1910.05054v1 [cs.LG] 11 Oct 2019

arxXiv

Green Deep Reinforcement Learning for Radio
Resource Management: Architecture, Algorithm
Compression and Challenge

Zhiyong Du, Yansha Deng, Weisi Guo, Arumugam Nallanathan /EEE Fellow, Qihui Wu

Abstract—ALl heralds a step-change in the performance and
capability of wireless networks and other critical infrastructures.
However, it may also cause irreversible environmental damage
due to their high energy consumption. Here, we address this
challenge in the context of 5G and beyond, where there is a
complexity explosion in radio resource management (RRM). On
the one hand, deep reinforcement learning (DRL) provides a
powerful tool for scalable optimization for high dimensional
RRM problems in a dynamic environment. On the other hand,
DRL algorithms consume a high amount of energy over time and
risk compromising progress made in green radio research.

This paper reviews and analyzes how to achieve green DRL
for RRM via both architecture and algorithm innovations.
Architecturally, a “cloud based training and distributed decision-
making” DRL scheme is proposed, where RRM entities can
make lightweight deep local decisions whilst assisted by on-
cloud training and updating. On the algorithm level, compression
approaches are introduced for both deep neural networks and
the underlying Markov Decision Processes, enabling accurate
low-dimensional representations of challenges. To scale learning
across geographic areas, a spatial transfer learning scheme is
proposed to further promote the learning efficiency of distributed
DRL entities by exploiting the traffic demand correlations.
Together, our proposed architecture and algorithms provide a
vision for green and on-demand DRL capability.

I. INTRODUCTION

Future Al driven automation of wireless networks and
other critical infrastructures will bring about a step change in
their ability to create efficient, resilient, and also user-centric
services. However, the very same algorithms may also cause
irreversible environmental damage due to their high energy
consumption and lead to serious global sustainability issues.

The wireless ICT industry is one of the fastest growing
carbon emission industries, and will millions of base stations
and billions of smart phones deployed worldwide. To meet
the rapidly increasing traffic volume and demand diversity
across network slices, 5G and beyond mobile networks are
expected to introduce a number of fundamental innovations
apart from PHY and MAC layer technology enhancements.
To allow for centralized and large-scale network coordinated
optimization, software defined network (SDN) and network

Zhiyong Du is with National University of Defense Technology, Changsha,
China. Yansha Deng is with Kings College London, London, United Kingdom.
Weisi Guo is with Cranfield University, Bedford, United Kingdom and Alan
Turing Institute, London, United Kingdom. Arumugam Nallanathan is with
Queen Mary University of London, London, United Kingdom. Qihui Wu is
with Nanjing University of Aeronautics and Astronautics, Nanjing, China.

This paper is partly funded by EC H2020 grant 778305 and NSF of China
under Grants 61601490. *Corresponding Author: wguo@turing.ac.uk

function visualization (NFV) have been proposed to optimize
both the radio access network and mobile core network by
integrating data analytics and cloud control. On the other
hand, vertical industries, such as manufacturing, automotive
and health-care, erc., will impose diverse performance and
experience requirements on the latency, throughput, and reli-
ability. This brings the need to evolve beyond cognitive radio
towards an artificially intelligent (AI) resource optimization
ecosystem to support more fine-grained user-centric service
provision (see 3GPP Release 16 TR37.816). This becomes
more challenging in highly dynamic environments involving
UAV 3D heterogeneous channels. As a result, radio resource
management (RRM) is becoming increasingly complex and
high dimensional parameter optimization could be a concern.

The growing complexity problem in wireless ecosystems
cannot be solved in a scalable manner by the traditional opti-
mization approaches, such as dynamic programming, convex
optimization, efc., as they predominantly work on the premise
that a known optimization model is available. Recently, the
success of deep reinforcement learning (DRL) has opened
new pathways to scalable optimization for high dimensional
problems in wireless communications and networks. DRL
retains the model-free optimization capability of traditional
reinforcement learning (RL), suitable for dynamic and online
RRM. Meanwhile, in DRL, deep neural network (DNN) is
used to approximate policy or value functions for large-scale
RL problem, overcoming the intrinsic scalability issue of
traditional tabular RL approaches. Specifically, the powerful
function approximation and representation learning properties
[1] of DNN empower RL with robust and high efficient
learning. The application of DRL in 5G and beyond [[2] shows
great promise and is receiving more and more attention in the
community at both the PHY and MAC layer

Most existing RRM solutions applied in RRM use off-the-
shelf algorithms with little consideration on the RRM feature
set. Different from supervised DL applications, where a large
amount of samples are available in advance for training, the
training samples in DRL can be only generated from the
interaction between the RL agent and the wireless network
environment. In particular, since one interaction iteration in
RRM commonly involves parameter configuration and feed-
back acquisition, the time penalty is not negligible.

A growing concern in the machine learning community

I'see IEEE ComSoc Best Reading: https://www.comsoc.org/publications/best-
readings/machine-learning-communications

is the high energy consumption in DRL. A common DNN
consists of several stacked layers of neurons with tens or
up to hundreds of millions of weights. Such a large number
of parameters will generate high computational burden and
memory access processes during both training and inference
stages. Even sufficient computation capability is provided, the
resulting energy consumption is unacceptable for reinforce-
ment learning, especially in battery-constrained devices and
areas that do not have access to green electricity supply.
For example, smartphones nowadays cannot even run object
classification with AlexNet in real-time for more than an hour
(3]

In view of these challenges, this paper studies how to
achieve green DRL for RRM. First, we review the state-
of-the-art in Section II. In Section III, we envision an ef-
ficient DRL architecture for RRM and outline both archi-
tectural design improvements and algorithmic methodological
advances. To provide RRM entities with affordable and on-
demand DRL capability, a “cloud based training and dis-
tributed decision-making” architecture is proposed, balancing
distributed decision-making with cloud based training and
updating. In Section IV, to reduce the computation and energy
consumption in DRL algorithms, several algorithm compres-
sion approaches are introduced, including deep neural network
compression, MDP model compression and spatial transfer
learning scheme. Finally, some challenges are analyzed in
Section V.

II. STATE OF THE ART
A. RRM Formulation

To apply DRL to RRM, it is necessary to map the considered
problem into an appropriate DRL model. The core elements
of DRL are: (i) state, (ii) action, (iii) reward, (iv) a model
of environment dynamics, (v) policy and (vii) DNN imple-
mentation [1]. The former four elements define the underling
Markov Decision Process (MDP) of RL. Specifically, a learner
or agent interacts with environment at discrete time epochs
t=20,1,2,... as follows:

o Each time the agent observes some representation s; € S
of the environment state, where S is the set of states, it
selects an action a; from the action set A;

e At the beginning of the next time epoch ¢ 4+ 1, the
agent receives a delayed numerical reward r; and the
environment state evolves to state S;¢41;

The goal is to find a policy 7 (s, a) that maps states to proba-
bilities of selecting each possible action in order to maximize
the expected sum of the discounted rewards E [>,° o A'ry].
The parameter F, is the expectation under policy 7, and
0 < A <1 is a discount factor. In absence of the information
on the environment dynamics, i.e., p(s'|s,a), s, s € S,
which is common in wireless network applications, tradi-
tional dynamic programming is intractable in solving MDP.
Alternately, RL algorithms are proposed to learn the optimal
policy from interaction without a model of the environment
dynamics. The DNN is used to approximate the optimal policy
or value function for large-scale RL problems.

To support the ambitious goal of 5G and beyond mo-
bile networks, the general RRM problem can be seen as
“realizing context-aware optimization to maximize expected
accumulative target KPI such as system QoS or user QoE”.
From this perspective, the mapping between DRL and RRM
optimization can be constructed as follows. The communica-
tion contexts that specify the situation of user and networks
corresponds to states, which may include user profile (location,
user demand, mobility pattern, efc.), spectrum environment
(spectrum usage, interference), link state (wireless channel
gain, data rate, reliability), network state (traffic distribution,
packet buffer of nodes, available slice resource, power and
energy consumption, etc.), application information (content
cache) and configuration parameters. The target configuration
parameters in the considered problem are the actions. The
user QoE and/or system KPI achieved in each decision epoch
is the instant reward. In some scenarios, it is impractical to
observe complete state information. For example, the instant
quality state of all channels or traffic generation dynamics
of all terminals are hard to acquire. This results in a more
challenging RL problem under the partially observable Markov
decision process (POMDP) model.

B. DRL Design

Different variations of DRL algorithms have been intro-
duced for RRM, where the RL mechanism and the architecture
of DNN largely determine the characteristics of DRL.

1) Reinforcement Learning Mechanism: The RL mecha-
nisms in DRL can be broadly classified into three types [1]]:
value function based method, policy based method, and actor-
critic method.

In value function based methods, the action-value function
Q7 (s,a) defined by the long-term return when starting in
state s with action a and following policy 7 subsequently, are
estimated and the optimal action(s) for each state correspond to
the one(s) with the largest action-value. In policy based DRL,
a DNN is used to directly derive the stochastic policy, i.e.,
mapping input state vector to selection probability distribution
over all actions. Searching the optimal policy can be gradient-
free or gradient-based methods. Note that one advantage of
policy based method is that it can handle continuous action,
which may be preferred for possible continuous parameters,
such as power control, location and distance optimization. In
this context, the output are the mean and standard deviations
of Gaussian distribution. Finally, the actor-critic method is a
combination of the above two methods: the state value function
is introduced to generate feedback for policy gradient. There
are different deep actor-critic algorithm variations, one of most
widely used is the asynchronous advantage actor-critic (A3C)
that could even run on parallel and asynchronously.

2) Neural Network Architecture and Relation to RRM Prob-
lems: DNNs are used to exploit the potential correlation of
states, actions and policies for efficient approximation of high-
dimensional RL problem. Three typical deep neural network
(DNN) architectures are widely used.

The first type is full comnection, where each neuron in
hidden layers is connected with all neurons in the previous

TABLE I
RELATED WORK IN USING DRL FOR RESOURCE MANAGEMENT.

Related Work State

Action DNN RL Mechanism

historical number of idle, collided

Random Access Control [4] and successful channels

number of allocated RACH,

. value function
preambles and repetition values

full connection

require load and interference values;

Power Control [5], [6] RSS measurements

power allocation (continuous);
power allocation (discrete)

convolution layer;
full connection

policy based;
value function

selected channel, capacity and ACK;

Spectrum Sharing (7}-{9) selected channels and conditions

recursion connection;

. value function
full connection

selected channel

active/sleep state and traffic

Coverage & Connectivity [10] demand of radio heads

on/sleep of radio head full connection value function

Mobility Management [11] RSRQs of all cells and serving cell

selected cell recursion connection actor-critic

number of arriving packets in slices;

Slice Management [12], [13] number of slices of each class

allocated bandwidth to slices;

e 1 value function
access control of slices

full connection

and next layers. It is a deep version of traditional multi-layer
perceptron and is commonly used in combination with feature
detection layers.

The second type is convolution layer. A neuron in a
convolution layer is connected to local patches in the feature
maps of the previous layer sharing the same weight. The
operation of convolution can be seen as a filter to local
groups, which is suitable for array data processing and has the
advantage of detecting spatial correlation of states in resource
management problems. For example, exploring geography-
dependent correlated shadowing, channel gains or complex
spectrum interference patterns to enhance spectrum allocation,
and extracting temporal-spatial traffic demand distribution for
on-demand schedule. Instead of using complex convolutional
neural network (CNN), the application of convolution archi-
tecture in DRL is relatively flexible, i.e., it is only used as a
lightweight feature extraction layer.

The third type is recursive connection specialized for pro-
cessing sequential data. The recursion means neurons also take
other neurons’ outputs at previous time steps as inputs, to
store history information for predicting future output of the
sequential data. The popular recurrent neural network (RNN)
can predict user behaviors in wireless communication. For
example, the content or application request data can be trained
to predict service request to achieve personalized service pro-
visioning. In addition, RNN can predict user mobility pattern
to improve small cell handover in mobility management.

There are also some RNN variations with memory network
architecture that is suitable for longer memory requirement
cases, such as long short term memory (LSTM) network.

C. Case Study: RACH Access for Massive loT

In the following, a case study in random access is briefly
illustrated. In cellular networks, the base station can observe
the transmission receptions of both Random Access CHannel
(RACH) and data transmission at the end of each time slot,
which can be used to predict the traffic and facilitate the perfor-
mance optimization of future time slots. The complexity of the
problem is compounded by the lack of a prior knowledge at the
base station regarding the stochastic traffic and unobservable
channel statistics. RL based on tabular-Q is not feasible for
multi-parameter multi-group dynamic optimization in Narrow-
Band IoT (NB-IoT) networks as shown in our work [4] due to

7] 60 7
8 — Doy
= = LE-URC
c
el
g 201
O
w2
0 200 400 600 800
TTIs
(b)
20301
s
z
20251
(]
2
£0.201
>
z
0.] 5 1 T T T T T T T
0 2 4 6 8 10 12
Hours

Fig. 1. The number of successfully served devices and the convergence speed.

the large memory and high computation complexity required
for the state-action value table, and the difficulty for the agent
to repeatedly experience every state to achieve convergence
within a limited time.

This motivates the application of RL based on Linear
Approximation (LA-Q) and DRL based on deep neural net-
work (DQN) at the BS with guaranteed convergence capa-
bility within largely reduced training time. With the target
of maximizing the long-term average number of devices that
successfully transmit data, our results in Fig. [l|shown that both
the DQN and LA-Q approaches outperform the conventional
heuristic approaches based on load estimation (LE-URC)
in current literature. More importantly, our proposed DQN
approach outperforms our LA-Q approach in terms of the
number of success devices with much less training time.

The detailed mapping of DRL on RRM depends on specific
problems and scenarios. A brief summary covering typical
RRM issues is presented in Table [l As we have mentioned
in Section I, the intensive computation complexity and energy
consumption could hinder the application of DRL in future

Edge Floud.

\ | Mobile Core
i Network 1

[DRL-RMA ||

\
Internet \

\
: ~
~N
N
N
Mobile Core AN 5
AN

Network 3
AN ~

oS i
Ve
/ /Switcher -}/Moblle Core

as running entities

~A

[Network 2

Swweherx

ﬁ / /\\ \
AR

\ N
\S<vi che\\ \
\ \
Individual eNodeBs as
running entities

CNCs as running
entities

CNC\

Fig. 2. DRL based RRM providing “DRL as a service” via: (1) service provider, (2) consumer entity, and (3) running entity. A third-party service provider
runs and maintains DRL based resource management agent (DRL-RMA) on cloud, which could be either edge cloud in proximity of radio nodes, core cloud

or remote cloud in Internet.

wireless networks. In addition, the features of RRM and
networks are not fully investigated.

III. EFFICIENT DRL ARCHITECTURE FOR RRM

To make DRL based RRM green, we envision a flexible
cloud based DRL architecture for mobile networks.

A. Cloud based On-Demand DRL

For traditional DL applications such as computer vision,
DNN is trained and ran on centralized hardware resource
(such as GPU and TPU). For RRM tasks, the running entities
of bases stations or terminal devices could hardly afford
the fee for sufficient computation resource deployment nor
the associated energy consumption. Moreover, different from
offline supervised training, training samples in RRM can be
only generated from the interaction between RL agent and the
environment and the instant reward feedback could be delayed
and even could not be explicitly derived. For this reason,
centralized and computation-intense DRL running architecture
is not suitable for RRM. Instead, we proposed to decouple the
DRL task and run it in a distributed and online manner to
improve its efficiency and flexibility.

In order to benefit various types of devices including those
that can not afford the computing capability on his own, we
envision a “DRL as a service” approach by exploiting the
benefits from cloud computing resources, as shown in Fig. 2]
Three roles are involved: (i) service provider, (ii) consumer
entity, and (iii) running entity. A third-party service provider
runs and maintains DRL based resource management agent
(DRL-RMA) on cloud, which could be either edge cloud
in proximity of radio nodes, core cloud or remote cloud in
Internet. The service provider leases resource management ser-
vice to different types of consumers by providing on-demand

service via DRL-RMA. The introduction of virtualization to
5G has led to three different actors in networks: infrastructure
provider, tenant, and the end-user. Infrastructure providers
own and manage their physical networks and lease virtualized
resources to tenants, and tenants offer network services to
users using virtualized resources. Accordingly, infrastructure
providers, tenants and users can be the DRL resource manage-
ment consumers, depending on network deployments, business
models (C2B, B2B), data-generation and processing pipelines,
and demands. The running entities are devices that actually run
RRM guided by DRL-RMA. For infrastructure providers and
tenants, running entities can be a base station, CNC of dense
cells, or even user equipments (UEs). While for users, running
entities are their UEs, such as smart phones or tablets.

B. Information Flow & Learning Process

The general information flow of DRL service can be de-
scribed as follows. When a consumer sends a service re-
quest for resource management to the DRL-RMA, a DRL
optimization process (DRL-OP) will be instantiated on the
cloud with some necessary negotiation process. This process is
responsible for ascertaining the requirements of the consumers,
the problem mapping method, targeted running entities, DRL
algorithm and other related parameters and requirements. After
that, the DRL-RMA will allocate appropriate storage and
computing resources and configure DRL algorithm for the
DRL-OP. Finally, the DRL-OP will establish a connection
with the specified running entities and guide their resource
management.

Different from the agent-environment interactive loop of the
DRL, the introduction of cloud results in two loops as shown in
Fig. B The inner loop is the running entity-environment inter-
action similar to that of DRL running locally. The additional

1

[}

. User profile |

: * Spectrum 1

| environment (traini d I

1|* Network state r":“n_mgva“ 1
1|+ Application > optimization of 2
] 1 information cloud DNNs : =
B - : + Configuration approximation | | B o
P
@ g . parameters X 2%
Lwn 1 ! 2
Q “6 ----------------------------- - Q. 9
N £ g
S8t ! SE
© ! o
o I ©
\ a

2
) = SO . —
5 s R : 2
ol (2 e A 1 z
@ < = 3]
= O c 3 1 c =
© s e il 6 S
a8 Q5 LS S
E) E ®
=} [=}
E S 2
g Wireless and Network i
g : <+«— 3
Environment -

<+——— message exchange <4 interaction/influence

Fig. 3. The interactive DRL loops.

outer loop is the message exchange between running entity
and DRL-OP. Notably, as the training, optimization of neural
networks and other computing-intensive operations are on the
cloud, there is a special requirement on the optimization of
DRL: mini-batch gradient descent rather than stochastic gradi-
ent descent is used to train deep neural networks. The reason
is that stochastic gradient descent generally update gradient
in a sample by sample manner, thus it may incur excessive
message exchange cost between running entity and DRL-OP,
especial for resource management problems with high decision
frequency. On the contrary, mini-batch gradient descent allows
for accumulating a set of samples for each update, which
achieves a fair balance between message exchange cost and
algorithm update frequency. More specifically, in each iteration
of the outer loop, the DRL-OP sends a copy of latest neural
networks’ parameters (e.g., weight vectors) to the running
entity; the running entity follows the recommended policy, i.e.,
updating a local neural network with the received parameters,
and makes decisions with forward propagation computation for
multiple interactions of inner loop; at the end of outer loop
iteration, the running entity sends the accumulated samples
(i.e., bath of samples) of “state-action-reward” pairs to the
DRL-OP for training. Obviously, one iteration of outer loop
corresponds to multiple inner loop iterations.

In addition, different from DRL in computer games where
learning samples could be easily generated, the samples are
collected from the practical interaction between RRM entities
and the wireless and network environment under the control of
RL, which incurs more time and energy costs. This indicates
that we actually have to employ incremental learning rather
than one-shot training in DL. This is the reason why mini-
batch of data samples are sent to the cloud periodically. To
alleviate communication cost, both the sample batch and pa-
rameters of DNNs can be compressed to reduce the bandwidth
requirement during the learning process.

This DRL as a service approach has several advantages.
First, it provides flexible and on-demand resource management

service for different consumers. Second, it offers devices
with limited computation and battery capability a powerful
optimization tool for parameter configuration. Third, it has
limited influence on the network and traffic, as the service
can be deployed in existing legacy cloud without additional
infrastructure changes.

IV. REDUCING DRL COMPLEXITY & ENERGY VIA
ALGORITHM COMPRESSION

In our previous section, we outlined an architecture that en-
ables flexible on-demand RRM, but the computation complex-
ity and energy consumption for DRL remain open challenges
that are central to this paper. The size of DRL model largely
determines the numbers of required operations and data access,
which eventually determines the computation complexity and
associated energy consumption. Thus, reducing the DRL algo-
rithm size is crucial for cutting down computation complexity
and energy consumption. In other words, we can compress
the learning model to achieve a similar performance with
significantly reduced parameters and energy consumption.

DRL can be treated as a combination of RL and DNN,
where the former is responsible for the trade-off between
exploitation and exploration in online RRM optimization,
the latter is responsible for approximating policy or value
functions for the former. The involving of RL loop in DNN
indicates that the overall algorithm complexity is jointly de-
termined by DNN and the underlying MDP in RL. Here, to
achieve lightweight and energy-efficient DRL, we introduce
to compress algorithm from three aspects: DNN model, MDP
model and learning process.

A. DNN Compression

The required operations and data access overhead in both
training and inference of DNN are highly related with the
numbers of neurons and the associated weights in it, ie., a
larger model size leads to higher energy consumption. Due to
the lack of theoretical results on the optimal DNN architecture
EL current DNN in DRL application is generally designed
based on experience, commonly resulting in a large model
size and complexity than necessary. Nevertheless, previous
studies have revealed that neural networks are typically over-
parameterized, and there is significant redundancy that can
be exploited [14]. Therefore, it is possible to achieve similar
function approximation performance by removing redundant
network architecture (pruning the network as shown in Fig.
M) and only retaining useful parts with greatly reduced model
size.

There are several typical ways on compressing DNN by
exploiting sparsity in neural networks. One method is reducing
the number of parameters. This could be achieved by removing
the number of connections/weights, e.g., weights smaller than
some predefined threshold are removed, or pruning filters, i.e.,
removing redundant neurons and connections simultaneously.
The second method is architectural innovations, such as re-
placing fully-connected layers with convolutional layers that

2Neuroevolution deep learning does offer a numerical pathway to finding
optimal architectures

/" DNN Approximation for,
: Value Functions in RL
i - user profile § o

apin oX7PY Py
! - network state XAXNEON
| o

i DN
| compression
E e

- application OKREXC XX

information ;?@,.4,‘\‘504/‘

- configuration ."0‘\\ M /
X

parameters

X2

p

functions

samples
RL Decision-Making
Algorithms

Reward
feedback

Tra?ri{rig """""" "Efc;l};’y/\/a|ue

! MDP state
i abstraction

|

O
Model Wireless and
\.Network Dynamics via MDP

Fig. 4. DNN and MDP compression.

is relatively more compact. Another method is weight quanti-
zation, i.e., reducing the precision of weights. For example, we
can use 8-bit width integer rather than conventional 16-bit or
32-bit width floating-point number to store weights. Already,
some of the aforementioned DNN compression practices have
emerged in recent mobile deep learning applications.

B. MDP Compression

RL is commonly formulated under the framework of MDP
or POMDP. The size of MDP is directly determined by the
state and action spaces, which grow super-polynomially with
the number of variables that characterize the domain. To
support fine-grained RRM, we have to adopt high-resolution
communication context to accommodate context-aware opti-
mization, which often results in a large-scale MDP model. On
the other hand, small model is always desired for improving
energy-efficiency: a small state space will lessen the data
storage space of samples and memory access cost in DNN
training, and incur less exploration cost in terms of energy and
time as sufficiently sampling the states is the intrinsic require-
ment of RL. Therefore, balancing the context characterization
performance and model complexity is needed. For POMDP,
in order to reduce the high dimensionality of the problem,
hierarchical action space methods can be used to approximate
the POMDP problem, achieving a scalable compression.

Considering that most DRL applications use discrete states
and actions in DNN, we can compress MDP model in two
stages. At the beginning of MDP modelling, we can appro-
priately choose the definitions of state and/or action to adjust
their resolution. For example, when RSS is one dimension
of state or transmit power constitutes action space, we could
use a limit number of discretized levels to approximate their
dynamic range with controlled performance loss. Besides,
during the learning process, the size of MDP model can be
further reduced by aggregating identical or similar states as

SON BS
Demand in
Slices

Spatial /.
Kernel e
SON BS

Fig. 5. Spatial transfer learning among self-organization base stations.

shown in Fig. 4] allowing us to reduce learning complexity
with bounded loss of optimality [15]. The similarity of states
can be measured in terms of optimal Q function, reward and
state transitions, Boltzmann distributions on Q values and etc..

C. Improving Joint Efficiency via Spatial Transfer Learning

Different from supervise learning tasks, the training samples
in DRL can be only generated from the interaction between
RL agent and the environment. As a result, accumulating
training samples could be time-consuming. Accordingly, there
will be a obvious delay before gathering sufficient samples
to drive DNN. While existing DRL based RRM generally
use simulated environment to generate training samples, they
could hardly account for all effecting factors and the practical
and complex dynamics of the system. One possible approach
to compress the low-efficient learning process is transferring
knowledge from similar RRM tasks.

In cellular systems, hyper-dense deployment of base stations
(BSs) will yield spatially correlated traffic demand patterns
between neighbouring BSs. Here, we can exploit this phe-
nomenon to achieve joint energy savings via spatial transfer
learning. The widely used experience replay is essentially
transferring learning in time dimension, i.e., knowledge trans-
fer from past learnt samples. Differently, the correlation among
neighbouring BSs performing RRM tasks makes spatial trans-
fer learning reasonable and novel.

Many actions of multiple BSs need coordination, such
as meeting user demand in a large event, offload traffic to
each other, and sleep mode / cell expansion. Their RRM
policies will have commonalities, which is represented by
similar DNN parameters and/or RL policies. To exploit
the spatial correlation, spatial transfer learning can be used
between adjacent BSs (see example of potential application
in densely deployed coordinating small cells with coordinated
RRM [9]). We can use a spatial kernel that relates to the

urban traffic correlation to transfer DRL function parameters
among nearby wireless nodes. This is accomplished by first
modelling dynamic spatial correlations between BSs using a
flexible framework used commonly in disease and ecology
modelling - stochastic integral-difference equation (SIDE),
where a spatiotemporal dependent variable z;(s) evolves in
accordance to z;11(s) = [, k(s,) f(z(r))dr + e(s), over
a spatial domain s, € O and where k(s,r) is the mixing
kernel, f(-) is some function distorting the field and eg(s)
is an added disturbance modeled as a Gaussian field. The
SIDE links well with point process models of traffic demand,
where a point process (Poisson or log-Gaussian Cox Process)
has intensity A:(s) o exp(z:(s)). A SIDE function can be
parameterized based on the traffic model correlation and then
can be used to determine how much information to share
between the DRL entities, by relating it to the correlation
between traffic demand. The combined spatial DRL process
can allow individual DRLs to learn faster by leveraging on
the successful results of others, as shown in Fig. E}

V. OPEN CHALLENGES & CONCLUSIONS

Here, we discuss pressing open challenges in achieving en-
ergy efficient DRL for RRM, inspiring the research community
to act and collaborate.

A. Lightweight DRL Training

Current works on DNN compression mainly focus on reduc-
ing energy consumption in the inference stage of supervised
learning algorithms but neglect the training stage that is more
computation-intensive. In addition, in order to compress the
inference process, the training process could be even more
complex than the standard training without compression. The
main reason is that many existing compression approaches rely
on iterative training stage to discover the sparsity information
and only reduce the DNN size progressively. Thus, reducing
the complexity of DNN training stage is appealing. The
challenge is due to the fact that DNN compression is problem
specific. Unless the compressed DNN architecture information
is given, we have to explore it during the training process.

B. MDP Compression without Prior Information

One drawback of the above mentioned MDP abstraction
approaches is that they generally require to know the optimal
solution of the MDP. This contradicts the motivation of using
DRL to solve the underlying MDP in RRM context. Although
the recent abstraction approach has relaxed this condition, the
key parameters such as state transition and action value are
needed, which is still impractical for the considered model-
free RRM. Thus, how to abstract MDP states without prior
information is a desiring and challenging task. One possible
way is employing online abstraction, that is, as the progress
of learning, we can reveal more information about the MDP
model thus to abstract it progressively.

In conclusion, future AI driven automation of wireless
networks and other critical infrastructures will bring about a

step change in their ability to create efficient, resilient, and
also user-centric services. However, the very same algorithms
may also cause irreversible environmental damage due to
their high energy consumption and lead to serious global
sustainability issues. To achieve our goal of green Al for wire-
less networking, we have proposed several innovations and
linked them to existing literature. On the running architecture,
a cloud based on-demand DRL service model is proposed
to provide computation capability and battery constrained
devices with intelligent RRM. To reduce the computation and
energy consumption in DRL, model compression approaches
for reducing the sizes of DNN and MDP model are introduced.
Finally, by exploiting the correlation feature of RRM tasks
among nearby RRM entities, spatial transfer learning is further
proposed to promote learning efficiency.

REFERENCES

[1] K. Arulkumaran, M. P. Deisenroth, M. Brundage, and A. A. Bharath,
“Deep reinforcement learning: A brief survey,” IEEE Signal Processing
Magazine, vol. 34, no. 6, pp. 26-38, Nov 2017.

[2] N. C. Luong, D. T. Hoang, S. Gong, D. Niyato, P. Wang, Y. Liang,
and D. 1. Kim, “Applications of deep reinforcement learning in com-
munications and networking: A survey,” IEEE Communications Surveys
Tutorials, pp. 1-1, 2019.

[3] T.-J. Yang, Y.-H. Chen, and V. Sze, “Designing energy-efficient con-
volutional neural networks using energy-aware pruning,” 07 2017, pp.
6071-6079.

[4] N. Jiang, Y. Deng, A. Nallanathan, and J. A. Chambers, “Deep rein-
forcement learning for real-time optimization in nb-iot networks,” IEEE
Journal on Selected Areas in Communications, vol. 37, no. 6, pp. 1424—
1440, 2019.

[5] Y. Lu, H. Lu, L. Cao, F. Wu, and D. Zhu, “Learning deterministic policy
with target for power control in wireless networks,” in 2018 IEEE Global
Communications Conference (GLOBECOM), Dec 2018, pp. 1-7.

[6] X. Li, J. Fang, W. Cheng, and et. al., “Intelligent power control for
spectrum sharing in cognitive radios: A deep reinforcement learning
approach,” IEEE Access, vol. 6, pp. 25463-25473, 2018.

[7]1 O. Naparstek and K. Cohen, “Deep multi-user reinforcement learning for
distributed dynamic spectrum access,” IEEE Transactions on Wireless
Communications, vol. 18, no. 1, pp. 310-323, Jan 2019.

[8] S. Wang, H. Liu, P. H. Gomes, and B. Krishnamachari, “Deep reinforce-
ment learning for dynamic multichannel access in wireless networks,”
IEEE Transactions on Cognitive Communications and Networking,
vol. 4, no. 2, pp. 257-265, June 2018.

[9] Y. Yu, T. Wang, and S. C. Liew, “Deep-reinforcement learning multiple
access for heterogeneous wireless networks,” IEEE Journal on Selected
Areas in Communications, vol. 37, no. 6, pp. 1277-1290, June 2019.

[10] Z. Xu, Y. Wang, J. Tang, J. Wang, and M. C. Gursoy, “A deep
reinforcement learning based framework for power-efficient resource
allocation in cloud rans,” in 2017 IEEE International Conference on
Communications (ICC), May 2017, pp. 1-6.

Z. Wang, L. Li, Y. Xu, H. Tian, and S. Cui, “Handover control in wireless
systems via asynchronous multiuser deep reinforcement learning,” IEEE
Internet of Things Journal, vol. 5, no. 6, pp. 42964307, Dec 2018.

R. Li, Z. Zhao, Q. Sun, C. I, C. Yang, X. Chen, M. Zhao, and H. Zhang,
“Deep reinforcement learning for resource management in network
slicing,” IEEE Access, vol. 6, pp. 74429-74 441, 2018.

N. Van Huynh, D. T. Hoang, D. N. Nguyen, and E. Dutkiewicz, “Optimal
and fast real-time resource slicing with deep dueling neural networks,”
IEEE Journal on Selected Areas in Communications, pp. 1-1, 2019.
[14] W. Wen, C. Wu, Y. Wang, Y. Chen, and H. Li, “Learning structured
sparsity in deep neural networks,” in Proceedings of the 30th
International Conference on Neural Information Processing Systems,
ser. NIPS’16. USA: Curran Associates Inc., 2016, pp. 2082-2090.
[Online]. Available: http://dl.acm.org/citation.cfm?1d=3157096.3157329
D. Abel, D. Hershkowitz, and M. Littman, “Near optimal behavior via
approximate state abstraction,” in Proceedings of The 33rd International
Conference on Machine Learning, ser. Proceedings of Machine Learning
Research, vol. 48, New York, New York, USA, 20-22 Jun 2016, pp.
2915-2923.

[11]

[12]

[13]

[15]

http://dl.acm.org/citation.cfm?id=3157096.3157329

	I Introduction
	II State of the Art
	II-A RRM Formulation
	II-B DRL Design
	II-B1 Reinforcement Learning Mechanism
	II-B2 Neural Network Architecture and Relation to RRM Problems

	II-C Case Study: RACH Access for Massive IoT

	III Efficient DRL Architecture for RRM
	III-A Cloud based On-Demand DRL
	III-B Information Flow & Learning Process

	IV Reducing DRL Complexity & Energy via Algorithm Compression
	IV-A DNN Compression
	IV-B MDP Compression
	IV-C Improving Joint Efficiency via Spatial Transfer Learning

	V Open Challenges & Conclusions
	V-A Lightweight DRL Training
	V-B MDP Compression without Prior Information

	References

