Non-contact detection with wireless signals
• Detect anomalies and predict potential emergencies
• Safeguard individual privacy and security

In addition, by intelligently managing spectrum resources,
channel allocation, and power control, AI is able to improve
the communication efficiency of the ISAC system. Specifi-
cally, resource allocation can be adjusted for more efficient
transmission and utilization through using AI to analyze real-
time communication data. For example, in multiuser systems,
traditional optimization-based scheduling methods suffer from
resource utilization degradation due to static strategies and
reliance on complete channel state information (CSI). In
contrast, AI-driven algorithms can automatically refine these
allocations based on network conditions, user demands, and
even incomplete CSI. Furthermore, AI empowers ISAC sys-
tems to swiftly adapt to environmental variations through self-
learning and online reasoning.

In summary, the AI-enhanced ISAC system samples and
perceives the physical world through sensing, connects to it
through communication, and intelligently processes the data
and resources through AI. By integrating sensing, commu-
nication, and AI functionalities, it is envisioned to achieve
rapid ISAC data processing, real-time resource optimization,
and intelligent decision in increasingly complex and dynamic
environments.

B. Use Cases and Opportunities
In future 6G networks, the application scenarios of AI-

enhanced ISAC technology cover various domains, including
intelligent manufacturing, smart transportation, climatic mon-
itoring, and medical health, as presented in Fig. 1 and Table I.

1) Intelligent manufacturing: Numerous devices and ma-
chinery are typically involved in this scenario, which neces-
sitates the processing and transmission of vast data, along
with real-time monitoring of materials and equipments during
production. Through collaborating communication and sensing
functions, ISAC facilitates remote control and maintenance of
devices. However, traditional ISAC suffers from performance
degradation caused by interferences from complex electromag-
netic environments and dense equipment layouts.

Integrating AI into ISAC systems can provide a solution by
leveraging the DNN technology to learn and train on massive
datasets. This enables intelligent modulation/demodulation of
wireless signals, thereby improving the system’s resistance to
interferences. Furthermore, the use of recurrent neural net-
works (RNN) allows for prediction of production equipment
failures based on sensor data in production process.

2) Smart transportation: In this scenario, ISAC employs
wireless signals for detection, identification, positioning, and
tracking of vehicles, pedestrians, and obstacles on the roads
[8]. It also utilizes sensing information to enhance communi-
cation among vehicles and between vehicles and base stations
(BS), thereby improving communication quality and efficiency
[9]. However, traditional ISAC encounters adaptability issues
in complex traffic environments.

As an effective support for ISAC, the AI technique, e.g.,
long short-term memory (LSTM) provides a powerful tool
to model and predict time-series data such as traffic flow,
vehicle speed, and road congestion. Furthermore, DRL can
be employed to enable interaction between the transportation
system and environment, thereby aiding autonomous vehicles
in perceiving and understanding changes in the surrounding
environment, as well as planning the optimal driving route
and achieving safety control.

3) Climatic monitoring: Conventional climate monitoring
methods typically rely on extensive sensors, satellites, and
unmanned aerial vehicles (UAVs) to collect vast amounts of
data. ISAC can reuse existing communication infrastructures,
which reduces dependence on dedicated networks and lowers
deployment and maintenance costs. The traditional ISAC,
however, faces the challenge of limited prediction accuracy
due to inadequate exploration of environmental data features.

The AI-enhanced ISAC technique, employing deep belief
networks (DBN), is adept at discerning high-order statistical
characteristics within environmental data for better capturing
the inherent patterns. Additionally, AI-enhanced ISAC con-
ducts model training leveraging extant climate and environ-
mental monitoring data. The resultant model, with the use
of transfer learning, can subsequently be applied to forecast
future environmental events, bolstering our timely response
capabilities for abrupt climate alterations, natural disasters, and
environmental pollution.

4) Medical health: Precise medical treatment and remote
healthcare services require real-time, accurate transmission of
physiological signals and medical images. Traditional health-
care monitoring often hinges on contact-based detection with
wearable devices, necessitating the auxiliary setup of cameras,
sensors, and detectors that potentially harbor sensitive personal
information. Anchored in pre-existing communication devices,
ISAC techniques afford non-contact monitoring of human
physiology using high-frequency signals to precisely measure
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TABLE II
CHARACTERISTICS AND APPLICABLE ISSUES IN ISAC OF TYPICAL AI ALGORITHMS.

AI Algorithms Characteristics Applicable Issues in ISAC

DNN • Learn data representations by multilayer nonlinear transformations
• Optimize loss function by backpropagation

• Channel estimation
• Signal detection

CNN • Extract local features via convolutional operations
• Reduce computational complexity by pooling operations

• Signal classification
• Object detection

Generative adversarial network (GAN) • Consist of a generator and a discriminator
• Generate lifelike data through adversarial learning

• Data enhancement
• Channel modeling

Graph neural network (GNN) • Learn directly from graph structured data
• Update node features via information exchange

• Network perception
• Link prediction

LSTM • Control information flow through gated structures
• Introduce memory units to avoid gradient vanishing problem

• Resource allocation
• Channel prediction

DRL • Learn optimal strategies through interaction with the environment
• Instruct to learn effective actions through rewards

• Autonomous driving
• Resource allocation

FL • Conduct joint training of models without revealing original data
• Implement distributed learning with sharing model parameters

• Collective spectrum sensing
• Data privacy protection

Transfer learning • Accelerate target domain training by knowledge transferring
• Tune parameters for new tasks on existing models

• Cross-scene signal processing
• Image classification

Few-shot learning • Learn from few training samples for new tasks
• Accelerate convergence by prior knowledge and experience

• Anomaly detection
• Scene classification

Large language model (LLM) • Pretrained on billions or even hundreds of billions of parameters
• Fine-tune for various downstream tasks with given prompts

• Resource management
• Inference and decision-aiding

cardiac rhythm, respiration, and blood pressure.
However, traditional ISAC techniques confront challenges

in accurately interpreting these perceived physiological pa-
rameters, leading to low diagnostic accuracy and privacy data
security. Within an AI-enhanced ISAC framework, medical
knowledge graph can be constructed to interpret the high-
frequency signal patterns, improving the precision and de-
pendability of non-contact vital sign monitoring. Such an
AI-enhanced solution can help detect anomalies and pre-
dict potential emergencies for timely intervention. Moreover,
the capability of AI to dynamically optimize data transmis-
sion, prioritize critical information, and streamline bandwidth
utilization presents unique advantages in remote healthcare
contexts. Additionally, implementing federated learning (FL)
allows for collaborative model training without the need of
raw data sharing, further mitigating data privacy risks.

III. KEY CHALLENGES FOR AI-ENHANCED ISAC

Table II enumerates the typical AI algorithms applicable
to ISAC. Due to the complexity and dynamics of wireless
environments, achieving such AI-enhanced ISAC systems still
faces numerous technical challenges.

A. Adequate and High-quality Data Collection

As a crucial foundation, sufficient quantity and quality of
data significantly influence the performance of AI-enhanced
ISAC systems. Handling a wide range of complex data from
diverse sources escalates the difficulty of data collection.

On one hand, model training in AI-enhanced ISAC systems
necessitates gathering massive amounts of shared communi-
cation and sensing data. However, collecting wireless data
requires considerable time, space, and energy resources under
hardware constraints. On the other hand, AI-enhanced ISAC
depends on accurate data labeling for supervised or semi-
supervised learning. However, this behaviour relies on aux-
iliary information and expert knowledge, such as positional

information, target types, and scene categories. Thus, anno-
tating wireless data effectively in the absence or inaccuracy
of auxiliary information and expert knowledge, as well as
assessing, cleansing, and enhancing the data quality, pose
challenging problems.

B. Real-time Data Processing

To enable timely decisions and responses in AI-enhanced
ISAC systems, the processing and analysis of wireless data
need to be completed within extremely short timeframes,
especially for autonomous driving and traffic management
in smart transportation. Traditional statistical methods may
not be efficient enough to process data in rapidly changing
environments, due to their high computational complexity and
soaring data volumes.

As 6G aims to accomplish ubiquitous intelligent connectiv-
ity in the cyber-physical world, communication and sensing
data from smart terminals will be immense, while AI-enhanced
ISAC needs to cope with these expanding massive data.
The diversity and complexity of wireless data arising from
various sensors, devices, and network infrastructures, further
increase the difficulty of real-time processing. These data,
including video, voice, images, and more, typically vary in
formats, features, and acquisition frequencies. Consequently,
AI-enhanced ISAC systems are envisioned to require increased
computational capabilities compared with traditional commu-
nication systems.

C. Adaptive Interference Management

In the future 6G landscape, AI-enhanced ISAC systems
will encounter interference management issues [10] stemming
from external and internal environments. The external interfer-
ences involve spectrum conflicts, electromagnetic disruptions,
environmental noise, and signal attenuation, all exhibiting
fluctuating behaviors across time, location, and environments.
Traditional interference management methods, which rely on
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predefined strategies and empirical rules, are difficult to handle
intricate and dynamic changes. Hence, AI-enhanced ISAC
systems necessitate adaptive approaches to identify and locate
interference sources in real time.

Constrained by limited spectrum resources, ISAC inter-
twines waveform, transceiver design, and signal processing,
which creates an overlap in the spatiotemporal domain be-
tween sensing and communication signals. Their interaction
and constraints cause internal interferences that diminish the
throughput and sensing precision of AI-enhanced ISAC sys-
tems. It is challenging to guarantee both high-rate commu-
nication and high-precision sensing, especially in complex
scenarios involving multiple targets and users.

D. Low-complexity AI Model

In traditional communication systems, mature signal pro-
cessing techniques have been developed to enable efficient
transmission and reception. However, data analysis and pro-
cessing require the utilization of various AI models to achieve
intelligence and automation in ISAC systems. When dealing
with multi-task problems, the parameter size of AI models
grows exponentially, leading to insupportable computational
burden and energy consumption. Moreover, the generalization
ability of AI models in ISAC scenarios is also a bottleneck.

Due to the complexity of wireless environments, it is
difficult for AI models to obtain sufficient data during the
training process for effective generalization. Therefore, design-
ing appropriate AI models with strong generalization ability
to adapt to diverse complex scenarios has become a challenge.
Moreover, the majority of current AI models are characterized
as “black box” and lack interpretability. Establishing intelli-
gent visualization methods to enhance the understanding of
high-dimensional data features is another challenge in future
research on explainable AI models.

E. Security and Privacy

The integrated nature of the AI-enhanced ISAC system
aggravates privacy and security risks, since it needs to collect,
process, and transmit voluminous sensing and communication
data across various nodes. These data might contain sensitive
information such as personal details, location, and behavioral
characteristics, heightening the threat of privacy disclosure and
unauthorized access.

While relying on AI models to blend communication and
sensing functions, including channel prediction, resource allo-
cation, and target detection, the ISAC system may be affected
by adversarial sample attacks, model theft attacks, and model
pollution attacks, which could endanger model outputs or steal
data from local devices through gradient leakage and model
inversion. Meanwhile, AI-enhanced ISAC systems also depend
on seamless collaboration between various nodes for optimal
performance. This collaboration, however, could be disrupted
by malicious nodes or external disruptors, resulting in commu-
nication breakdowns, data tampering, and even system crashes.

IV. CRITICAL TECHNIQUES AND FUTURE DIRECTIONS

Despite numerous contributions to AI-enhanced ISAC sys-
tems, further exploration is still needed within specific require-
ments and scenarios. Therefore, the following outlines several
critical techniques and future directions in this topic.

A. Multimodal Data Sensing and Fusion

Fusing multimodal data is challenging for AI-enhanced
ISAC systems, because of the heterogeneous and non-
stationary information collected from different sensing modal-
ities such as radars, acoustic, and visual sensors. These
modalities often produce data with varying spatiotemporal
resolutions, noise characteristics, and semantic interpretations.
Conventional data fusion methods may falter when dealing
with these complex interactions in practical scenarios.

To address this issue, one potential solution is to construct
an attention-based deep learning method that coordinates mul-
timodal heterogeneous data types into a common feature space
by learning cross-modal shared representations. This approach
can extract complementary features and suppress redundant
information. Traditional signal processing techniques can also
be used for denoising, filtering, and preprocessing operations
to enhance data quality. Moreover, variational autoencoders
(VAE) can synthesize missing or incomplete data modalities
based on other available ones, enhancing the robustness of the
fusion process. Additionally, AI-based probabilistic graphical
models and Bayesian frameworks can provide a principled
way to infer and fuse multimodal data, considering their
dependencies and uncertainties.

B. Collaboration between Communication and Sensing Func-
tionalities

Facing different scenarios, communication and sensing tasks
in ISAC systems manifest conflicting, complex, and dynamic
characteristics. Firstly, resource conflicts such as power, time,
and spectrum between these tasks may reduce the system
performance and efficiency. Secondly, catering to varied objec-
tives infuses high complexity and heterogeneity into commu-
nication and sensing tasks, complicating their coordination and
alignment, thus increasing system overheads and operational
burdens. Lastly, adapting to dynamic wireless environments,
mobile targets, and service demands introduces temporal and
spatial variability in these tasks. This variability fosters in-
stability in task execution and may reduce the reliability and
scalability of the system.

Hence, the ISAC system needs AI techniques to achieve
coordination and balance between communication and sensing
tasks. CNN and RNN can be employed to extract distinct
features from sensing data for communication optimization.
Conversely, the Informer model [11] can be exploited to derive
transmission protocols from communication data for sens-
ing optimization. Furthermore, intelligent resource allocation
achieved by DRL networks and LLM (e.g., ChatGPT) enables
the dynamic prioritization of communication and sensing
tasks, thus optimizing overall system performance.
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C. ISAC Beamforming Design

As the wireless communication system’s frequency band
continues to expand, the ISAC system is anticipated to operate
in higher frequency bands such as millimeter or terahertz
bands. Moreover, the impact of path loss is exacerbated by
the round-trip propagation in active sensing. Mitigating this
high path loss necessitates beamforming design, which can be
categorized into two scenarios based on whether the sensing
targets are also communication users in ISAC systems.

For the scenario where the sensing targets are not commu-
nication users, there exists a trade-off between the sensing
and communication functionalities. Specifically, the ISAC
BS has to split the transmitted signals into multiple beams,
resulting in the reduction of signal to interference plus noise
ratio (SINR). Yet, the performance trade-off is diverse under
different correlation between the sensing and communication
channels while utilizing the communication signals to sense
the target. Therefore, to improve the spectral efficiency of
ISAC systems, one can employ deep learning tools to exploit
such correlation and schedule the targets/users to be served,
such that the targets/users with highly correlated channels are
served simultaneously. For instance, the CNN was adopted in
[12] to learn the inherit channel nature from the covariance
matrix of the received echo signals.

In cases where the target to be sensed is also the communi-
cation user, the ISAC system is referred to as a sensing-assisted
communication system. Here, the critical issue is not balancing
sensing and communication performances but focusing on
leveraging sensing results to facilitate communication beam-
forming design, particularly for high-mobility users. Dealing
with fast-varying channels in complex environments has led
to interest in exploiting neural network advantages in time-
series prediction. Specifically, in [12], LSTM was employed
to capture and predict communication channel characteristics
based on received echo signals. As depicted in Fig. 2, with
neural network assistance, communication channels can be
accurately predicted, and peak spectral efficiency can approach
the upper bound with perfect CSI. In comparison, the conven-
tional Extended Kalman Filter (EKF)-based prediction scheme
shows inferior performance, especially under low signal-to-
noise ratio (SNR) corresponding to low transmit power.

D. Environmental Adaptation

The generalization of wireless environments is an inevitable
issue in AI-enhanced ISAC technology. Existing AI models are
typically tailored for specific scenarios and distinct problems
without universality, which may no longer be applicable to
practical communication environments since they are multi-
faceted and constantly changing.

To address this issue, on one hand, DRL can be employed to
adaptively optimize the behavior and decision-making of the
ISAC system by learning and recognizing environmental fea-
tures online. On the other hand, transfer learning can be used
by selecting suitable learning methods based on the specific
problem. It allows to transfer the knowledge from a source
domain to new target domains, facilitating efficient updating
of AI models. Additionally, generative models (e.g., GAN and
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Fig. 2. Peak spectral efficiency versus transmit power of BS for AI-enhanced
ISAC systems.

diffusion models) can assist in generating synthetic data to
increase the diversity of training samples. Training AI models
using these synthetic data helps enhance the adaptability of the
ISAC system in diverse environments. Moreover, combining
reconfigurable intelligent surface (RIS) to reshape wireless
channels also holds promise for upgrading the environmental
adaptability of AI-enhanced ISAC systems [13].

E. Privacy Protection of Sensing Data

To reduce the risk of privacy leakage, feature extraction and
classification based on DNN can be employed beforehand,
to avoid direct sharing of raw sensing data. Meanwhile,
combining DNN with encryption techniques allows for the
generation and recognition of encryption patterns, rendering
the contents indecipherable to attackers even with intercepted
data. In particular, differential privacy deep learning methods
[14] obscure sensitive information by adding artificial noise,
randomly perturbing the training data and parameters, and pre-
serving the statistical properties of the dataset while generating
differential privacy data.

Furthermore, FL and edge computing [15] can enable
distributed data processing and model updates without shar-
ing raw data. Similarly, as shown in Fig. 3, optimizing the
beamforming scheme of authorized users through RIS adap-
tively can further rise the privacy and security performance
of AI-enhanced ISAC systems. On one hand, RIS allows
transmitting signals to be concentrated toward the specific
authorized users by smartly controlling phase shifts, thus
limiting transmission sphere and reducing potential exposure
to eavesdroppers. On the other hand, RIS can be programmed
to actively generate destructive interferences for eavesdroppers
once their locations are detected, thereby obstructing informa-
tion decoding and further bolstering system security. For more
details, we refer readers to [13].
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V. CONCLUSIONS

In this article, we reviewed the AI-enhanced ISAC tech-
nique, which integrates communication and sensing func-
tionalities with AI algorithms to achieve mutual promotion
and benefit. A general system framework of AI-enhanced
ISAC was presented along with its advancements. Subse-
quently, four potential use cases were provided with the
special requirements and opportunities for AI-enhanced ISAC.
We also discussed the technical challenges while deploying
AI-enhanced ISAC. Finally, critical techniques and future
research directions were indicated. Within forthcoming 6G
networks, the paradigm of AI-enhanced ISAC will further
evolve from being data and model-based to being knowledge
and reasoning-based.
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