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Blind Carrier Frequency Offset Estimation for
Interleaved OFDMA Uplink

Weile Zhang, Feifei Gao, Qinye Yin, and Arumugam Nallanathan, Senior Member, IEEE

Abstract—In this paper, we develop two novel blind carrier
frequency offset (CFO) estimators for interleaved orthogonal
frequency division multiple access (OFDMA) uplink transmission
in a multi-antenna system. The first estimator is the subspace-
based one and could blindly estimate multiple CFOs from a rank
reduction approach. The second estimator is based on the maxi-
mum likelihood (ML) approach and improves the performance as
compared to the first one. The higher computational complexity
of the ML estimator is alleviated by the alternating projection
(AP) method. Both the proposed estimators support fully loaded
data transmissions, i.e., all subcarriers being occupied, which
provides higher bandwidth efficiency as compared to the existing
schemes. The numerical results are then provided to corroborate
the proposed studies.

Index Terms—Carrier frequency offsets (CFO), orthogonal fre-
quency division multiple access (OFDMA), subspace, maximum
likelihood (ML).

I. INTRODUCTION

AS a promising technique for next-generation multiuser
broadband wireless communications, orthogonal fre-

quency division multiple access (OFDMA) has recently re-
ceived a considerable amount of interest [1], [2]. It is well
known that OFDMA inherits from orthogonal frequency divi-
sion multiplexing (OFDM) the weakness of being sensitive
to carrier frequency offset (CFO) that is generated by the
frequency mismatch between the transceiver oscillators or the
Doppler effect.
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For OFDMA downlink transmissions where a single CFO
exists between each transceiver pair, CFO estimation algo-
rithms for OFDM or multi-input multi-output (MIMO) OFDM
are directly applicable, see for examples [3]–[5]. However
for OFDMA uplink, multiple CFOs co-exist at the receiver,
making the CFO estimation more challenging. The effect of
imperfect CFO estimation in OFDMA uplink was investigated
in [6]. Using the frequency domain embedded pilot symbols,
Sun et al. [7] proposed an iterative CFO estimation approach
for tile structure based OFDMA transmission [8]. When
training sequences are transmitted from each user, CFOs can
be estimated from the maximum likelihood (ML) approach
but with very high complexity. The approach in [9], [10]
reduced the complexity by applying the divide-and-update
frequency estimator (DUFE). Another interesting alternative
was reported in [11] where the important sampling method
[12] was applied and the CFOs were estimated by maximizing
the mean likelihood function.

In addition to data-aided estimation, blind methods were
also developed to improve the bandwidth efficiency. The
CFOs can be computed by looking for the position of null
subcarriers [13] or based on the optimization of a kurtosis-
type cost function [14]. A frequency estimation scheme for
uplink interleaved OFDMA that exploits the periodic structure
of the signals from each user has been presented in [15], where
the subspace estimation theory was adopted and the designed
scheme is similar to the multiple signal classification (MUSIC)
technique [16]. Based on the observation of [15], several
advancements have been proposed later. For instance, Lee et
al. [17] suggested using the estimation of signal parameters
via rotational invariance technique (ESPRIT) [18], which
provides better performance as well as lower computational
complexity. Fan et al. [19] replaced MUSIC by a two-stage
process where an initial coarse search is conducted before
the precise searching step. Another CFO estimation scheme
for the interleaved OFDMA/space division multiple access
(SDMA) uplink systems was developed in [20] to support
spatially separated users with a multi-antenna receiver. Zhu
et al. [21] described a CFO estimation method for single
carrier interleaved FDMA systems, aiming to improve the
transmission efficiency.

Note that [15] and [17], originally derived for single-antenna
receiver, need null subcarriers or a longer cyclic prefix (CP)
to build the noise space. The other variations [19]–[21] men-
tioned above also have the same requirement. Recently, Hsieh
et al. [22] presented a blind ML CFO estimation approach
for interleaved OFDMA, where the series expansion of the
correlation matrix was expressed and the multiple CFOs were
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retrieved from a root-finding method. Although at most half
subchannels can be used for data transmissions, [22] achieves
better performance as compared to the subspace based ap-
proach [17]. Moreover, by deploying uniform linear array
(ULA) at the receiver, several schemes have been reported
to support full carrier-load transmission [23], [24]. However,
these schemes are only valid under the assumption that the
ULA at the receiver is elevated and the transmitted signal of
each user must be restricted to a single direction of arrival
(DOA).

In this paper, we develop two novel blind CFO estima-
tion methods for interleaved OFDMA uplink transmission
by equipping multi-antenna at the receiver. Based on the
subspace theory and from the rank reduction approach, the
multiple CFOs can be individually derived in a blind way. To
improve the performance, we further propose a ML estimator
whose higher computational complexity can be alleviated from
the alternating-projection (AP) method [25]. We show that
when the number of antenna elements at the receiver is
larger than the number of multipaths from each user, both
the proposed estimators support full carrier-load transmission,
which provides higher bandwidth efficiency as compared to
the existing methods [15], [17], [19]–[22]. Another byproduct
of our proposed estimators is that, the channel responses of
all users can be obtained simultaneously with little ambiguity,
which differs from all the existing methods.

The rest of this paper is organized as follows. Section
II formulates the problem. The proposed subspace based
estimator and ML estimator are developed in sections III and
IV, respectively. Simulation results are given in Section V and
conclusions are drawn in Section VI.

Notations: Superscripts (·)∗, (·)T , (·)H , [·]† and E[·] rep-
resent conjugate, transpose, Hermitian, pseudo inverse and
expectation, respectively; j =

√−1 is the imaginary unit; ‖X‖
denotes the Frobenius norm of X, and diag(·) is a diagonal
matrix with main diagonal (·); blkdiag(·) represents the block-
diagonal matrix operator; Cm×n defines the vector space of
all m×n complex matrices; IN is the N ×N identity matrix;
0 represents an all-zero matrix with appropriate dimension;
⊗ stands for the Kronecker product; Tr{·} denotes the trace
operation; Matlab matrix representations are adopted, for
example, X(r1 : r2, c1 : c2) denotes the submatrix of X with
the rows from r1 to r2 and the columns from c1 to c2.

II. PROBLEM FORMULATION

Consider a multiuser OFDMA system with K users, N
subcarriers, and M antennas at the receiver, as shown in
Fig. 1. All subcarriers are sequentially indexed with {i}, i =
0, 1, · · · , N − 1, and are equally divided into Q subchannels,
each having P = N/Q subcarriers. The qth subchannel con-
sists of subcarriers with the index set {q, Q+q, · · · , (P−1)Q+
q}, q = 0, 1, · · · , Q− 1. Each subchannel will be exclusively
assigned to one user and, thus, no subchannel can be shared
by more than one user. Without loss of generality, we consider
only the case of K = Q to simplify the illustration, whereas
the designed scheme can be straightforwardly extended to
more general cases.

Fig. 1. System model with a multi-antenna receiver and K single-antenna
users.

Assume the kth user occupies the q(k)th subchannel and

denote s(k)
g =

[
s
(k)
0,g , s

(k)
1,g , · · · , s

(k)
P−1,g

]T

as the P information
symbols of the kth user in the gth OFDMA block. The overall
OFDMA block of length N can be represented by x(k)

g =
[x(k)

0,g , x
(k)
1,g , · · · , x

(k)
N−1,g]

T with

x
(k)
i,g =

{
s
(k)
p,g, i = pK + q(k),
0, otherwise.

(1)

The transmitted time-domain signal by the kth user can then
be expressed as

y(k)
g (n) =

1√
N

N−1∑

i=0

x
(k)
i,g ej

2πi
N n, (2)

n = 0, 1, · · · , N − 1. The channel impulse response from the
kth user to the mth antenna element can be modeled as:

h(k)
m (τ) =

Lh∑

l=1

h
(k)
l,mδ(τ − τ

(k)
l ), (3)

where Lh is the number of multipaths, while h
(k)
l,m and τ

(k)
l

are the complex amplitude and delay for the lth multipath,
respectively. We assume h

(k)
l,m’s are independent and identically

distributed (i.i.d) complex Gaussian variables with zero mean
and power E

[|h(k)
l,m|2

]
= 1/Lh such that the total power

is normalized, i.e., E
[∑Lh

l=1 |h(k)
l,m|2

]
= 1. Moreover, we

assume that the delays are rounded to the nearest sampling
position and τ

(k)
l ’s are of integer values. Then, in noise-free

environment, the received signal at the mth receiving antenna
element from the kth user, after CP removal, can be expressed
as

γ(k)
m,g(n) =

1√
N

N−1∑

i=0

(
Lh∑

l=1

h
(k)
l,me−j 2πi

N τ
(k)
l

)
x

(k)
i,g ej

2πi
N n, (4)

n = 0, 1, · · · , N − 1, where the expression in the bracket
stands for the frequency-domain channel response at the ith
subcarrier from the kth user to the mth antenna.

Denote the normalized CFO of the kth user as ξ(k) =
∆f (k)/∆f , where ∆f is the subcarrier spacing and ∆f (k)

is the real CFO of the kth user. We assume ξ(k) ∈ (−0.5, 0.5)
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in this paper. With the presence of CFOs, the signal model (4)
changes to

γ(k)
m,g(n) =

χ
(k)
g√
N

N−1∑

i=0

(
Lh∑

l=1

h
(k)
l,me−j 2πi

N τ
(k)
l

)
x

(k)
i,g ej

2π(i+ξ(k))
N n,

(5)

where χ
(k)
g = ej

2π(g−1)(N+G)ξ(k)

N denotes the phase shift of
the kth user accumulated from the previous g − 1 blocks and
G denotes the length of CP. Bearing in mind (1), we further
rewrite (5) into

γ(k)
m,g(n) =

P−1∑
p=0

ej
2π
N (pK+q(k)+ξ(k))n

Lh∑

l=1

h
(k)
l,ms̃

(k)
l,p,g, (6)

where

s̃
(k)
l,p,g =

χ
(k)
g√
N

e−j
2π(pK+q(k))τ

(k)
l

N s(k)
p,g. (7)

The overall received signal from all K users at the mth
antenna is then

γm,g(n) =
K∑

k=1

γ(k)
m,g(n) =

K∑

k=1

Lh∑

l=1

h
(k)
l,mz

(k)
l,n,g, (8)

where

z
(k)
l,n,g =

P−1∑
p=0

s̃
(k)
l,p,ge

j 2π
N (pK+q(k)+ξ(k))n. (9)

We define the channel response vector of the lth multipath
component from the kth user as

h(k)
l =

[
h

(k)
l,1 , h

(k)
l,2 , · · · , h

(k)
l,M

]T

. (10)

The corresponding M ×Lh channel response matrix from the
kth user is then obtained as

H(k) =
[
h(k)

1 ,h(k)
2 , · · · ,h(k)

Lh

]
. (11)

Stacking the received signals from all M antennas, we obtain
the following space-domain snapshot

γn,g =
[
γ1,g(n), γ2,g(n), · · · , γM,g(n)

]T

= Hzn,g, (12)

where

H =
[
H(1),H(2), · · · ,H(K)

]
∈ CM×KLh ,

zn,g =
[
(z(1)

n,g)
T , (z(2)

n,g)
T , · · · , (z(K)

n,g )T
]T

∈ CKLh×1,

z(k)
n,g =

[
z
(k)
1,n,g, z

(k)
2,n,g, · · · , z

(k)
Lh,n,g

]T

∈ CLh×1.

Observing from (9), for any n = 0, 1, · · · , P − 1, t =
0, 1, · · · ,K − 1, we have

z
(k)
l,n+tP,g =

P−1∑
p=0

s̃
(k)
l,p,ge

j 2π
N (pK+q(k)+ξ(k))(n+tP )

= ej
2πt(q(k)+ξ(k))

K z
(k)
l,n,g. (13)

Hence, we can treat θ(k) = q(k)+ξ(k)

K as the effective CFO of
the kth user and obtain

z
(k)
l,n+tP,g = ej2πtθ(k)

z
(k)
l,n,g, z(k)

n+tP,g = ej2πtθ(k)
z(k)

n,g,

zn+tP,g = Φtzn,g, (14)

where

Φ = blkdiag
(
Φ(1),Φ(2), · · · ,Φ(K)

)
(15)

is a KLh × KLh diagonal matrix with Φ(k) = ej2πθ(k)
ILh

.
Combining (12) and (14) yields

γn+tP,g = HΦtzn,g. (16)

With the presence of the noise, (16) can be rewritten as

γn+tP,g = HΦtzn,g + nn+tP,g, (17)

where nn+tP,g is a length-M additive white Gaussian noise
(AWGN) vector with covariance matrix σ2

nIM at the (n+tP )-
th sample in the gth OFDMA block.

III. SUBSPACE ESTIMATOR

A. Properties of the Subspace

Stacking space-domain snapshot vectors from K equally
spaced time samples (P samples apart) gives the following
length-MK vector

ap,g =




γp,g

γp+P,g
...

γp+N−P,g


=




H
HΦ

...
HΦK−1


 zp,g+




np,g

np+P,g

...
np+N−P,g




︸ ︷︷ ︸
n̄p,g

,

(18)

where n̄p,g denotes the corresponding length-MK noise vec-
tor as defined above.

Defining

v(k) =
[
1, ej2πθ(k)

, · · · , ej2π(K−1)θ(k)]T ∈ CK×1,

V(k) = v(k) ⊗H(k) ∈ CKM×Lh ,

V =
[
V(1),V(2), · · · ,V(K)

] ∈ CKM×KLh ,

we rewrite (18) as

ap,g = Vzp,g + n̄p,g, (19)

whose covariance matrix can be computed as

Ra = E
[
ap,gaH

p,g

]
= VRZZVH + σ2

nIMK , (20)

p = 0, 1, · · · , P − 1, where RZZ = E[zp,gzH
p,g]. We assume

the fading channels are constant over successive Ls block
durations, and thus, the covariance matrix can be approximated
by R̂a = 1

PLs

∑Ls

g=1

∑P−1
p=0 ap,gaH

p,g . When V is tall with
full column rank and RZZ is nonsingular, the singular value
decomposition (SVD) of Ra is

Ra = [Us,Un]Σa[Us,Un]H , (21)

where Us ∈ CMK×KLh and Un ∈ CMK×K(M−Lh) represent
the signal and the noise space matrices, respectively.
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Remark: From the observation in Appendix A, we need to
assume M > Lh, i.e., the number of antenna elements at the
receiver is larger than the number of multipaths from each user,
in the following to guarantee the column full rank condition
of V. Meanwhile, we assume Lh ≤ P and τ

(k)
Lh

< P , and
then the nonsingularity of RZZ will be guaranteed from the
discussion in Appendix B.

We define the following parameterized Vandermonde vector
B(k)(ξ) with respect to ξ as

B(k)(ξ) =
[
1, ej2π q(k)+ξ

K , · · · , ej2π
(K−1)(q(k)+ξ)

K

]T ∈ CK×1,
(22)

where ξ ∈ (−0.5, 0.5). Clearly, B(k)(ξ) equals v(k) when ξ =
ξ(k), i.e., B(k)(ξ(k)) = v(k).

The following Lemmas are the key properties to design the
subspace-based CFO estimator.

Lemma 1: For any non-zero length-M vector x, there holds

(B(k)(ξ(k))⊗ x)HUn

{
= 0, x ∈ Span(H(k)),
6= 0, x /∈ Span(H(k)).

(23)

Proof: See Appendix C.
Lemma 2: Given any M × Lh matrix X with full column

rank and ξ 6= ξ(k), there holds

(B(k)(ξ)⊗X)HUn 6= 0. (24)

Proof: See Appendix D.

B. Blind CFO Estimation

For any non-zero length-M vector x, we have B(k)(ξ)⊗x =
(B(k)(ξ)⊗ IM )x and

(B(k)(ξ)⊗ x)HUnUH
n (B(k)(ξ)⊗ x) = xHΠ(k)(ξ)x, (25)

where Π(k)(ξ) = (B(k)(ξ) ⊗ IM )HUnUH
n (B(k)(ξ) ⊗ IM ) ∈

CM×M . The following two important observations are made:
1) From Lemma 1, we know that the matrix Π(k)(ξ) is

singular when ξ = ξ(k). Meanwhile, Π(k)(ξ(k)) has Lh

zero eigenvalues, i.e., the rank of Π(k)(ξ(k)) should be
M − Lh.

2) From Lemma 2, we know when ξ 6= ξ(k), the number of
zero eigenvalues of the matrix Π(k)(ξ) should be less
than Lh. The implication is that the rank of Π(k)(ξ)
should be larger than M − Lh, when ξ 6= ξ(k).

Hence, Π(k)(ξ) drops its rank to M − Lh if and only if
ξ = ξ(k). Based on the above observations, we design the
CFO estimation by one-dimensional (1-D) search as follows.
For each trial ξ from (−0.5, 0.5),

1) compute the M eigenvalues of the matrix Π(k)(ξ),
denoted by λ

(k)
1 (ξ), λ(k)

2 (ξ), · · · , λ
(k)
M (ξ) in an ascending

order;
2) calculate the summation of the smallest Lh eigenvalues

of Π(k)(ξ) as the cost of the current trial value, denoted
by

gk(ξ) =
∑Lh

i=1
λ

(k)
i (ξ). (26)

The CFO estimation for the kth user is the trial value that
gives the minimum cost, i.e.,

ξ̂(k) = arg min
ξ

gk(ξ). (27)

Another observation from Lemma 1 is that, the matrix H(k)

constitutes the Lh dimensional orthogonal complement space
of Π(k)(ξ(k)), i.e., Span(H(k)) =

(
Π(k)(ξ(k))

)⊥
. There-

fore, after deriving the CFO of the kth user from (27),(
Π(k)(ξ̂(k))

)⊥
serves as the estimation of H(k) with certain

ambiguity, which is one byproduct of the proposed estimator.
Note that this multi-dimensional ambiguity is well known for
the blind channel estimation in multi-antenna systems and can
be removed by transmitting several pilot symbols [26]. The
opportunity here is that, each user has an individual ambiguity
matrix rather than a huge ambiguity matrix over all K users.
Therefore, the amount of the required training to remove such
an ambiguity is much less.

Remark: From above discussions, we know that when the
number of antenna elements at the receiver is larger than the
number of multipaths from each user, i.e., M > Lh, our
subspace method could estimate each user’s CFO individually
and support fully loaded transmissions. Considering that the
antenna number at the receiver is limited in practice, e.g.,
M = 8, our estimator is applicable to the channels with a
relatively small number of multipaths.

IV. THE ML ESTIMATOR

A. The Estimator

We denote the parameter set for the kth user by ω(k) =
{ξ(k),H(k)}, and the corresponding whole parameter set for
the K users by ω = {ω(1),ω(2), · · · ,ω(K)}. Rewrite (19) as
the following parameterized equation

ap,g = V(ω)zp,g + n̄p,g, (28)

where

V(ω) =
[
V(1)(ω(1)),V(2)(ω(2)), · · · ,V(K)(ω(K))

]
,

V(k)(ω(k)) = v(k)(ξ(k))⊗H(k),

v(k)(ξ(k)) =
[
1, ej2π q(k)+ξ(k)

K , · · · , ej2π(K−1) q(k)+ξ(k)

K

]T
.

Placing the vectors ap,g , p = 0, 1, · · · , P − 1, next to each
other, we obtain the following MK × P matrix

Ag =
[
a0,g,a1,g, · · · ,aP−1,g

]
= V(ω)Zg + N̄g, (29)

where Zg = [z0,g, · · · , zP−1,g] and N̄g = [n̄0,g, · · · , n̄P−1,g].
We then place Ls continuously observed OFDMA blocks next
to each other and obtain the following MK × PLs matrix

A =
[
Ag,Ag+1, · · · ,Ag+Ls−1

]
= V(ω)Z + N, (30)

where Z and N denote the corresponding signal and AWGN
matrices, i.e., Z = [Zg,Zg+1, · · · ,Zg+Ls−1] and N =
[N̄g, N̄g+1, · · · , N̄g+Ls−1]. Following the observation in Ap-
pendix A, matrix V(ω) will be tall and has full column rank
when M > Lh.
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V
(
ω̃(k), ω̂|k,i

)
=

[
V(k)(ω̃(k))︸ ︷︷ ︸

C(ω̃(k))

,V(1)
(
ω̂

(1)
i+1

)
, · · · ,V(k−1)

(
ω̂

(k−1)
i+1

)
,V(k+1)

(
ω̂

(k+1)
i

)
, · · · ,V(K)

(
ω̂

(K)
i

)
︸ ︷︷ ︸

B
(
ω̂|k,i

)

]
, (36)

The ML parameter estimation of ω,Z can be obtained from
(30) as

{ω̂, Ẑ} = arg min
ω̃,Z̃

∥∥∥A−V(ω̃)Z̃
∥∥∥

2

, (31)

where x̃ stands for the trial value of x. For a given V(ω̃), by
substituting the ML solution Z̃ = [V(ω̃)]†A into the above
equation, the ML estimation becomes

ω̂=arg min
ω̃

∥∥A−PV(ω̃)A
∥∥2 = arg max

ω̃
Tr

{
AHPV(ω̃)A

}
,

(32)

where PV(ω̃) = V(ω̃)[V(ω̃)]† is the projection operator onto
the space spanned by the columns of the matrix V(ω̃). Note
that, the parameter ω̃ not only consists of the unknown CFO
items of all users, but also the unknown channel responses.
As a result, directly deriving the ML solution for (32) is
computationally expensive. We then apply AP algorithm [25]
to reduce the multi-dimensional searching to a series of 1-D
searching.

B. Iterative Estimation via Alternating Projection

The estimation procedure consists of cycles and steps, where
a cycle is made of K steps. Each step updates the CFO and
the channel of a single user while keeping the other CFOs
and channels constant at their most updated values. We follow
the natural ordering k = 1, 2, · · · ,K in updating the users’
parameters. Denote ω̂

(k)
i = {ξ̂(k)

i , Ĥ(k)
i } as the estimate of

ω(k) at the ith cycle, and define

ω̂|k,i = {ω̂(1)
i+1, · · · , ω̂

(k−1)
i+1 , ω̂

(k+1)
i , · · · , ω̂

(K)
i }. (33)

At the kth step of the (i + 1)th cycle, the alternating
projection algorithm updates the estimate of ω(k) by solving
the following problem:

ω̂
(k)
i+1 = arg max

ω̃(k)
Tr

{
AHPV

(
ω̃(k), ω̂|k,i

)
A

}
, (34)

where PV

(
ω̃(k), ω̂|k,i

)
is used to indicate the functional

dependence of PV on

{ω̂(1)
i+1, · · · , ω̂

(k−1)
i+1 , ω̃(k), ω̂

(k+1)
i , · · · , ω̂

(K)
i }. (35)

Similar to [25], we observe that most columns of
V

(
ω̃(k), ω̂|k,i

)
are fixed when updating ω̃(k). Thus, we split

V
(
ω̃(k), ω̂|k,i

)
into two parts in (36) on top of this page,

where C(ω̃(k)) ∈ CMK×Lh and B
(
ω̂|k,i

) ∈ CMK×(K−1)Lh

are defined as the corresponding items. From the well known
projection formula, we derive

PV

(
ω̃(k), ω̂|k,i

)
= PB

(
ω̂|k,i

)
+ PCB

(
ω̃(k), ω̂|k,i

)
(37)

where PB

(
ω̂|k,i

)
and PCB

(
ω̃(k), ω̂|k,i

)
denote the projec-

tors defined:

PB

(
ω̂|k,i

)
= B

(
ω̂|k,i

)[
B

(
ω̂|k,i

)]†
,

PCB

(
ω̃(k),ω̂|k,i

)
=P⊥B

(
ω̂|k,i

)
C(ω̃(k))

[
P⊥B

(
ω̂|k,i

)
C(ω̃(k))

]†
.

Afterwards, (34) becomes

ω̂
(k)
i+1 = arg max

ω̃(k)
Tr

{
AHPCB

(
ω̃(k), ω̂|k,i

)
A

}
. (38)

Different from the conventional AP solution in [25], here (38)
is still a multi-dimensional problem since ω̃(k) = {ξ̃(k), H̃(k)}
is composed of both the unknown CFO and channel response
matrix for the kth user. Directly solving (38) still needs multi-
dimensional search with respect to both CFO ξ̃(k) and the
channel matrix H̃(k) ∈ CM×Lh , which requires very high
computational complexity. However, we will show later that
the problem in (38) can be solved by an efficient 1-D search.

We further rewrite (38) as the following equivalent mini-
mization problem:

ω̂
(k)
i+1 = arg min

ω̃(k),X̃

∥∥∥P⊥B
(
ω̂|k,i

)
C(ω̃(k))X̃−A

∥∥∥
2

, (39)

where X̃ ∈ CLh×PLs is a trial matrix that aims to minimize
the above cost function. Note that for a given ω̃(k), by sub-
stituting the ML solution X̃ =

[
P⊥B

(
ω̂|k,i

)
C(ω̃(k))

]†
A into

(39), we can arrive at (38) after some simple manipulations.
For a better understanding of the introduced trial matrix X̃
in (39), let us rewrite Z = [(Z(1))T , (Z(2))T , · · · , (Z(K))T ]
with Z(k) = [Z(k)

g ,Z(k)
g+1, · · · ,Z(k)

g+Ls−1] and Z(k)
g =

[z(k)
0,g , z(k)

1,g , · · · , z(k)
P−1,g]. Denote Z(k)

B as the submatrix of Z
formed by deleting the corresponding rows of Z(k). Then, (34)
can be rewritten as

ω̂
(k)
i+1 =arg min

ω̃(k),Z̃(k),Z̃
(k)
B

∥∥∥A−C(ω̃(k))Z̃(k)−B
(
ω̂|k,i

)
Z̃(k)

B

∥∥∥
2

.

(40)

By substituting the ML solution Z̃(k)
B = [B

(
ω̂|k,i

)
]†(A −

C(ω̃(k))Z̃(k)) back into (40), we can rewrite (40) as

ω̂
(k)
i+1 =arg min

ω̃(k),Z̃(k)

∥∥∥P⊥B
(
ω̂|k,i

)
(A−C(ω̃(k))Z̃(k))

∥∥∥
2

= arg min
ω̃(k),Z̃(k)

∥∥∥P⊥B
(
ω̂|k,i

)
A−P⊥B

(
ω̂|k,i

)
C(ω̃(k))Z̃(k)

∥∥∥
2

+
∥∥PB

(
ω̂|k,i

)
A

∥∥2

= arg min
ω̃(k),Z̃(k)

∥∥∥P⊥B
(
ω̂|k,i

)
C(ω̃(k))Z̃(k) −A

∥∥∥
2

. (41)

From (39) and (41), we see that X̃ is equivalent to Z̃(k), which
serves as the trial value of Z(k).
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Afterwards, by substituting C(ω̃(k)) = V(k)(ω̃(k)) =
v(k)(ξ̃(k))⊗ H̃(k), we can rewrite (39) as

ω̂
(k)
i+1=arg min

ξ̃(k),H̃(k),X̃

∥∥∥P⊥B
(
ω̂|k,i

)(
v(k)(ξ̃(k))⊗H̃(k)

)
X̃−A

∥∥∥
2

.

(42)

Based on the fact that v(k)(ξ̃(k)) ⊗ H̃(k) =(
v(k)(ξ̃(k))⊗ IM

)
H̃(k), (42) becomes

ω̂
(k)
i+1

=arg min
ξ̃(k),H̃(k),X̃

∥∥∥∥∥P⊥B
(
ω̂|k,i

)(
v(k)(ξ̃(k))⊗IM

)

︸ ︷︷ ︸
Π

(
ω̂|k,i,ξ̃(k)

)
H̃(k)X̃−A

∥∥∥∥∥

2

=arg min
ξ̃(k),H̃(k),X̃

∥∥∥Π
(
ω̂|k,i, ξ̃

(k)
)
H̃(k)X̃−A

∥∥∥
2

. (43)

In Appendix E, we prove that Π
(
ω̂|k,i, ξ̃

(k)
) ∈ CMK×M

has full column rank M . If we treat H̃(k)X̃ ∈ CM×PLs as
a single unknown matrix, the minimization in (43) resembles
the conventional least square problem. However, the important
difference is that the rank of matrix H̃(k)X̃ is smaller than or
equal to Lh.

Let the SVD of Π
(
ω̂|k,i, ξ̃

(k)
)

be

Π
(
ω̂|k,i, ξ̃

(k)
)

=
[
UΠ,UΠ,0

] [
ΣΠ

0

]
VH

Π, (44)

where the diagonal entries of ΣΠ ∈ CM×M are the nonzero
singular values, VΠ ∈ CM×M denotes the right singular
matrix, UΠ ∈ CMK×M and UΠ,0 ∈ CMK×M(K−1) denote
the left singular vector matrices that correspond to the M
nonzero and the rest zero singular values, respectively.

It can be further obtained that
∥∥∥Π

(
ω̂|k,i, ξ̃

(k)
)
H̃(k)X̃−A

∥∥∥
2

=
∥∥∥∥
[

ΣΠ

0

]
VH

ΠH̃(k)X̃−
[

UH
Π

UH
Π,0

]
A

∥∥∥∥
2

=
∥∥∥ΣΠVH

ΠH̃(k)X̃−UH
ΠA

∥∥∥
2

+
∥∥UH

Π,0A
∥∥2

=
∥∥A∥∥2 +

∥∥∥ΣΠVH
ΠH̃(k)X̃−UH

ΠA
∥∥∥

2

− ∥∥UH
ΠA

∥∥2
. (45)

As a result, we can rewrite (43) as

ω̂
(k)
i+1 =arg min

ξ̃(k),H̃(k),X̃

∥∥∥ΣΠVH
ΠH̃(k)X̃−UH

ΠA
∥∥∥

2

−∥∥UH
ΠA

∥∥2
.

(46)

It can be observed that the first term of (46) falls into the
well-known low rank matrix approximation problem, where
we can find a matrix ΣΠVH

ΠH̃(k)X̃ whose rank is at most
Lh and could approximate the matrix UH

ΠA in the best
way. Denote the M left and right singular vectors and the
corresponding singular values of UH

ΠA by ul, υl and σl,
respectively, i.e.,

UH
ΠA =

∑M

l=1
σlulυ

H
l , (47)

where the singular values are listed in descending order.

From the SVD property [27], we know the first term of (46)
achieves its minimum

∑M

l=Lh+1
σ2

l (48)

when

ΣΠVH
ΠH̃(k)X̃ =

Lh∑

l=1

σlulυ
H
l , (49)

or equivalently,

H̃(k)X̃ = VΠΣ−1
Π

Lh∑

l=1

σlulυ
H
l . (50)

With the aid of (48)-(50), the multi-dimensional problem
(46) is simplified to a 1-D problem

ξ̂
(k)
i+1 = arg min

ξ̃(k)

(
M∑

l=Lh+1

σ2
l −

M∑

l=1

σ2
l

)
= arg max

ξ̃(k)

Lh∑

l=1

σ2
l ,

(51)

which yields the CFO estimation for the kth user at the (i+1)th
cycle.

Based on (50), the corresponding channel estimation at
this step is then performed as follows. Suppose the SVD of
Π(ω̂|k,i, ξ̂

(k)
i+1) is Π

(
ω̂|k,i, ξ̂

(k)
i+1

)
= ÛΠΣ̂ΠV̂H

Π. Denote ûl

(l = 1, 2, · · · , Lh) as the left singular vectors that correspond
to the largest Lh singular values of ÛH

ΠA. Note that in (50),
we can only estimate the column space of channel matrix with
some ambiguity. Specifically, according to (50) the kth user’s
channel estimation at this step can be obtained from

Ĥ(k)
i+1 = V̂ΠΣ̂−1

Π

[
û1, û2, · · · , ûLh

]
. (52)

The 1-D search at the kth step in the (i + 1)th cycle is
summarized as follows: For each trial ξ̃(k) from (-0.5,0.5),

1) calculate Π
(
ω̂|k,i, ξ̃

(k)
)

according to (43);
2) calculate UΠ according to (44);
3) perform SVD operation on UH

ΠA, and obtain its largest
Lh singular values σl;

4) calculate the utility for current trial as
∑Lh

l=1 σ2
l .

The trial ξ̃(k) that yields the maximum utility is the estimated
CFO at this step, and the channel estimation is then obtained
from (52).

Remark: It is well known that the initialization procedure
is important for the iterative ML solutions. Thanks to the
proposed subspace estimator, we can take its output as the
initial estimates. It is also observed in the later simulations that
the ML approach with initial values obtained from subspace
estimator work well under different scenarios.

V. SIMULATIONS

In this section, we assess the proposed CFO estimation
algorithms from computer simulations. The total number of
subcarriers is taken as N = 64 and are divided into Q = 4
subchannels. The quadrature phase-shift keying (QPSK) con-
stellation is adopted. The normalized CFO of each user is
randomly generated from -0.4 to 0.4, and the delays of the
multipath from each user are randomly generated from 0 to
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8. In simulations, we use 120 CFO trial values to derive
the solutions in (27) and (51).1 The root mean square error
(RMSE) of the normalized CFO estimation is adopted as the
figure of merit. Fully loaded transmissions are assumed in our
estimators. In addition, we also include the following two CFO
estimation schemes for comparison:

1) ‘ESPRIT-I’: the scheme proposed in [17]. For fairness,
the multiple receive antenna diversity is exploited as
described in [15, eq. (28)], in which the multiple ob-
servations from multiple antennas are collected together
to improve the estimation of the covariance matrix Rzz

in [17]. Note that in this scheme, one subchannel has
to be reserved as null subcarriers; thus, the number of
users is Q− 1 = 3 in ESPRIT-I.

2) ‘ESPRIT-II’: an extended scheme based on [17] which
supports fully loaded transmissions, i.e., K = Q.
We derive this scheme by exploiting the rotational
invariance property from (18). Specifically, we define
Ex ∈ C(K−1)M×KLh as the first (K − 1)M rows of
Us and Ey ∈ C(K−1)M×KLh as the last (K − 1)M
rows of Us. Based on the observations from (18) to
(21), we have Ex = VxT and Ey = VxΦT, where
Vx ∈ C(K−1)M×KLh denotes the first (K − 1)M rows
of V and T ∈ CKLh×KLh is a full-rank ambiguity
matrix. Then, according to the ESPRIT algorithm [18],
the KLh eigenvalues of E†xEy correspond to the KLh

diagonal elements of Φ, by which the CFOs of the
multiple users can be further derived. Let us take the
kth user for example. After eigenvalue decomposition of
E†xEy , we obtain Lh eigenvalues corresponding to the
kth user’s effective CFO, i.e., ej2πθ(k)

, each of which
provides one CFO estimation value like [17]. Then,
the final CFO estimation for the kth user is obtained
by averaging these Lh values. Since in ESPRIT-II, Vx

should have full column rank, M ≥ K
K−1Lh is required.

We start by evaluating the performance of our subspace
estimator, referred to as ‘SSE’. We consider the frequency
selective fading scenarios with Lh = 2. Fig. 2 shows the CFO
estimation RMSEs versus signal-to-noise ratio (SNR) under
different number of antenna elements and different number
of sample blocks. As expected, the estimation performance
of SSE is improved with the increase of SNR, the antenna
number, as well as the sample block number. We see that with
M = 4 and only one sample block, the performance of SSE
is worse than that of ESPRIT-I under low and moderate SNR
condition. Nevertheless, SSE behaves better with a few more
OFDMA blocks or more antennas. This may be explained as
follows. The equivalent numbers of snapshots to estimate the
covariance matrix in ESPRIT-I and SSE are LsPM and LsP ,
respectively. Thus, the estimated covariance matrix of SSE
exhibits larger perturbations than that of ESPRIT-I, making
SSE perform worse due to occurrence of outliers when few
sample blocks are available. On the other side, we see that the

1We first obtain a coarse CFO estimation value by searching from -0.5
to 0.5 with an interval of 10−2. Then, the fine estimation is achieved by
searching within the neighborhood with size of 0.02 around the coarse value
using an interval of 10−3. Thus, the number of total trail CFO values is
α = 120.

Fig. 2. The CFO estimation performance versus SNR between SSE and
ESPRIT-I under frequency selective fading channels (Lh = 2). The numbers
of users in SSE and ESPRIT-I are K = 4 and K = 3, respectively.

Fig. 3. The CFO estimation RMSE convergence process of MLE with
different number of multipaths (SNR=20 dB, M = 4, Ls = 1). The results
of Lc = 0 correspond to the performance of SSE.

equivalent array apertures of ESPRIT-I and SSE are Q and
MQ, respectively, where the former is not related with the
number of antennas; thus, SSE has a larger aperture, which
provides the potential of higher resolution.

Next, we investigate the convergence rate of the proposed
ML estimator, referred to as ‘MLE’. Fig. 3 depicts the CFO
estimation performance versus the number of cycles Lc under
M = 4 and SNR=20 dB, where we vary the number of
multipaths from Lh = 1 to Lh = 3. Only one block is utilized
in this example, i.e., Ls = 1. Bearing in mind that, when
Lc = 0, no iteration is conducted, and thus, it is equivalent
to our proposed SSE. The results explicitly demonstrate the
performance improvement introduced by the proposed MLE,
especially under the scenarios with more multipaths. We also
observe that for the three different scenarios, only two cycles
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Fig. 4. The CFO estimation RMSE convergence process of MLE with
different number of multipaths (SNR=20 dB, M = 8). The solid, dashed
and dotted curves correspond to the performance with Ls = 1, Ls = 2,
Ls = 8, respectively.

Fig. 5. The CFO estimation RMSE performance of different approaches
versus Lh (SNR=20 dB, M = 4). The dashed and solid curves correspond
to the performance with Ls = 1 and Ls = 8, respectively.

are needed for convergence and no improvement can be
obtained with additional cycles, which demonstrates the high
convergence rate of the proposed MLE. Moreover, it is clear
that the increase of the number of multipaths will decrease the
estimation convergence rate. From the results, only one cycle
is enough for convergence when Lh ≤ 2, whereas two cycles
are required when Lh = 3.

Furthermore, we show the performance convergence process
in Fig. 4 when the receiver is equipped with M = 8 antennas.
In this example, the solid, dashed and dotted curves represent
the performance with one block, two blocks and eight blocks,
respectively. The number of multipaths is varied from 1 to
7. It is shown that, when only one block is utilized, MLE
needs more cycles when the number of multipaths is large,
e.g., Lh ≥ 6, and it also suffers from great performance

Fig. 6. The CFO estimation RMSE performance of different approaches
versus Lh (SNR=20 dB, M = 8). The dashed and solid curves correspond
to the performance with Ls = 1 and Ls = 8, respectively.

deterioration when Lh = 7. However, it can be observed that,
when additional blocks are utilized, i.e., Ls = 2 or Ls = 8,
both RMSE and the convergence rate can be greatly improved.
We see that with Ls = 8 blocks, two cycles are enough for
convergence of MLE under Lh = 7 multipaths.

The CFO estimation performance versus different values of
Lh are shown in Fig. 5 and Fig. 6 under M = 4 and M = 8,
respectively, where SNR=20 dB is taken. The performance
from the four estimators, i.e., ESPRIT-I, ESPRIT-II, SSE and
MLE, are all included for comparison. Clearly, we see that
the ESPRIT-I has the advantage of being insensitive to the
channel frequency selectivity, whereas both ESPRIT-II and
our estimators suffer from the performance degradation with
a larger number of multipaths. From these two figures, it is
seen that, SSE could achieve better performance than ESPRIT-
I when Lh is under some threshold, otherwise, SSE behaves
worse. On the other side, we see in Fig. 5 that MLE behaves
better than ESPRIT-I under all the scenarios when M = 4.
With M = 8 antennas at the receiver in Fig. 6, MLE is superior
to ESPRIT-I when Lh ≤ 6 with only one block, while with
eight blocks, MLE almost behaves better than ESPRIT-I under
all values of Lh from 1 to 7. The reason why MLE yields
excellent performance is twofold. First, MLE is derived based
on ML criterion. Second, MLE has exploited the inherent
relationship among the observations from multiple receiving
antennas. Moreover, we need to emphasize that, our estimators
could estimate not only the CFOs for all users but also the
channels, which is a property that ESPRIT-I does not possess.
Meanwhile, the proposed SSE and MLE can handle more
users than ESPRIT-I. On the other side, although ESPRIT-
II could also support fully loaded transmissions, it presents
higher RMSEs than our SSE and MLE under all scenarios,
especially with a larger number of multipaths.

Next, we display the CFO estimation performance versus
SNR in Fig. 7, where the results of ESPRIT-I, ESPRIT-II and
MLE are included. We assume Ls = 8 and M = 8 in this
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Fig. 7. The CFO estimation RMSE performance versus SNR of different
approaches (Ls = 8, M = 8).

example. Note that we only show the performance of ESPRIT-
I with Lh = 5, since the value of Lh is verified having
little effect on ESPRIT-I. It is demonstrated that, our MLE
behaves better than ESPRIT-I when Lh ≤ 6. When Lh = 7, it
still achieves a comparable performance with ESPRIT-I under
moderate and high SNR region. We should note that the system
is fully loaded in our estimators, whereas one subchannel
should be reserved in ESPRIT-I. Moreover, although ESPRIT-
II also supports fully loaded transmissions, we see that its
performance is much worse than our MLE.

We then evaluate the performance of our estimators in fast
time-varying channels. Denote ξd as the maximum Doppler
frequency normalized by subcarrier spacing. We increase ξd

from 0 to 0.1 and display the RMSE results with Ls = 1
and Ls = 8 in Fig. 8. The performance of ESPRIT-I is also
included for comparison. Meanwhile, we assume SNR=20
dB, M = 8 and Lh = 2. The sum-of-sinusoids statistical
simulation model proposed in [28] is adopted. Since in fast
time-varying channels, the channels hardly stay constant over
multiple consecutive block durations, we let SSE and MLE
first estimate the CFOs for each block duration individually,
and then average the results as the final estimation. As ex-
pected, the increase of maximum Doppler frequency degrades
the performance of all estimators. However, our estimators still
perform better than ESPRIT-I. Another observation is that, as
compared to the case of Ls = 1, the increase of maximum
Doppler frequency also weakens the benefit from multiple
block durations. This may arise from the effect of estimation
bias introduced by the Doppler frequency.

Let us now evaluate the computational complexities of
the proposed estimators in terms of complex multiplications.
We denote α as the number of trial CFO values to derive
the solutions in (27) and (51). In SSE, calculation of R̂a

and its SVD requires O(K2M2PLs + K3M3); For each
trial CFO, calculation of Π(k)(ξ) and its SVD requires
O(M2K2/2 + M3); The number of total trial CFOs is
αK; Then the total complexity of SSE is in the order of

Fig. 8. The CFO estimation RMSE performance of different approaches
versus the maximum normalized Doppler frequency (SNR=20 dB, M = 8,
Lh = 2). The dashed and solid curves correspond to the performance with
Ls = 1 and Ls = 8, respectively.

TABLE I
COMPUTATIONAL COMPLEXITY ANALYSIS.

Estimator Complexity
ESPRIT-I
(K=Q−1)

O `(K + 1)2MPLs + (K + 1)3 + 3K3
´

ESPRIT-II O `K2M2PLs+K3M3+2(K−1)MK2L2
h+K3L3

h

´
SSE O `K2M2PLs+K3M3+αK(M2K2/2 + M3)

´
One cycle
of MLE O `αK(M2K2 + M3K2 + 2M3K)

´

O(K2M2PLs + K3M3 + αK(M2K2/2 + M3)). On the
side of MLE, for each trial CFO in one cycle, calculation
of Π

(
ω̂|k,i, ξ̃

(k)
)

and its SVD requires O(M2K2 + M3K);
Calculating the singular values of UH

ΠA requires O(M3K2 +
M3K)2; Then the total complexity of MLE in one cycle is in
the order of O(αK(M2K2+M3K2+2M3K)). In summary,
we list the required complexities for different estimators in
Table I, including the results of ESPRIT-I and ESPRIT-II for
comparison. For example, assume M = 8, Ls = 8, Lh = 6
and α = 120. The computational complexities of ESPRIT-
I, ESPRIT-II, SSE, one cycle of MLE are in the order of
O(1.6 × 104), O(2 × 105), O(6.5 × 105) and O(6.4 × 106),
respectively. It shows that our estimators suffer from a higher
computational burden. Note that as compared to our esti-
mators, ESPRIT-II supports fully loaded transmissions but
requires lower computational complexity; however, simulation
results have demonstrated that our estimators could provide
much better performance. It also needs to be mentioned that
the computational complexities of our estimators are still
significantly smaller than that of [23] which is in the order of
O(3(M − 1)3N3) = O(2.7× 108) [23]. Moreover, bearing in
mind that the OFDMA receiver usually plays a role as the base

2We can perform the decomposition AAH = QQH in advance where
Q is a MK ×MK matrix. Then, UH

ΠQ has the same singular values with
UH

ΠA. Calculating UH
ΠQ and its SVD require O(M3K2) and O(M3K),

respectively.
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station (BS) in cellular networks, the required complexities
should be affordable.

VI. CONCLUSIONS

We have developed subspace based and ML based blind
CFO estimators for interleaved OFDMA uplink transmission,
where multi-antenna is employed at the receiver. We applied
the rank reduction approach for the subspace based estimator
while adopted the alternating projection for the ML estimator.
The proposed schemes support full-load data transmission
that allows all subcarriers being allocated to users, which
provides better bandwidth efficiency than the existing schemes.
Simulation results have shown that the proposed two esti-
mators achieve comparable performance with several existing
competitors, especially when there are a few multipaths from
each user. Although these advantages are achieved at the price
of an increased computational burden, the required complexity
may not be the bottleneck, because the receiver usually plays
a role as the BS in cellular networks.

APPENDIX A
PROPERTY OF THE MATRIX V

To guarantee V being a tall matrix, the number of antennas
should be larger than the number of multipaths of each user,
i.e., M > Lh. In the following, we prove that when M > Lh,
V will have the full column rank. Rewrite V into the following
row permutation version

V̄ =
[
V̄(1), V̄(2), · · · , V̄(K)

]
(53)

with V̄(k) = H(k) ⊗ v(k). Due to the fact that[
v(1),v(2), · · · ,v(K)

]
is a full rank matrix, the submatrices

V̄(k)’s are mutually disjoint, which implies that

rank(V)= rank(V̄)=
K∑

k=1

rank(V̄(k))=
K∑

k=1

rank(H(k)).

Since its entries are i.i.d. Gaussian random variables, when
M > Lh, H(k) has full column rank with probability one
[29]. Hence, we conclude that rank(V) = KLh, i.e., V has
full column rank.

APPENDIX B
COVARIANCE MATRIX RZZ

Since the transmitted symbols of different users are uncor-
related, there holds

E
[
z(k)

p,g(z
(k′)
p,g )H

]
= 0 (54)

for k 6= k′. On the other hand, we can rewrite z(k)
p,g as

z(k)
p,g =

1√
N

ej
2π(g−1)(N+G)ξ(k)

N ej
2π(q(k)+ξ(k))p

N ς(k)ζ(k)χps
(k)
g ,

where

ς(k) = diag
(
e−j

2πq(k)τ
(k)
1

N , e−j
2πq(k)τ

(k)
2

N , · · · , e−j
2πq(k)τ

(k)
Lh

N

)
,

ζ(k) =
[
ζ

(k)
1 , ζ

(k)
2 , · · · , ζ

(k)
Lh

]T
,

ζ
(k)
l =

[
1, e−j

2πτ
(k)
l

P , · · · , e−j
2π(P−1)τ

(k)
l

P

]T
,

χp = diag
(
1, ej

2πp
P , · · · , ej

2π(P−1)p
P

)
.

Let us define

R(k)
ZZ = E

[
z(k)

p,g(z
(k)
p,g)

H
]

=
ρ
(k)
s

N
ς(k)ζ(k)

(
ς(k)ζ(k)

)H
, (55)

where ρ
(k)
s denotes the average transmit power of the kth

user. We consider Lh ≤ P and τ
(k)
Lh

< P . Then the Lh × P

Vandermonde matrix ζ(k) has rank Lh. As a result, R(k)
ZZ has

full rank. Therefore, combining (54) and (55), we obtain that

RZZ = E[zp,gzH
p,g] = blkdiag

(
R(1)

ZZ ,R(2)
ZZ , · · · ,R(K)

ZZ

)
,

(56)

which also possesses the full rank.

APPENDIX C
PROOF OF Lemma 1

When x ∈ Span(H(k)), there exist εi, i = 1, 2, · · · , Lh, not
all zero, such that x =

∑Lh

i=1 εih
(k)
i . Since B(k)(ξ(k)) = v(k),

we have

(B(k)(ξ(k))⊗ x)HUn =
Lh∑

i=1

ε∗i (v
(k) ⊗ h(k)

i )HUn =0. (57)

The equality to zero is due to the fact that each v(k) ⊗ h(k)
i ,

i = 1, 2, · · · , Lh, is one column vector of V, and thus it is
orthogonal to the noise space.

When x /∈ Span(H(k)), we rewrite the matrix [V,v(k)⊗x]
to its column permutation version as follow

V̆=
[
v(1)⊗H(1), · · · ,v(k)⊗H̆(k), · · · ,v(K)⊗H(K)

]
, (58)

where H̆(k) = [H(k),x]. Since M > Lh and x /∈ Span(H(k)),
we know H̆(k) has full column rank. Following the discussion
in Appendix A, we know V̆ has full column rank. The
implication behind is that v(k) ⊗ x does not belong to the
column space of V. Thus, v(k) ⊗ x cannot be orthogonal to
Un, i.e., (v(k) ⊗ x)HUn 6= 0.

APPENDIX D
PROOF OF Lemma 2

The Lemma can be proved from the method of contradic-
tion. Denote xl as the lth column of X . First assume that
(B(k)(ξ)⊗xl)HUn = 0 holds, which implies that B(k)(ξ)⊗xl

belongs to the column space of V. Hence, there are ε
(k′)
l′ ,

l′ = 1, 2, · · · , Lh, k′ = 1, 2, · · · ,K, not all zero, such that

B(k)(ξ)⊗ xl =
K∑

k′=1

Lh∑

l′=1

ε
(k′)
l′ (v(k′) ⊗ h(k′)

l′ ). (59)

By extracting the rows corresponding to the mth entry of xl

and h(k′)
l′ , we obtain

xl(m)B(k)(ξ) =
K∑

k′=1

Lh∑

l′=1

ε
(k′)
l′ v(k′)h(k′)

l′ (m)

=
K∑

k′=1

v(k′)
Lh∑

l′=1

ε
(k′)
l′ h(k′)

l′ (m), (60)
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m = 1, 2, · · · ,M . Note that h(k′)
l′ (m) = H(k′)(m, l′);

thus, we can rewrite the right hand side of (60)
as

∑K
k′=1 v(k′)

(
H(k′)(m, :)ε(k′)

)
where ε(k′) =

[ε(k
′)

1 , ε
(k′)
2 , · · · , ε

(k′)
Lh

]T . Then, (60) becomes

xl(m)B(k)(ξ) (61)

=v̄ · blkdiag
(
H(1)(m, :),H(2)(m, :), · · · ,H(K)(m, :)

)
ε,

m = 1, 2, · · · ,M , where

v̄ = [v(1),v(2), · · · ,v(K)],

ε = [(ε(1))T , (ε(2))T , · · · , (ε(K))T ]T .

Denote κ = v̄−1B(k)(ξ). It can be verified that κ has no zero
entries:

Proof: From v̄κ = B(k)(ξ), we know that if the ith entry
of κ is zero, B(k)(ξ) should be represented by the remaining
K−1 columns of v̄ after removing its ith column. However,
B(k)(ξ) is not linearly related to any K−1 columns of v̄ when
ξ 6= ξ(k), which indicates no zero entry in κ.

From (61), we further obtain

xl(m)κ (62)

=
[
H(1)(m, :)ε(1),H(2)(m, :)ε(2), · · · ,H(K)(m, :)ε(K)

]T

,

m = 1, 2, · · · ,M . Then, the k′th entry on both sides of (62)
is related by

xl(m)κ(k′) = H(k′)(m, :)ε(k′), (63)

k′ = 1, 2, · · · ,K. Stacking all xl(m)κ(k′), m = 1, . . . , M
into one vector, we obtain the following K equations:

κ(k′) · xl = H(k′)ε(k′), (64)

k′ = 1, 2, · · · ,K, which implies that xl could be linearly
represented by H(k′), k′ = 1, 2, · · · ,K. In other words, xl

should be a vector that belongs to the column space of each
H(k′).

Afterwards, we assume the equation (B(k)(ξ)⊗X)HUn =
0 holds. Following the above discussion, we know that the
column space of X should be equal to the column space of
each H(k′), k′ = 1, 2, · · · ,K. This implies that all K matrices
H(k′) should have the same column space, which has zero pos-
sibility due to the random property of the wireless channels.
From the contradiction, we arrive at (B(k)(ξ)⊗X)HUn 6= 0.

APPENDIX E
PROOF OF THE FULL COLUMN RANK OF Π(ω̂|k,i, ξ̃

(k))

We equivalently prove that ΠH(ω̂|k,i, ξ̃
(k))Π(ω̂|k,i, ξ̃

(k)) is
a positive definite matrix. For any length-M non-zero vector
x, there holds

xHΠH(ω̂|k,i, ξ̃
(k))Π(ω̂|k,i, ξ̃

(k))x (65)

=
(
v(k)(ξ̃(k))⊗ x

)H
P⊥B(ω̂|k,i)

(
v(k)(ξ̃(k))⊗ x

)
.

Note that the channel matrices in the parameter sets ω̂|k,i

have full column rank, which always holds in the iterative

process. Similar to the discussion in Appendix A, we observe
that for any nonzero x, the matrix

[
B(ω̂|k,i),v(k)(ξ̃(k))⊗ x

]
(66)

has full column rank, which means that v(k)(ξ̃(k)) ⊗ x is
linearly independent with the column vectors of B(ω̂|k,i). As a
result, (65) cannot be equal to zero with any nonzero vector x.
This implies that ΠH(ω̂|k,i, ξ̃

(k))Π(ω̂|k,i, ξ̃
(k)) is a positive

definite matrix.
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