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Abstract

Reconfigurable intelligent surface (RIS) enables the configuration of the propagation environment.

Channel estimation is an essential task in realizing the RIS-aided communication system. A RIS-aided

multi-user multiple-input multiple-output (MIMO) orthogonal frequency division multiplexing (OFDM)

communication system involves cascaded channels with high dimensions and sophisticated statistics.

Thus, implementing the optimal minimum mean square error (MMSE) with the integration computation

is infeasible in practice. To accurately estimate channels with high accuracy in a RIS-aided multi-user

MIMO-OFDM system, we model the channel state information (CSI) estimation as an image super-

resolution (SR) problem to recover and denoise the channel matrix. Particularly, a convolutional neural

network based on a super-resolution convolutional neural network (SRCNN) and denoising convolutional

neural network (DnCNN), named SRDnNet, is then proposed. By taking estimated channels at pilot

positions as a low-resolution image, the enhanced SRCNN can fully exploit the features of inputs to learn

a suitable interpolation method and generate the coarse estimation of the channel matrix. The denoising

model DnCNN with an element-wise subtraction structure can exploit features of the additive noise

and recover channel coefficients from the coarse channel matrix. The simulation results demonstrate the

effectiveness and excellent performance of the proposed SRDnNet.
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I. INTRODUCTION

The rapid growth of communication types of equipment demands high data rates up to

1 terabyte per second (TB/s), super-low latency of less than 1 ms, super-high connectivity

density of more than 107 devices/km2, ten times spectrum efficiency of the fifth generation (5G)

mobile network and other indices in energy efficiency, mobility, area traffic capacity, etc [2].

To meet these requirements, device-centric architectures, millimeter wave (mmWave), massive

multiple-input multiple-output (MIMO) and other wireless technologies are proposed to lead to

disruptive changes in both architectural and component design [3]. However, challenges from

high hardware design requirements, excessive energy cost and complex signal processing prevent

these technologies from implementation in practice [4]. Thanks to the development of materials,

a novel concept of reconfigurable intelligent surface (RIS) has recently been proposed as a

potential solution to these difficulties.

RIS, which can shape a wireless propagation environment by intelligently reflecting incident

signals through its reconfigurable elements, has been considered a promising technology for the

future smart radio environment [5]–[7]. Typically, a RIS consists of numerous nearly passive

reflecting elements, which can be separately controlled by a smart controller to adapt its phase

shift on incident signals and alter their propagation direction. By adjusting the phase shift

of reflected signals, the RIS can program and reshape the wireless propagation environment

to strengthen the received power at intended receivers [8]. The implementation of the RIS

can improve throughput, coverage, energy efficiency (EE) and spectral efficiency (SE) [9] by

adapting its phase shift. Therefore, RIS-aided communication systems and related studies, e.g.,

the throughput maximization with different reflection patterns [10], the EE and SE trade-off

[9] and the RIS-aided physical layer security [11], [12], have attracted extensive interest from

academia.

In RIS-aided wireless communication systems, reaping the promising performance gain re-

quires precise channel state information (CSI) to perform beamforming. However, these studies

mentioned above were completed with perfect CSI, which is usually unavailable. In fact, the

acquisition of CSI is a crucial task in realizing RIS-aided communication systems. Compared with

channel estimation in conventional systems, the RIS can only reflect signals without the ability

to transmit/receive pilots and signal processing. In this case, acquiring the channel from RIS
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to the user/base station (BS) is infeasible via pilot-based channel estimation methods. Only the

cascaded channel of the BS-RIS-user can be estimated by adequately designing the transmission

protocol and reflection pattern of the RIS. However, the estimation of the cascaded channel is

challenging due to the following difficulties:

1) The cascaded channel does not follow the complex Gaussian distribution. In this case, it

is infeasible to derive the optimal minimum mean square error (MMSE) estimator, which

requires multiple integrals for practical implementation.

2) The achievable linear MMSE (LMMSE) and least squares (LS) estimators have a signif-

icant performance disparity compared to the optimal MMSE. Consequently, the channel

estimation accuracy is limited for realizing RIS-aided communication systems.

3) The RIS generally consists of hundreds or even thousands of reflecting elements, leading

to a highly dimensional cascaded channel. Therefore the pilot overhead is excessively high.

The analytical channel estimation approaches, such as the LS estimator and the LMMSE

estimator, bring a heavy workload on computation.

To address the difficulties of channel estimation in RIS-aided communication systems, exten-

sive works have been carried out [13]–[17]. Mishra et al. [13] proposed a novel low-complexity

optimal channel estimation protocol for the single-user system. Only one of the RIS reflecting

elements is switched on and the rest are switched off simultaneously. In this case, the BS

can receive pilots without inter-element interference of the RIS, and the estimation of cascaded

channels can be conducted. However, the signal-to-noise ratio (SNR) obtained at the BS is limited

for CSI estimation, as only one active reflecting element reflects the pilots in each time slot.

Moreover, the massive number of reflecting elements introduces an exceedingly long latency to

the system. Jensen et al. [14] activate all RIS elements to enhance the received SNR as well as

to shorten the latency. Particularly, a novel RIS activation pattern has been designed to achieve

the minimum variance unbiased estimation of the cascaded channel. The pilot cost in [13], [14]

is determined by the product of the number of antennas, RIS elements and users, which could

hinder the application of the RIS with massive reflecting elements to communication systems. On

the other hand, some attempts have been dedicated to lowering the pilot overhead by designing

efficient schemes. He et al. [15] first formulated the channel estimation in RIS-aided MIMO

systems as recovering a sparse channel matrix, in which the sparsity of the spatial channel

matrix is exploited by applying compressed sensing to reduce the pilot overhead.
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To reduce the pilot overhead for channel estimation introduced by massive RIS reflecting

elements, [16]–[21] have proposed novel CSI estimation frameworks in which they grouped

those adjacent RIS elements into several sub-surfaces. Within every sub-surface, the RIS elements

adopt the same configuration. Therefore, the computation power of channel estimation can be

dramatically reduced. Zheng et al. [16] have proposed a transmission protocol for the channel

estimation, while it is not an energy-efficient manner since all RIS elements are always active.

Besides, we note that the pre-designed phase shift for each transmitted symbol should be

configured when the symbol arrives at the RIS. Otherwise, the propagation environment is not

the same as pre-designed. The above works significantly contribute to channel estimation for

RIS-aided communication scenarios. However, the limited channel estimation performance for

cascaded channels has not been well addressed. Thus a practical and efficient channel estimation

scheme is more than desired to estimate the RIS channels accurately.

Deep learning (DL) [22] has been widely used in RIS-aided communication systems [23]–[25],

such as the deep reinforcement learning (DRL)-based SNR maximization, DRL-based secure RIS

multi-user communication systems and the DL-based active or passive beamforming design. It is

noted that these promising DL-based approaches still demand perfect CSI, which is hard to obtain

in practice. Up to now, DL-based channel estimation methods have been widely investigated in

various conventional communication systems [26]–[28]. However, DL-based techniques have

not been thoroughly investigated for channel estimation in RIS-aided wireless communication

scenarios. Some attempts are devoted to designing DL-based frameworks to improve channel

estimation performance [29]–[32].

A variety of DL-based algorithms have been proposed to improve the limited channel estima-

tion performance in RIS-aided communication systems. Liu et al. [29] developed a deep resid-

ual network-based method and a convolutional neural network (CNN)-based network (CDRN)

to improve channel estimation performance in RIS-aided multi-user communication systems.

Although the estimation performance of CDRN is promising, we should note that inputs of

the CDRN are generated by the LS estimator, which is costly computational because of the

high-dimension cascaded channel. Kundu et al. [30] adopted two CNN-based methods, i.e.,

denoising CNN (DnCNN) and fast and flexible denoising Network (FFDNet), to perform channel

denoising in a RIS-aided single user multiple input single output (MISO) system. The noise

map (standard deviation of the additive noise in the LS estimate) is concatenated with the LS

channel matrix as the input to the FFDNet. It provides flexibility to handle different noise
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levels. However, prior Knowledge of the additive noise is usually unavailable in practice, and

the LS estimator generates the inputs of both CNN-based methods. Liu et al. [31] proposed

a complex-valued denoising convolution neural network (CV-DnCNN) to enhance compressive

sensing-based channel estimation performance in a RIS-aided mmWave massive MIMO system.

Jin et al. [32] proposed two practical residual neural networks, i.e., single-scale enhanced deep

residual (EDSR) and multi-scale enhanced deep residual (MDSR), to recover channel matrix from

the sparse RIS channels in a time division duplex (TDD) RIS-aided mmWave communication

system. In particular, the RISs in [31] and [32] are hybrid in that a few reflecting elements

are active and connected to the baseband unit (i.e., a radio frequency (RF) chain) for signal

processing. Besides, the estimation of the RIS channel is processed at the receiver to generate

the inputs of the CV-DnCNN, the EDSR and the MDSR.

It is noted that estimated channels in RIS-aided communication systems must be obtained as

inputs of neural works, which is computationally intensive and highly affect the performance of

neural works [29]–[32]. Pilot-based channel estimation is the most commonly used method to

acquire the CSI in OFDM systems. The pilot channels can be first estimated by the pilots known

at transmitters and receivers. Then the data channels can be calculated by interpolation methods,

e.g., spline and linear interpolation methods, based on the estimated channels at pilot positions.

Interestingly, the Image super-resolution (SR), which aims at recovering a high-resolution (HR)

image from a low-resolution (LR) and noisy image, is comparable to channel estimation. Various

attempts have been conducted to estimate channels in non-RIS communication scenarios based on

the image SR algorithm [33]–[35]. Ouyang et al. [33] have proposed the channel super-resolution

neural network (CSRNet) for channel estimation in underwater acoustic (UWA) orthogonal

frequency division multiplexing (OFDM) communications. Soltani et al. [34] have developed

a two-stage CNN-based channel estimation scheme (ChannelNet) to recover the channel matrix

from the initial estimation of channels at pilot positions. ChannelNet is the concatenation of a

super-resolution convolutional neural network (SRCNN) and a denoising convolutional neural

network (DnCNN). Li et al. [35] have developed a deep residual channel estimation network

(ReEsNet) to perform CSI estimation in downlink OFDM systems.

Note that the CSRNet and ChannelNet generate the complete channel matrix by the spline and

bicubic interpolation, which are fixed and can not be trained. The ReEsNet adopted transposed

convolution layer as the up-sampling layer and upscaled the LR channel matrix to the desired

size. However, the up-sampling layer is the penultimate layer, and only a convolutional layer

Page 5 of 37

IEEE Transactions on Communications

Under review for possible publication in

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



6

is concatenated to generate the output without denoising. Moreover, the ChannelNet is not an

end-to-end model, its estimation performance needs further improvement. Motivated by this, we

formulate the channel estimation as an image SR problem and propose the revised SRCNN with

a trainable interpolation method to generate the coarse channel matrix and concatenate it to the

DnCNN to denoise the channel matrix and further improve channel estimation performance. In

this work, we concentrate on channel estimation in RIS-aided multi-user MIMO-OFDM systems

with the proposed DL-based scheme, SRDnNet. We modeled channel estimation as a denoising

problem and proposed a deep residual learning-based channel estimation method for a downlink

RIS-aided OFDM systems [36]. In [36], compared with this work, each user collects their datasets

to train their local models and only transmits model weights to the BS for updating the global

model. The updated global model is then broadcasted to all users for the next training turn until

convergence. The main contributions of this paper are summarized as follows:

1) To separately estimate the direct and cascaded channels, we propose a three-stage transmis-

sion protocol in which we consider that the pre-designed phase shift in a time slot should

correspond to transmitted symbols in the same time slot. By applying the transmission

protocol, the mismatch of the pre-designed phase shift and symbols can be mitigated and

eliminated. Besides, the RIS works energy-efficiently since RIS only activates its elements

when receiving signals from users.

2) Compared with related works, we formulate the channel estimation problem in a RIS-aided

multi-user MIMO-OFDM communication system as an image SR problem. Based on this,

we develop a deep CNN-based algorithm, SRDnNet, to accurately recover the channel

matrix from estimating channels at pilot positions. With the superior interpolation and

denoising capabilities of the enhanced SRCNN and DnCNN, the SRDnNet could further

improve channel estimation accuracy.

3) Comprehensive simulations validate the effectiveness of the SRDnNet concerning the effect

of SNR and channel dimension. The results illustrate that the performance of the SRDnNet

outperforms benchmarks without prior knowledge of direct and cascaded channels.

The rest of this paper is organized as follows. Section II presents the system model of

RIS-aided multi-user MIMO-OFDM communication systems and the transmission protocol.

Section III presents two conventional CSI estimation methods as benchmarks. Then the proposed

SRDnNet is presented. Section IV provides simulation results of our proposed methods in RIS-
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Fig. 1. The uplink of RIS-aided Multi-user MIMO-OFDM system.

aided wireless communication systems. Finally, Section V concludes this work.

In this paper, IM denotes the identity matrix of size M × M . (·)−1 is the matrix inverse.

The (·)T and (·)H stand for transpose and Hermitian transpose, respectively. E(·) is used to

represent the statistical expectation operation. ‖·‖F represents the Frobenius norm of a matrix.

� denotes the Hadamard element-wise multiplication. ./ denotes the right element-wise division,

which divides each element of the left by the corresponding element of the right. C denotes the

dimension of a complex variable. In addition, CN (μ, σ2) is the complex Gaussian distribution

with μ-mean and variance σ2.

II. SYSTEM MODEL AND TRANSMISSION PROTOCOL

As shown in Fig. 1, we consider an uplink OFDM system, where the RIS serves one BS

and K users. The BS is equipped with an NBS-antenna array and the RIS comprising NM

reflecting elements serves the BS and K single-antenna users. Antenna arrays of the BS and

reflecting elements of the RIS are arranged in a uniform linear array (ULA). The BS controls

a controller to reconfigure the propagation environment. As shown in Fig. 1, h1, h2,k and dk,

k ∈ {1, 2, ..., K} denote the channels of RIS-BS, Uk-RIS and Uk-BS, respectively. Since there

are plenty of scatters distributed in the channel between the BS and users, the line of sight (LoS)

path may not exist [37], we adopt Rayleigh fading channel model to formulate dk ∈ C
NM×1.

For the channels h1 and h2,k, we model them as Rician fading channels.
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A. System Model

We define h1 ∈ C
NBS×NM as

h1 =

√
β1

β1 + 1
h1 +

√
1

β1 + 1
h̃1, (1)

where β1 is the Rician factor of h1; h1 ∈ C
NBS×NM is the LoS component; h̃1 ∈ C

NBS×NM is

the non-LoS (NLoS) component. The elements of h̃1 follows the complex Gaussian distribution

CN (0, 1). In the same way, we denote k-th user h2,k ∈ C
NM×1 as

h2,k =

√
β2,k

β2,k + 1
h2,k +

√
1

β2,k + 1
h̃2,k, (2)

where β2,k is the Rician factor of h2,k; h2,k ∈ C
NM×1 is the LoS component; h̃2,k ∈ C

NM×1 is

the NLoS component. All elements of h̃2,k follow the complex Gaussian distribution CN (0, 1).

The LoS components can be expressed by the array response of a NM -element ULA:

aNM
(φ) = [1, ej2π

d
λ
sinφ, ..., ej2π

d
λ
(NM−1) sinφ], (3)

where φ is the angle of departure (AoD) or angle of arrival (AoA) of a signal, d is the

antenna spacing, and λ denotes the wavelength of the transmitted signal, respectively. Under

this condition, h1 is expressed as

h1 = aHNBS
(φAoD,1)aM(φAoA,1), (4)

where φAoD,1 is the AoD from the RIS reflecting elements, φAoA,1 is the AoA to the BS. We

express the LoS path h2 in as

h2,k = aHNM
(φAoA,k), (5)

where θAoA,k is the AoA from the k-th user to the ULA at the RIS.

The usable bandwidth is evenly partitioned into N sub-carriers in the uplink RIS-aided multi-

user MIMO-OFDM system. At the k-th user, the OFDM symbol Xk
Δ
= [x1,k, x2,k, ..., xN,k]

T is

first transformed into the time domain by an N -point inverse discrete Fourier transform (IDFT).

A Lcp-length cyclic prefix which is longer than the delay spread of both cascaded and direct

channels, is then added to transformed symbols. At the BS, we remove the CP of received signals

transmitted from the k-th user and then perform N -point DFT to transform these signals into

the frequency domain. Then, we denote the received signals at each antenna of the BS as

yk=Xk(

√
P

(k)
L,r

NM∑
m=1

H1,mφm,k �H
(k)
2,m +

√
P

(k)
L,ddk)+vk, (6)
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1

P
(k)
L,r

=
Pr

PtGtGr

=
Gdxdyλ

2

64π3
∗
∣∣∣∣∣∣

M
2∑

m=1−M
2

N
2∑

n=1−N
2

√
Fcombine

rtn,mr
k
n,m

e
−j2π(rtn,m+rkn,m)

λ

∣∣∣∣∣∣
2

, (7)

1

P
(k)
L,r

=
Pr

PtGtGr

=
Gdxdyλ

2

64π3
∗
∣∣∣∣MF (θt, ϕt)F (θk, ϕk)

rtrk
e
−j2π(rt+rk)

λ

∣∣∣∣2, (8)

where NM denotes the RIS elements, yk ∈ C
N×1 and Xk = diag(x) ∈ C

N×N are the received

and transmitted OFDM symbols. H1,m ∈ C
N×1 is the channel frequency response (CFR) of the

BS-RIS channel for the m-th element, H
(k)
2,m ∈ C

N×1 is the CFR of the channel between RIS

and the k-th user for the m-th element, φm,k = ejφm,k is the phase shift introduced by the m-th

element when the k-th user transmits signals, dk ∈ C
N×1 is the CFR of the BS-user channel,

and vk ∈ C
N×1 is the additive white Gaussian noise (AWGN) vector with vk ∼ CN (0, σ2IN),

respectively.

To make the model more practical, we consider path loss [38]. P
(k)
L,r is the path loss of the

cascaded channel, and it is expressed as (7) presented at the top of the page. We consider the

scenario in which the distance between the RIS and BS and that between users and the RIS is

much larger than the size of the RIS. We can simplify the path loss of the cascaded channel as

(8) at the top of the page. The detailed information in Eq.(7) and Eq.(8) can be found in [36].

We define the path loss of direct channel as P
(k)
L,d

1

P
(k)
L,d

=
λ2

4π2dγk
, (9)

where dk denotes the distance between the BS and the k-th user and γ is the path loss exponent,

respectively.

We use Hm,k
Δ
= [Hm,0, Hm,1, ..., Hm,N−1]T = H

(k)
2,m �H1,m to express the equivalent CFR of

the k-th user-RIS-BS channel associated with the m-th element, (6) can be rewritten as

yk=Xk(

√
P

(k)
L,r

NM∑
m=1

φm,kHm,k +

√
P

(k)
L,ddk)+vk, (10)
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Moreover, by stacking Hm,k with m = 1, ..., NM into Hk = [H1,k, H2,k, ..., HNM ,k] as the overall

CFR of the cascaded channel, we can use a concise form to rewrite (10) as

yk=Xk (

√
P

(k)
L,rHkφk +

√
P

(k)
L,ddk)︸ ︷︷ ︸

hk

+vk, (11)

where φk
Δ
= [φ1,k, φ2,k, ..., φNM ,k]

T denotes the phase-shift vector. Therefore, the main task is to

estimate the superimposed CFR of the whole channel hk = [Hk,0, Hk,1, ..., Hk,N−1]T . By stacking

the received signals of each antenna at the BS, we can get a concise form

Yk=XkGk+vk, (12)

where Yk
Δ
= [yk,1, yk,2, ..., yk,NBS

] ∈ C
N×NBS denotes the received signal transmitted by the k-th

user at the BS. Gk
Δ
= [hk,1,hk,2, ...,hk,NBS

] ∈ C
N×NBS denotes the superimposed CFT of the

whole channel between the k-th user and the BS. To practically estimate the cascaded and direct

channel, we design a novel three-stage transmission protocol, which will be illustrated in the

following section.

B. Transmission Protocol

To practically implement the RIS in wireless communication systems, we present a novel

transmission protocol to estimate direct and cascaded channels separately. The reflecting elements

embedded in the RIS are passive, so they cannot actively process the received signals to estimate

the CSI. The RIS needs to know the timing when the user transmits signals through the uplink

channel to prepare the proper phase shift φm,k = ejφm,k for communications. Otherwise, the

BS cannot estimate the channel correctly because the propagation environment is not the same

as the pre-designed, e.g., the pre-designed phase shift prepared for the m-th symbol meets the

(m+ 1)-th or the (m− 1)-th symbol.

The proposed transmission protocol with three sub-frames is illustrated in Fig. 2. The first

sub-frame is to estimate the channel

√
P

(k)
L,ddk between the k-th user and the BS, while the RIS

is turned off. According to the feedback information of the first sub-frame, the RIS controller can

know that the k-th user will establish a link through it, and then it is turned on for the upcoming

signal from the user. This means the RIS does not need to be active all the time and it is an

energy-efficient working mode. During the second sub-frame, to estimate the cascaded channel√
P

(k)
L,rHkφk +

√
P

(k)
L,ddk, each pilot symbol is arranged with the pre-designed phase shift of the
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11

Fig. 2. The proposed three-stage transmission protocol for the RIS-aided wireless system.

RIS, both of which are known at the BS [16]. After removing the effect of the direct channel,

the BS can estimate the channel

√
P

(k)
L,rHk based on the received pilot symbols and phase shift.

With the estimated cascaded channel and direct channel, we can design a reflection pattern of

the RIS to maximize the system throughput, which will be done in the future. According to the

feedback information of the second sub-frame, the RIS controller adjusts the phase shift of each

element to reconfigure the propagation environment for data transmission in the third sub-frame.

The pilot overhead for channel estimation in this transmission protocol scales with the symbol

number and pilot number Np. With too few pilots, the accuracy of CSI cannot fulfill the

requirement of phase shift design and precoding design, while too many pilots will lead to

low SE and data rates. Thus, there is a trade-off between channel estimation accuracy and pilot

overhead. To accurately estimate the channel with relatively low pilot overhead in RIS-aided

multi-user MIMO-OFDM systems, in the next section, we propose a data-driven framework,

i.e., SRDnNet, to tackle this problem.

III. SUPER-RESOLUTION-BASED CHANNEL ESTIMATION

As shown in Fig. 2, the first sub-frame is used to estimate the direct channel when the RIS

is turned off. After performing the channel estimation, we can obtain the CSI of the direct link

dk. A comb-type pilot arrangement is adopted to estimate the cascaded channel. For each user,

the received OFDM symbol at pilot positions can be defined as

Yp=XpGp+vp, (13)

where Gp ∈ C
NP×NBS denotes the superimposed CFRs of the whole channel. Xp = diag(xp) ∈

C
NP×NP is the diagonal matrix of pilot sequence xp, and NP is the number of pilot in each
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OFDM symbol. Yp ∈ C
NP×NBS and vp ∈ C

NP×NBS denote received signals and the additive

noise on pilot positions. With the pilot observations Yp, we can employ analytical methods,

i.e., LS or LMMSE, both of which are derived as benchmarks, to acquire G. After eliminating

the effect of d, we can acquire the cascaded channel H. For simplicity, we only explain the

estimation process of G in the following section.

A. Conventional Channel State Information Estimator

1) LS Estimator: The LS channel estimator finds Ĝ in such a way that can minimize the cost

function. On pilot tones, it is given by

ĜLS
p = argmin

Ĝ

∥∥∥yp − XpĜ
∥∥∥2

= X−1p yp = Gp +X−1p vρ, (14)

where ĜLS
p ∈ C

Np×1 is the estimated channel on positions via LS estimator in each OFDM

symbol. To obtain the channel coefficients on other positions, we need to apply some interpolation

methods, i.e., linear interpolation and cubic spline interpolation [39], [40]. This method does not

need prior knowledge of the channel. Thus the LS estimator has been broadly used.

Then we employ the discrete Fourier transform (DFT)-based channel estimation technique to

further improve the channel estimation performance [41]. We use Ĝ[k] to denote the estimated

channel at k-th subcarrier, the IDFT of the channel estimate is given by

IDFT{Ĝ[k]} = g[n] + z[n]
Δ
= ĝ[n], n = 0, 1, ..., N − 1 (15)

where z[n] denotes the noise component in the time domain. Ignoring the coefficients ĝ[n] that

go beyond the maximum channel delay L which only contains the noise

ĝDFT[n] = g[n] + z[n], n = 0, 1, ..., L− 1 (16)

and transform these L elements back to the frequency domain as

ĜDFT[k] = DFT{ĝDFT[n]}. (17)

The maximum delay L should be known before applying the DFT LS estimator.

2) MMSE Estimator: Unlike the LS estimator where the estimation does not need any prior

knowledge of the channel. The MMSE estimator assumes that the prior probability density

function (PDF) p(G) of the channel has been known. Therefore, according to the Bayesian
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method, the estimation accuracy can be further improved by using prior knowledge and denoted

as

ĜMMSE = E(G|X) =

∫
Gp(G|X)dG, (18)

where p(G|X) = p(X|G)p(G)∫
Gp(G|X)dG

is the posterior PDF of G given X and p(X|G) is the conditional

PDF.

3) LMMSE Estimator: It is noted that the MMSE estimator is infeasible to implement since

we need the PDF of the channel, which is usually impossible to obtain. The LMMSE estimator,

which only needs the second-order statistic, is always used in practice. Considering the solution

of the equation (14), LMMSE estimator can be obtained by using a filtering matrix WLMMSE,

the result is given by

ĜLMMSE = WLMMSEĜLS, (19)

Then, the LMMSE estimator finds an estimate in terms of W in such a way that can minimize

the mean square error(MSE) in the following equation

ε = E{
∥∥∥G−WLMMSEĜLS

∥∥∥2

2
}, (20)

and solve the problem in equation (20) yields

WLMMSE = RGĜLS
(RĜLSĜLS

+
σ2
v

σ2
x

I)−1, (21)

where ĜLS is the LS estimation on pilot tones, RGGLS
= E{GĜ

H

LS} denotes the cross-correlation

matrix between the true channel vector and LS channel estimation vector in the frequency

domain, and RGLSGLS
= E{ĜLSĜ

H
LS} is the autocorrelation matrix of the LS channel estimation

vector. The elements of RGGLS
and RGLSGLS

can be obtained by calculating the exponentially-

decreasing power delay profile. The LMMSE estimator can find a better linear estimation of

the channel matrix by utilizing correlation between different channels on sub-carriers in the

frequency domain.

Note that when the channel is Gaussian-distributed, the optimal MMSE estimator and LMMSE

are uniform [42]. Both can improve the channel estimation accuracy by using the second-order

statistic. However, the cascaded channel in RIS-aided communication systems usually does not

follow the Gaussian distribution due to the phase shift introduced by the RIS. Thus the optimal

MMSE estimator is computationally costly with the calculation of posterior PDF and integration

of real channel, which is always unknown in practice. Besides, the performance of the LMMSE
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estimator has a gap in contrast to the optimal MMSE estimator when channels are not Gaussian-

distributed [42]. To deal with the estimation of the above problem, in the following subsection,

we will adopt data-driven methods to design an adequate model, i.e., the SRDnNet.

B. Image Super-Resolution and Channel Estimation

The objective of this work is to estimate RIS channels by using received pilots. The DL

method’s ideal input and output to deal with pilot-based channel estimation are received pilots

and estimated channels, which do not need to do any operation on these pilots and result in

the least time and computation consumption. In the experiment stage, this method is tough

to implement since the functionality of the model is too complex and the training has never

converged. In this case, an algorithm, the input and output pairs of which are estimated channels

at pilot positions and channel matrix, and only need once division operation on received pilots

and transmitted pilots known at both BS and user sides, becomes an alternative solution.

Recently, SRCNN, which can transform low-resolution images into high-resolution images,

has been proposed to deal with the image SR problem [43]. Image SR problem can be formulated

as

Îh = F (Il; θ), (22)

where Îh is the recovered high-resolution image, Il is the low-resolution and noisy image, and

F is the super-resolution technique parameterized by θ.

Note that the input of the Pilot-based channel estimation method in RIS-aided multi-user

OFDM communication systems is the initial estimation of channels at pilot positions, and the

output is the estimated channel. This method is comparable to the problem formulation (22).

Thus we formulate the problem as an image super-resolution (SR) problem. We consider the

estimation of channels at pilot positions Ĝp,2 the second sub-frame which involves M symbols

Ĝp,2 = Yp,2./Xp,2, (23)

where Ĝp,2 ∈ C
2×Q1×NBS is the low-resolution 2D input image (for the real and the imaginary

value of the inputs), Q1 = NP ×M and NBS are the length and width of the 2D image, M is

the number of symbols in the second sub-frame as shown in Figure 2. Yp,2 ∈ C
2×Q1×NBS and

Xp,2 ∈ C
2×Q1×NBS are received and transmitted pilots in the second sub-frame. The problem of

obtaining an estimation of the whole channel Ĝ ∈ C
2×Q2×NBS can be written as

Ĝ = F (Ĝp,2; θ), (24)
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Fig. 3. The proposed SRDnNet with a concatenation of SRCNN and DnCNN for channel estimation in RIS-aided multi-user

MIMO-OFDM systems.

where Q2 = N×M and NBS are the length and width of the output 2D image. It is noted that Ĝ

contains a cascaded channel, which is knotty to find a close expression of the MMSE estimator.

In this case, we develop a data-driven model, named SRDnNet, to estimate the channel in the

RIS-aided multi-user MIMO-OFDM system.

The size of the input Ĝp,2 ∈ C
2×Q1×NBS can be huge because of the large number of

antennae and symbols. The complexity order of the neural network is directly related to the

input size. The dimension reduction techniques, i.e., principal component analysis (PCA), can

reduce the dimensions of the dataset, computation cost and data transmission overhead [44].

PCA is a popular multivariate approach that transforms the high-dimensional dataset into the

low-dimensional dataset by using only the first several principal components while extracting

the most important information from the dataset. We summarize the PCA method in algorithm

1, where P denotes 2×Q1 ×NBS , Ḋ denotes {Ġ(1)
p,2, ..., Ġ

(Ns)
p,2 }T ∈ C

Ns×P , n is the number of

dimensions of the output low-dimensional dataset. The output is the compressed dataset Dn.

C. The Proposed SR-based Channel Estimation Scheme

Based on the image SR model, the ChannelNet [34] has been developed for channel estimation

but with the following limits: 1) The choice of interpolation methods highly affects the final

performance of this network; 2) After the interpolation at the very beginning, the input size

becomes larger than the raw input Ĝp,2, and significantly increase the computation complexity;

3) The ChannelNet is not an end-to-end model and is trained in two stages.
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Algorithm 1 The principal component analysis (PCA) algorithm

Input: Training dataset D = {Ĝ(1)
p,2, ..., Ĝ

(Ns)
p,2 }T ∈ C

Ns×P; n the number of dimensions of the

low-dimensional dataset.

Step:

1: Calculate mean of all samples Ḡ = 1
Ns

Ns∑
i=1

Ĝ
(i)
p,2 ∈ C

1×P .

2: Centralize all samples Ġ
(i)
p,2 = Ĝ

(i)
p,2 − Ḡ ∈ C

1×P .

3: Calculate covariance matrix S = ḊḊT ∈ C
P×P .

4: Calculate eigenvalues and eigenvectors of S, arrange them in descending order.

5: Select n eigenvectors with n largest eigenvalues to construct Un ∈ C
P×n.

Output: The compressed dataset Dn = DUn ∈ C
Ns×n.

To avoid these drawbacks of ChannelNet, we propose an end-to-end model named SRDnNet,

which is illustrated in Fig. 3. The SRDnNet is a concatenation of SRCNN and DnCNN. To

learn the features of complex input, we adopt two channels at the input layer. The first layer

of SRCNN is the feature extraction and representation layer and can extract features of low-

resolution figures and represent them in high-dimension. The second layer can non-linearly map

each feature map to another high-dimension feature map representing a high-resolution patch.

The third layer can aggregate these patches to generate a high-resolution representation that has

a different size compared with the ground truth channel without the interpolation at the very

beginning. We then use a dense layer and a reshape layer to generate an initial estimation Ĝinit

as the same size as the ground truth channel but not an up-sampling layer as usual. Since the

up-sampling layer is not learnable, the dense layer can be trained and find a learnable method

to aggregate all features to estimate the ground truth. Channels in different transmitted symbols

are not independent because the data transmission is within a coherence time. Each pixel in

the output of the dense layer is related to the high-dimension representation of all estimated

channels at pilot positions. In this case, the SRDnNet can outperform the ChannelNet. In a

word, the SRCNN can extract high-dimensional features from low-resolution image Ĝp,2 and

aggregates these features to recover a high-resolution image Ĝinit. It is noted that the ChannelNet

is a denoising model since the interpolation at the very beginning is not trainable. Meanwhile,

the SRCNN has the capability to find a proper interpolation method beyond linear or polynomial

constraints to improve the interpolation accuracy. We adopt the DnCNN, an efficient denoising
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TABLE I

SETTINGS OF SRDNNET

Input:

estimated channels at pilot positions.

SRCNN:

Layers Filter Size

1 64× (9× 9× 2)

2 32× (1× 1× 64)

3 2× (5× 5× 32)

DnCNN:

Layers Filter Size

1 64× (3× 3× 2)

2∼19 64× (3× 3× 64)

20 2× (3× 3× 64)

Output:

Estimated whole channel.

model verified by academia, cascaded with SRCNN to enhance performance further. The DnCNN

can learn features of the coarse channel matrix generated by SRCNN and the additive noise, its

element-wise subtraction before the output layer could generate an accurate denoised estimation

Ĝ. The hyperparameters of SRDnNet are listed in Table I. All the hyperparameters follow the

default settings in [43] and [45].

1) Offline Training: We define

(X,G) = {(X(1),G(1)), (X(2),G(2)), ..., (X(Ns),G(Ns))} (25)

as training examples, where X(i) and G(i) are the received pilots and real channels in i-th frame,

respectively. To obtain the initially estimated channels at pilot positions as defined in the image

super-resolution (24), we sent X to LS estimator in (14) to generate estimated channels at pilot

positions X̂ and training data set is

(X̂,G) = {(X̂(1),G(1)), (X̂(2),G(2)), ..., (X̂(Ns),G(Ns))}, (26)

where X̂(i) and G(i) are the i-th training sample pair. We denote f(·) as the function of SRDnNet

and the output is

O = f(I,Θ), (27)
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where I and O are the input and output of SRDnNet, Θ is the trainable parameters of SRDnNet.

We adopt the MSE loss function to train the model, which is formulated as

Emse = E(
∥∥∥f(X̂,Θ)−G

∥∥∥2

F
), (28)

where G denotes the estimation and the ground truth of the channel. Formally, the average MSE

between the estimated channel and the ground truth is

�(Θ) =
1

2Ns

Ns∑
i=1

∥∥∥f(X̂(i),Θ)−H(i)
∥∥∥2

F
, (29)

where �(·) is the loss function. Based on this, SRDnNet can update its trainable parameters by

the backpropagation (BP) algorithm to get a well-trained model parameterized by f(I,Θ∗), Θ∗

is well-trained model parameters.

2) Online prediction: We denote

(
�

X,H) = {(�

X
(1)

,G(1)), (
�

X
(2)

,G(2)), ..., (
�

X
(Nt)

,G(Nt))} (30)

as test data set, where
�

X
(i)

and G(i) are estimated channels at pilot positions and ground truth

in i-th test sample, respectively. We send
�

X to f(I,Θ∗), and the estimated channel is

ĜSRDnNet = f(
�

X,Θ∗). (31)

We summarize the SRDnNet-based channel estimation approach in algorithm 2. i denotes the

loop indicator. epoch is the maximum loop number.

Compared with some existing channel estimation methods [26], [31], [46] deriving estimated

channels as inputs, our proposed framework, SRDnNet, can accept rawer input with only one

division operation on received pilots and transmitted pilots with less time and computation

consumption. Based on the proposed SRDnNet with the capability of non-linear interpolation

and denoising, we can estimate the cascaded channel, which does not follow Gaussian distribution

without any prior knowledge of the channel. Inheriting the superior feature extraction and

denoising ability from SRCNN and DnCNN, SRDnNet can accurately estimate channels which

will be validated in the following section.

IV. NUMERICAL RESULTS

In the simulations, the system consists of an NBS-antenna BS, an NM -element RIS and K

single-antenna users, as shown in Fig. 1. Without the further declaration, the RIS can continuously

adjust its phase shift, and the default settings are NBS = 16, NM = 144 and K = 5. A practical
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Algorithm 2 The proposed Channel Estimation with SRDnNet

Initialization: Initialize trainable parameters by HeUniform initializer

Offline Training:

1: Input: Training data set (X̂,G)

2: While i ≤ epoch

3: Update trainable parameters Θ by BP algorithm

4: i = i+ 1

5: Output: Well-trained model f(I,Θ∗)

Online Prediction:

6: Input: Test data set (
�

X,G)

7: Estimate channel by using well-train SRDnNet

8: Output: Estimated channel ĜSRDnNet.

path loss model illustrated in (7) has been considered in the simulation to better formulate the

channels for our considered system. We refer to the parameter Settings for small RISs in the

paper by Tang et al. [38]. In addition, Rician fading for the cascaded channel is formulated in

(1) and (2), and a Rayleigh fading channel model is modeled for the direct channel. Note that (1)

and (2) are general models. By adjusting their Rician factors, this general model can characterize

the LoS channel model when Rician factors are close to the infinite and Rayleigh channel model

when Rician factors are close to zero. Different users are randomly allocated to the area near the

RIS within a range from 3.5m to 15m. The detailed settings of the simulations are summarized

in Table II. Additionally, the second transmission sub-frame consists of 16 OFDM symbols, each

of which consists of N = 64 sub-carriers appended with a CP with the length of Lcp = 8. The

maximum delay spread of both direct and cascaded channels is L = 5. We set γ as 3.5 because

of the long distance and the variety of obstructions in the considered propagation environment.

To evaluate the performance of the SRDnNet, we derive the following estimation methods

as benchmarks: the LMMSE channel estimator, the LS, the DFT LS channel estimator and

the ChannelNet [34]. The proposed neural network SRDnNet adopts the Adam optimizer to

update the network parameters with a learning rate of 0.001 and a batch size of 100 samples.

In total, 10,000 channel realizations for different users are collected at the BS. The training,

validation and testing sample numbers are 6000, 2000, and 2000 respectively. In addition, the
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TABLE II

SIMULATION SETTINGS

Description Settings

The Nearest Distance between users and BS d = 102m

Distance of RIS-BS rr = 100m

The Nearest Distance of User-RIS rt = 3.5m

Rician factor β1 = 10

Rician factor β2 = 10

Width of Reflecting elements dx = 0.012m

Length of Reflecting elements dy = 0.012m

Antenna gain of Reflecting elements G = 8dB

Antenna gain of Transmitter Gt = 21dB

Antenna gain of Receiver Gr = 21dB

SNR is defined as SNR = Eb

N0
, in which Eb is the energy of each user data bit and N0 is the

noise spectral density. In the following, we will illustrate the performance of the SRDnNet in

terms of normalized MSE (NMSE) defined as NMSE =
E(‖G−ĜSRDnNet‖2

F
)

E(‖G‖2F )
, where ĜSRDnNet

and G denote the channel estimated by a well-trained SRDnNet and the ground truth channel,

respectively.

A. NMSE versus SNR

As shown in Fig. 2, we train two models for the first and second sub-frame to obtain the

direct and whole channels, which is the superposition of the direct and cascaded channels. Then

we calculate the cascaded channel by estimating the direct and the whole channel. Simulation

results under different SNRs for the whole channel and direct channel are presented in Fig. 4

and Fig. 5a, Fig. 5b shows the NMSEs after calculation of the cascaded channel. The cascaded

channel is not a Gaussian-distributed channel. Thus it is not easy to find the posterior PDF to

design a closed-form expression for the MMSE estimator. Only the LMMSE estimator (21) can

be derived to obtain an estimated channel based on the exponentially-decreasing power delay

profile. As shown in Fig. 4, Fig. 5a, and Fig. 5b, the performance of all estimators decreases

with the enhancement of SNR since the impact of noise can be mitigated by higher transmit

power. In the following, we will analyze the simulation results of conventional methods and

DL-based methods.
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Fig. 4. NMSE performance for the whole channel with different SNRs under 32 pilots, NBS = 16,M = 144 and K = 5.
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(a) The direct channel
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(b) The cascaded channel

Fig. 5. NMSE performance for the direct and cascaded channel with different SNRs under 32 pilots.

First, we investigate the estimation performance of the LS, DFT LS, and LMMSE estimator in

terms of NMSE. It can be seen that LMMSE significantly outperforms the LS method. The reason

is that the LMMSE can utilize the second-order statistical knowledge of the channel, and the

LS estimator could only estimate unknown but deterministic constants without prior knowledge.

In contrast to the LS, the DFT LS estimator can reduce the noise effect by removing channel

coefficients beyond the maximum channel length, which only contains noise, to improve the

channel estimation performance. It is shown that the DFT LS estimator significantly outperforms

the LS method but is still worse than the LMMSE estimator.
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Fig. 6. NMSE performance for the whole channel under SNR = 5dB, 32 pilots, NBS = 16 and K = 5.

Second, we will discuss the performance of DL-based methods, i.e., ChannelNet and SRDnNet.

It is noticed that the ChannelNet is comparable to the LMMSE and DFT LS estimator since

the ChannelNet is a denoising model for the LS estimator as the same as these two estimators.

Another reason is that the ChannelNet is not trained in an end-to-end manner. In contrast, the

SRDnNet can learn a non-linear interpolation method to improve channel estimation accuracy

and perform better. For example, in Fig. 4, the SRDnNet achieves a performance gain of 13 dB

at 10 dB SNR compared with the LMMSE estimator and 12 dB compared with the ChannelNet.

The reason is the SRDnNet has the capability of non-linear mapping a low-resolution image

into a high-resolution image and learning the distinguishable features of the additive noise to

improve the channel estimation accuracy.

Simulation results for the direct channel are shown in Fig. 5a, and with the estimated direct

and whole channel, we can calculate and obtain the cascaded channel as shown in Fig. 5b. Fig.

5a shows that SRDnNet can achieve the best channel estimation performance compared with

benchmarks. In Fig. 5b, it is noted that the estimation error of the direct channel and whole

channel accumulate in the calculation of the cascaded channel. For example, in Fig. 5a and Fig.

4, the channel estimation performance gaps in terms of NMSE for SRDnNet and LMMSE at 10

dB SNR are -38dB and -38.1dB, but in Fig. 5b the NMSE performance of the cascaded channel

is -35dB. In comparison, the performance gap between the SRDnNet and LMMSE remains

13dB, which shows the optimality of SRDnNet.
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B. NMSE versus Number of Element, Antenna and Pilot

Note that the number of elements, antennas, and pilots in each OFDM symbol is also an

important parameter that can affect channel estimation accuracy. To further verify the scalability

of SRDnNet in different communication scenarios, simulations are conducted to evaluate the

estimation performance with different system settings. For simplicity, we only demonstrate the

NMSE performance on the estimation of the whole channel in the following, the accumulation of

channel estimation error of the whole channel and direct channel on the cascaded channel remains

similar to Fig. 4 and Fig. 5. As shown in Fig. 6, the NMSE performance is not sensitive to the

change in the number of elements denoted byM . The reason is that in our system model (6), the

dimensionality of channels to be estimated is a constant no matter M changes; thus, the size of

input pairs (26) remains the same. Based on this, the NMSE performance of these considered

methods just slightly changes as the increase of M . In addition, our proposed SRDnNet still

achieves the best performance because of its superiority in non-linear interpolation and denoising.

The NMSE performance gap between SRDnNet and ChannelNet is 13.6dB under 128 elements.

Besides M , the number of antennae denoted by NBS , which determines channel dimension,

also impacts the channel estimation performance. Therefore we investigate the NMSE perfor-

mance with the increase of NBS and demonstrate it in Fig. 7. It is noted that NMSEs of analytical

channel estimators, i.e., the LS, DFT LS, and LMMSE estimator, do not change with the increase

of NBS , while NMSEs of DL-based estimators, i.e., the ChannelNet and SRDnNet decrease. This

is because, in the simulation, we separately estimate the channels of each antenna and average

their performance. In this case, the received signal power of each antenna does not change, and

the NMSEs remain almost constant. For the DL-based estimators, and the input data contains

received signals from all antennas, the input data size and received signal power become larger

with the increase of NBS . Thus the NMSEs for DL-based estimators decrease when adding

more antennae to the BS. The SRDnNet works with the best-performing in terms of NMSE.

Moreover, the pilot number can directly affect the dimension of input data size for DL-based

estimators and consequently affect the channel estimation performance of DL-based estimators.

As illustrated in Fig. 8, the performance of all considered algorithms decreases as the number of

pilots increases as expected. This is because, for those analytical estimators, i.e., the LS, DFT

LS and LMMSE, the interpolation accuracy will increase with more received pilots. For DL-

based estimators, the ChannelNet and SRDnNet, convolutional neural networks can exploit more
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Fig. 7. NMSE performance for the whole channel under SNR = 5dB, 32 pilots, M = 144 and K = 5.
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Fig. 8. NMSE performance for the whole channel with different pilots under SNR = 5dB, NBS = 16, M = 144 and K = 5.

spatial features from larger input data and improve their performance. The simulation results of

the line PCA compressed data adopt PCA to generate the compressed input of the SRDnNet

and the compression ratio is fifty percent leading to a significant reduction in complexity order.

However, the performance of the PCA compressed data is worse than the SRDnNet. Because the

PCA extracts low-dimensional data as well as eliminates part of the useful information in the

input dataset. Fig. 8 shows the superiority of SRDnNet in non-linear interpolation and denoising.

For example, with only four pilots in each OFDM symbol, SRDnNet can still achieve NMSE

performance gain of -27.5dB, -15.4dB for ChannelNet and -11.3dB for LMMSE. Moreover, this
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simulation result shows that our proposed DL-based estimator can still achieve high channel

estimation accuracy even with a few pilots under a relatively low SNR.

C. Complexity Analysis

We further investigate the computation complexity of the SRDnNet. Table I summarizes the

parameters of each convolutional layer. The complexity of the convolutional layer is

CCL = O(WxWyF
2NINO), (32)

where Wx and Wy are the length and width of output feature maps, F is the length of the side

of filters, and NI and NO are the number of input and output feature maps, respectively. Thus

the complexity of SRCNN (without the dense layer) is

CSR = O(2 ·NBS ·NP ·M(92 · 2 · 64 + 12 · 64 · 32 + 52 · 32 · 2))

= O(128 · 219 ·NBS ·NP ·M),
(33)

where NP is the pilot number in each OFDM symbol, and M is the number of symbols in the

second sub-frame. And the complexity of DnCNN and the output layer becomes approximately

CDn = O(2 ·NBS ·N ·M(32 · 2 · 64 · 2 + 32 · 64 · 64 · 18))

≈ O((6 · 192)2 ·NBS ·N ·M),
(34)

The time complexity of the fully connected layer is

CFC = O(IxIyNFC), (35)

where Ix and Iy are the input size, NFC is the number of units of the fully connected layer,

respectively. Therefore the complexity of the fully connected layers is approximately

CFC ≈ O(2 ·NBS ·N ·M · 1024) = O(2048 ·NBS ·N ·M), (36)

The total time complexity of the SRDnNet is C = CSR + CDn + CFC , which approximately is

C = CSR + CDn + CFC

= O(((6 · 192)2 + 2048) ·NBS ·N ·M + 128 · 219 ·NBS ·NP ·M).
(37)

The bicubic interpolation method can be formulated as a convolutional layer. The time complexity

of the bicubic interpolation is

CB = O(2 ·NBS ·NP ·M(42 · 2 · 64))

= O(4096 ·NBS ·NP ·M).
(38)
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Fig. 9. Complexity order for the LMMSE, LS and the SDRnNet with NP = 32 and NS = 64.

The total time complexity of the ChannelNet is

CCN = CSR + CDn + CB
= O(((6 · 192)2 + 4096) ·NBS ·N ·M + 128 · 219 ·NBS ·NP ·M).

(39)

It is obvious that CB > CFC . Thus the total time complexity of the SRDnNet is less than that

of the ChannelNet.

The time complexity of the LMMSE and LS estimators are O(NBS · (N ·M)3) and O(NBS ·
N · M) [47]. Fig.9 shows the time complexity of the proposed SRDnNet, LMMSE and LS

with respect to NBS · N . It is shown that the SRDnNet has higher complexity than the LS

estimator. As the number of channel dimensions, i.e., NBS ·N increases, the complexity of the

LMMSE estimator becomes close to that of the SRDnNet, and it becomes larger approximately

after NBS ·N ≥ 1200. While it seems that the complexity of the SRDnNet is comparable to the

LMMSE estimator, the SRDnNet can run efficiently on GPUs, which can significantly reduce the

testing time [48]. However, implementing the LMMSE and LS estimators is not straightforwardly

supported by graphics processing units (GPUs) and requires an application-specific processor.

Although the proposed SRDnNet involves higher computational complexity than the LS and

LMMSE estimators, the required running time of the SRDnNet can be reduced by the parallel

computing of a GPU. This conclusion can be verified in Table III, where each method runs on

a desktop computer with an i9-9940X 3.30 GHz central processing unit (CPU) and an Nvidia

GeForce RTX 2080Ti GPU.
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TABLE III

COMPUTATION TIME OF DIFFERENT ESTIMATION METHODS

Method Prediction Time

LS 4.01× 10−4s

LMMSE 2.12× 10−2s

SRDnNet 1.61× 10−2s

V. CONCLUSION

This paper proposed a deep learning (DL)-based method to accurately perform channel es-

timation in a reconfigurable intelligent surface (RIS)-aided multi-user multiple-input multiple-

output (MIMO)-orthogonal frequency division multiplexing (OFDM) system. We formulated

channel estimation as an image super-resolution (SR) problem and proposed an image super-

resolution network, named SRDnNet to recover the channel matrix from the coarse estimation

of channels. By inheriting the abilities of the revised super-resolution convolutional neural

network (SRCNN) and the denoising convolutional neural network (DnCNN) in feature extraction

and denoising, the SRDnNet can further improve the channel estimation performance. We

evaluated the performance of the proposed approach via different signal-to-noise ratios (SNRs),

number of elements, antennae, and pilots. Simulation results demonstrated that the proposed

SRDnNet outperforms analytical channel estimators and DL-based methods with more than 10

dB performance gain in terms of the normalized mean square error (NMSE). We showed that

at least 8 pilots were required for reliable channel estimation performance under 5dB SNR.

Furthermore, the proposed SRDnNet can reduce the size of input data and the computation cost

for channel estimation in complicated scenarios.
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