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Secure Communications in Cognitive Underlay

Networks over Nakagami-m Channel

Nam-Phong Nguyen, Tu Lam Thanh, Trung Q. Duong, and A. Nallanathan

Abstract

In this paper, the secure communication of a cognitive radionetwork (CRN) over Nakagami-m

fading channel is investigated. An underlay protocol is used in the considered network, where the

unlicensed users or secondary users (SUs) can operate simultaneously with the primary users (PUs) in

the same spectrum bands providing that the transmit power ofthe SUs is constrained by not only the

maximum tolerance interference at the PU’s receiver but also the maximum transmit power at the SU’s

transmitter. The exact closed-form expressions of important secure performance metrics, i.e., secrecy

outage probability (SOP) and secrecy capacity (SC), are derived. In addition, to give a deep insight

into the secure performance trends, the asymptotic expression of the SOP is also obtained when the

average signal-to-noise ratio (SNR) of the legitimate channel is high. It is proven that the considered

system achieves full diversity gain regardless of the number of antennas at the eavesdropper. Finally,

the correctness of our mathematical framework is verified byMonte Carlo simulations.

Index Terms

Physical layer security, cognitive radio networks, secrecy outage probability, wiretap channel, mul-

tiple antennas.

I. INTRODUCTION

Nowadays, the scarcity of spectrum resources has become more and more severe owing to the

exponential growth in the number of wireless devices and services such as tablets, smart phones,

wearable devices or video conferences. Meanwhile, according to Federal Communications Com-

mission (FCC), most of the licensed spectrum bands are underutilized [1]. As a consequence,
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it is essential to find out a new technology that can not only overcome the inefficiency of

the current radio frequency usage but also be compatible with the current spectrum management

policies and legacy wireless systems. Fortunately, cognitive radio (CR), which was introduced by

Mitola [2], holds tremendous potential for coping with these challenges by allowing unlicensed

users or secondary users (SUs) to access licensed spectrumsof primary users (PUs) under the

condition that no harmful interference is inflicted on the PUs. The spectrum underlay scheme

is one of the possible ways to enable CR networks, in which theSUs and the PUs are allowed

transmitting concurrently as long as the interference temperature at the PUs is not exceeded

a threshold. Therefore, this scheme can provide the reliable communications in the primary

networks regardless of the secondary networks operation [3]. Nevertheless, it also contains some

drawbacks such as the short coverage area or the difficultiesin ensuring reliable transmission at

the secondary networks due to the transmit power constraint. Moreover, it is worth noting that

the network is vulnerable to malicious attacks from both other SUs and PUs as a result of the

concurrent usage of the same frequency bands and the broadcasting nature of wireless channels.

To overcome the challenge of unreliable communications, space diversity such as multiple-

input multiple-output (MIMO) associated with diversity combining, i.e., maximal ratio combining

or selection combining, is used in practice to deal with small transmit power. Besides, in the

conventional wireless communications, to protect the confidential messages against eavesdrop-

ping, upper layer cryptographic approaches are typically adopted. However, it has been proven in

[4], [5] that these upper layer cryptographic scheme are more expensive and unreliable. Physical

layer security, which exploits the characteristics of wireless channels to improve transmission

security [6], has recently become an interesting solution to support the existing cryptography

protocols [7]. As a result, the secure performance of physical layer security combined with

diversity combining in multi-antenna wiretap channels, where the transmitters, the receivers

and/or the eavesdroppers deploy multiple antennas, has attracted widespread attention in the

research community (e.g., [8]–[12] and the citations therein).

In [8], the authors derived the secrecy outage probability (SOP) using the MRC technique

at both the legitimate receiver and the eavesdropper in the single-input multiple-output (SIMO)

wiretap channel. The results showed that the SOP can be significantly improved once the main

channel gain goes to infinity. An extension of [8] with multiple eavesdroppers was presented

in [9]. In [10] and [11], transmit antenna selection was presented as a cost-effective method to

enhance information security. Recently, the SOP was studied in [12] under the assumption that the
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relay is untrusted. In [13], the authors proposed a relay selection scheme for security constrained

in the CRNs with an eavesdropper. In [14], the authors proposed four different relay selection

schemes to enhance the security in the CRNs, i.e., random relay and random jammer, random

jammer and best relay, best relay and best jammer, and best relay and no jammer. The authors

in [15] compared the security performance in the CRNs of different channel state information

based relay selection schemes, i.e., optimal relay selection, sub-optimal relay selection, and

partial relay selection. While all of the above-mentioned works focused on understanding the

role of physical layer security in either the conventional wireless networks or single-antenna at

the eavesdropper and/or the legitimate receiver, the effect of multi-antenna wiretap channels on

passive eavesdropping cognitive underlay networks is still not well understood.

Recently, in [16], a cognitive wiretap radio network over Rayleigh fading channels, where

the channel state information (CSI) of the eavesdropper wasnot available at the secondary

transmitter, was investigated under the joint constraint of the maximal transmit power at the

SU and the maximal interference at the PU. However, Rayleighfading may not be useful in

a wide range of fading scenarios. Taking this into consideration, our work aims to study a

comprehensive secure performance inspired by [16] over independent and identically distributed

(i.i.d.) Nakagami-m fading channels. The choice of Nakagami-m fading, which is a general case

of Rayleigh fading, makes our analysis more adaptable to different fading scenarios. Moreover, in

this work, the most important secure performance metric in physical layer security, i.e., secrecy

capacity, is investigated along with the SOP. In particular, the exact closed-form expressions

of both SOP and SC are derived. Our work shows that the secrecycapacity can be enhanced

significantly by increasing either the number of antennas atthe legitimate receiver or the severity

parameter of the main channel.

The rest of this paper is organized as follows. System and channel models are presented in

section II. An exact closed-form expression of the system SOP is described in section III while

the asymptotic SOP is studied in section IV. Section V introduces the expression of the system

secrecy capacity. Numerical results based on Monte-Carlo methods are presented to confirm the

correctness of our analysis in section VI. Finally, we conclude this paper in section VII.

II. SYSTEM AND CHANNEL MODELS

Let us consider a cognitive underlay wiretap network consisting of a secondary transmitter

A, a secondary receiverB, an eavesdropperE co-allocated with one primary userP, as shown
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in Fig. 1. In particular,A acts as a transmitter and tries to send information toB under the

malicious attempt of the eavesdropperE. It is assumed that bothB andE are equipped with

multiple antennas, whileA and P use single antenna. The number of antennas atB and E

are denoted asNB andNE, respectively. We further define{hBt
}NB

t=1 , {hEw
}NE

w=1 ,andhP as the

channel gains fromA to B, A to E, andA to P, respectively. In this cognitive underlay network,

the transmit power of the secondary transmitterA is constrained by not only its maximum

transmit powerPm but also the maximum tolerance interference power at the primary receiver

Ip. Mathematically, we have [17]

PA = min

(
Ip

|hP|
2 ,Pm

)

. (1)

The secondary receiverB as well as the eavesdropperE uses selection combining technique

to combine incoming signals due to low complexity and high performance. As a result, the

instantaneous SNRs atB γB andE γE are given as

γB = max
t∈{1,NB}

PA

N0

|hBt
|2,

γE = max
w∈{1,NE}

PA

N0

|hEw
|2, (2)

whereN0 is the noise variance. To facilitate the notation, let us denote γp =
Ip
N0

andγ0 = Pm

N0
,

whereγ0 is the average SNR of the main channel. Without loss of generality, we assume that

γp = σγ0, whereσ is a positive constant [17]. As such, we can rewriteγB andγE as

γB = γ0min

(
σ

|hP|
2 , 1

)

× max
t∈{1,NB}

|hBt
|2,

γE = γ0min

(
σ

|hP|
2 , 1

)

× max
w∈{1,NE}

|hEw
|2. (3)

In this paper, all the channels are characterized by i.i.d. Nakagami-m flat fading. Therefore,

the power gains|hBt
|2, |hEw

|2, and |hP|
2 follow the gamma distribution with mean powerλB,

λE, λP and severity parametersmB, mE, mP, respectively. Without loss of generality, we assume

thatmB, mE, mP are integers. The cumulative distribution function (CDF) and the probability

density function (PDF) of the random variable (RV)Y , whereY ={|hBt
|2, |hEw

|2, |hP|2}, are

shown respectively as follows:

FY (y) = 1−
Γ
(

mY ,
y

ΩY

)

Γ (mY )
, (4)

fY (y) =
ymY −1

Γ (mY ) (ΩY )
mY

exp

(

−
y

ΩY

)

, (5)

whereΩY = λy

mY
andΓ(·, ·) is the incomplete gamma function [18, Eq. (8.352.6)].
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NE antennas

Fig. 1: Cognitive spectrum sharing system model.

III. EXACT SECRECY OUTAGE PROBABILITY

In this paper, we focus on the case of passive eavesdropping.Therefore, the eavesdropper’s

CSI is unknown atA. In this situation, the confidential data atA just can be encoded into

code words with constant rate ofRS. We assume slow fading for both the main channel and the

eavesdropping channel, which makes fading coefficients remain the same during one transmission

block and independently change in another. Taking this intoaccount, we define the secrecy rate

as [19]

CS =







CB − CE if γB > γE

0 if γB ≤ γE

, (6)

where the capacity of the main channel and the eavesdroppingchannel are respectively defined

as

CB = log2(1 + γB),

CE = log2(1 + γE). (7)

In passive eavesdropping, ifRS ≤ CS, perfect secrecy is guaranteed. In the other case, ifRS >

CS, information-theoretic security is compromised. Therefore, the secrecy outage probability
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(SOP) is the probability thatCS falls belowRS. As such, the SOP of the system can be given

as [19]

Pout = Pr (CS < RS) . (8)

From (6) and (7),CS can be rewritten as

CS = log2

(
1 + γB

1 + γE

)

. (9)

By substituting (9) into (8), the SOP can be written as

Pout =Pr (CS < RS)

=Pr

(

log2

(
1 + γB

1 + γE

)

< RS

)

=Pr

(
1 + γB

1 + γE
< 2RS

)

=Fγ̂ (γth) , (10)

whereγth = 2RS and γ̂ = 1+γB
1+γE

.

From (10), we see that to obtain the SOP of the considered system, we need to find out the

CDF of γ̂ which is given in the following Lemma.

Lemma 1: The CDF ofγ̂ is given as follows:

Fγ̂ (γ) = 1 +

NB∑

t=1

t(mb−1)
∑

lb=0

NE∑

w=1

w(me−1)
∑

le=0

lb∑

kb=0

(
lb

kb

)

AtAwclbcle(γ − 1)lb−kbγkb(βE + βBγ)
−(kb+le)

×

[

C exp

(

−
βB (γ − 1)

γ0

)

+D

]

Θ1, (11)
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Anx
= (−1)nx

(
Nx

nx

)

,

ck =







b0 = an0 k = 0

1
ka0

k∑

i=1

(iNB − k + i)aibk−i k ≥ 1
,

ak =
1

k!

(
1

Ωx

)k

, βB =
t

ΩB

, βE =
w

ΩE

, φ =
βB

βE
,

C =

(
1

γ0

)lb−kb
(

1−
Γ(mP,

σ
ΩP
)

Γ(mP)

)

,

B =

(
1

ΩP

+
βBσ (γ − 1)

γ0

)

,

D =
1

Γ (mP) (ΩP)
mP

(
σ

γ0

)lb−kbΓ (mP + lb − kb, σB)

BmP+lb−kb
,

Θ1 =







−βE

βE+βBγ
Γ(kb + le + 1) le = 0

−βE

βE+βBγ
Γ(kb + le + 1) + leΓ(kb + le) le ≥ 0

.

Proof: The proof is given in Appendix A.

IV. A SYMPTOTIC PERFORMANCE ANALYSIS

Although the exact closed-form expression can enable us to numerically evaluate the secrecy

performance of our considered network, it does not provide further insight into the system

performance such as diversity order. Therefore, in this section, we study the performance of

the considered system in the high SNR regime by deriving the asymptotic SOP. The main

motivation behind this is to study the impact of the maximum transmit powerPm and the

maximum interference powerIp on the secrecy communication of the considered multiple

antenna Nakagami-m channel. As we can see that the SOP of the considered system attains

full diversity gain, which is proven in the following Lemma.

Lemma 2: In the high SNR regime, the asymptotic of the SOP can be written as

P∞
out ≈ (Gaγ0)

−Gd +O(γ0
−Gd) (12)

where the secrecy diversity order is

Gd = mBNB, (13)
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the secrecy array gain is

Ga =

{
NE∑

w=1

w(mE−1)
∑

le=0

mBNB∑

q=0

(
mBNB

q

)

Awcle

(γth − 1)mBNB−qγ
q
thγp

q

(mB!)NB Γ (mP) (ΩB)mBNB
Θ2

×

[

σ−q

(

Γ(mP)− Γ

(

mP,
σ

ΩP

))

+ σ−mBNB(ΩP)
−mBNB−qΓ(mP +mBNB − q,

σ

ΩP

)

]}
−1

mBNB

,

(14)

andΘ2 =







− (q+le)!
(βE)q+le

if le = 0

− (q+le)!
(βE)q+le

+ le
(q+le−1)!

β
q+le
E

if le > 0
.

Proof: The proof is given in Appendix B.

V. SECRECY CAPACITY

In this section, we concentrate on deriving the secrecy capacity of the considered system,

which is given in the following Lemma.

Lemma 3: The secrecy capacity of the cognitive underlay multiple antennas network over

Nakagami-m channel is given as

C =
−1

log (2)

NB∑

t=1

t(mB−1)
∑

lb=0

NE∑

w=1

w(mE−1)
∑

le=0

lb∑

kb=0

lb−kb∑

db=0

(
lb

kb

)(
lb − kb

db

)

AtAwclbcle(−1)lb−kb−dy(βB)
−(kb+le)Θ3,

(15)

where

Θ3 =







ψ if le = 0

ψ + α if le > 0
, (16)

andψ andα are defined as follows:

ψ = −
Γ (kb + le + 1)

φ
×

[

CI1

(

1 +
1

φ
, kb + le + 1, kb + db − 1,

βB

γ0

)

+H

mP+lb−kb−1∑

p=0

(
σp

p!

)(
βB

γp

)p−(mP+lb−kb)

× I2(1 +
1

φ
,
γp

ΩPβB
, kb + le + 1, mP + lb − kb − p, kb + db − 1, σ

βB

γp
)

]

, (17)
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α = leΓ (kb + le)×

[

CI1

(

1 +
1

φ
, kb + le, kb + db − 1,

βB

γ0

)

+H

mP+lb−kb−1∑

p=0

(
σp

p!

)(
βB

γp

)p−(mP+lb−kb)

× I2(1 +
1

φ
,
γp

ΩPβB
, kb + le, mP + lb − kb − p, kb + db − 1, σ

βB

γp
)

]

, (18)

whereH, I1(·), andI2(·) are written as

H =
Γ (mP + lb − kb)

(γp)
lb−kbΓ (mP) (ΩP)

mP
exp

(

−
σ

ΩP

)

, (19)

I1 (a,m, n, v) =

∞∫

0

(x+ 1)n

(x+ a)m
exp (−vx) dx =







n∑

k=0

Ck
nJ (a,m, k, v) if n ≥ 0

S1 (a, 1, m,−n, 0, v) if n < 0

, (20)

I2 (a, b,m, n, k, v) =







k∑

j=0

C
j
kS1 (a, b,m, n, j, v) if k ≥ 0

S2 (a, b, 1, m, n,−k, 0, v) if k < 0

. (21)

The termsJ(·), S1(·), andS2(·) are respectively given by

J (a,m, n, v) =

∞∫

0

xn exp (−vx)

(x+ a)m
dx =

n!

vn+1−m
U (m,m− n, av) , (22)

S1 (a, b,m, n, k, v) =

∞∫

0

xk exp (−vx) dx

(x+ a)m(x+ b)n
=

m∑

i=1

AiJ (a, i, k, v) +

n∑

j=1

BjJ (b, j, k, v) ,

(23)

S2 (a, b, c,m, n, q, k, v) =

m∑

i=1

CiJ (a, i, k, v) +

n∑

j=1

DjJ (b, j, k, v) +

q
∑

o=1

EoJ (c, o, k, v) , (24)

where (22) is obtained with the help of the definition of Tricomi’s confluent hypergeometric

function, i.e.,U (a, b, z), which is defined in [18, Eq. (9.211.4)]. The termsAi, Bj , Ci, Dj, and
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Eo are partial fraction coefficients and are defined as follows:

Ai =
1

(m− i)!

d(m−i)

dx

[
xk

(x+ b)n

]∣
∣
∣
∣
x=−a

,

Bj =
1

(n− j)!

d(n−j)

dx

[
xk

(x+ a)m

]∣
∣
∣
∣
x=−b

,

Ci =
1

(m− i)!

d(m−i)

dx

[
1

(x+ b)n(x+ c)q

]∣
∣
∣
∣
x=−a

,

Dj =
1

(n− j)!

d(n−j)

dx

[
1

(x+ a)m(x+ c)q

]∣
∣
∣
∣
x=−b

,

Eo =
1

(q − o)!

d(q−o)

dx

[
1

(x+ b)n(x+ a)m

]∣
∣
∣
∣
x=−c

. (25)

Proof: The proof is given in Appendix C.

VI. NUMERICAL RESULTS AND DISCUSSIONS

In this section, simulation results based on Monte Carlo method are provided to verify the

accuracy of the above performance analysis. More specifically, the exact and asymptotic curves

of the SOP in (11), (12), and (15) are compared with the ones obtained using numerical

result. Without loss of generality, the following parameters are fixed throughout this section:

the expected rateRS = 0.5 bps/Hz,λP = 3, λB = 6, mP = 2, mB = 1, andmE = 2.

In Fig. 2, the exact and asymptotic SOP, and their numerical results versusγ0 are plotted

with fixed value ofNE and different values ofNB andσ. We can see that the analysis results

match the simulation results well. As can be clearly seen from this figure, when the number of

antennas at the secondary receiver increases the SOP decreases, which is in agreement with the

result obtained in (12). These results point out that the secrecy diversity order of the considered

system depends on the number of antennas at the secondary receiver, i.e., the larger the number

of antennas at the secondary receiver is, the better the security performance is. Fig. 2 also shows

that relaxing the ratio betweenIp andPm witnesses an increase in the SOP of the system. When

σ decreasesIp also decreases. In this situation, the transmitter has to reduce its transmit power

to protect the PU. As a result, the SNR at the receiver reducesfollowed by an increase in the

SOP. In addition, the variations in the value ofσ in Fig. 2 andNE in Fig. 3 lead to different

parallel curves of the SOP. This results prove that the secrecy diversity order is independent of

σ andNE.

The secrecy capacity of the system versusNB,NE, andσ is verified in Fig. 4, Fig. 5, and Fig. 6,

respectively. Fig. 4 points out that the secrecy capacity increases with the number of antennas
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at the secondary receiver while Fig. 5 shows that the increase in the number of antennas at

the eavesdropper has bad effect on the system’s secrecy capacity. In Fig. 6, we can see how

the secrecy capacity of the system is affected byIp andPm. By decreasing theσ parameter,

the peak interference constraint at the PU is decreased followed by an increase in the system’s

secrecy capacity.

VII. CONCLUSIONS

In this paper, secure performance of the cognitive underlaynetwork with multiple antennas

at the receiver and the eavesdropper over Nakagami-m channel has been studied. In particular,

the exact closed-form and the asymptotic expressions of theSOP have been derived. The results

showed that the secrecy diversity order of the considered system merely depends on the number

of antennas at the intended receiver and the fading parameter of the main channel. Hence, to

enhance the secure communication we solely need to increasethe number of antennas in the

secondary receiver. In addition, the secrecy capacity of the considered system is also investigated.

Finally, the numerical results are provided to validate ourcorrectness.

APPENDIX A

PROOF OFLEMMA 1

The CDF ofγ̂ is given as

Fγ̂ (γ) = Pr (γ̂ < γ) = Pr (γB < γ (1 + γE)− 1)

=

∞∫

0

γ(1+γE)−1∫

0

fγB,γE (γB, γE) dγBdγE. (A.1)

To compute the integral in (A.1), we need to find out the joint CDF of main and eavesdropping

channel. However, the joint CDF can not be obtained easily due to the dependence between

the two RVs, i.e.,γB, γE. More specifically, these RVs contain the common variable|hP|
2 as

presented in (3). To overcome this, we firstly compute the joint CDF conditioned on|hP|
2 = X.

Mathematically, we have

fγB,γE|X (γB, γE) = fγB|X (γB) fγE|X (γE) . (A.2)
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We obtain (A.2) becauseγB|X, γE|X are independent of each other. To this end, the integral in

(A.1) is re-written as

Fγ̂ (γ) =

∞∫

0

∞∫

0

γ(1+γE)−1∫

0

fγB|X (γB) fγE|X (γE) fX (x) dγBdγEdx

=

∞∫

0

∞∫

0

FγB|X (γ (1 + γE)− 1) fγE|X (γE) fX (x) dγEdx. (A.3)

From (A.3), we need to achieve the CDF ofγB|X, PDF of γE|X, and PDF ofX before

computing the CDF of̂γ.

In this paper, we assume that all channel coefficients, e.g.,hT are impaired by Nakagami-m

channel, withT = {P,B,E}. As a result,|hT|
2 follows Gamma distribution with CDF, PDF are

given as:

FY=|hT|
2 (y) = 1−

Γ
(

mT,
y

ΩT

)

Γ (mT)

= 1− exp

(

−
y

ΩT

)mT−1∑

lt=0

1

lt!

(
1

ΩT

)lt

ylt

= 1− exp

(

−
y

ΩT

)mT−1∑

lt=0

alty
lt, (A.4)

fY=|hT|
2 (y) =

ymT−1

Γ (mT) (ΩT)
mT

exp

(

−
y

ΩT

)

, (A.5)

where

alt =
1

lt!

(
1

ΩT

)lt

,ΩT =
λT

mT

.

We obtain (A.4) with the help of [18, Eq. (8.352.6)].

Besides, from (3), we have

γB|X = γ0min
( σ

X
, 1
)

× max
n∈(1,NB)

(
|hBn

|2
)

= u× max
n∈(1,NB)

(
|hBn

|2
)
, (A.6)

whereu = γ0min
(
σ
X
, 1
)
.
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From (A.6), the CDF of SNR atB conditioned onX is given as

FγB|X (γ) = Pr(γB|X < γ)

= Pr

(

u× max
t∈(1,NB)

(
|hBt

|2
)
< γ

)

= Pr

(

max
t∈(1,NB)

(
|hBt

|2
)
<
γ

u

)

= F max
t∈(1,NB)

(|hBt
|2)

(γ

u

)

=
[

F|hB|
2

(γ

u

)]NB

=

[

1− exp

(

−
γ

uΩB

)mB−1∑

lb=0

alb

(γ

u

)l
]NB

= 1 + exp

(

−
tγ

uΩB

) NB∑

t=1

t(mB−1)
∑

lb=0

Atclb

(γ

u

)lb
, (A.7)

whereAny
= (−1)nyC

ny

Ny
and ck =







b0 = an0 if k = 0

1
ka0

k∑

i=1

(iNy − k + i) aibk−i if k ≥ 1
.

We obtain (A.7) with the assistance of binomial expansion and [18, Eq. (0.314)]. Similarly, CDF

of γE|X is calculated as

FγE|X (x) = 1 + exp

(

−
wx

uΩE

) NE∑

w=1

w(mE−1)
∑

le=0

Awcle

(x

u

)le
. (A.8)

The PDF ofγE|X can be calculated by deriving the CDF ofγE|X. Mathematically, we have

fγE|X (x) =
1

u
exp

(

−
wx

uΩE

) NE∑

w=1

w(mE−1)
∑

le=0

AwcleΘ0, (A.9)

whereΘ0 =







−βE
(
x
u

)le if le = 0

−βE
(
x
u

)le
+ le

(
x
u

)le−1
if le > 0

.
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Substituting (A.5), (A.7), and (A.9) into (A.3), the CDF ofγ̂ is given as follows:

Fγ̂ (γ) =

∞∫

0

∞∫

0

(

1 + exp

(

−
t (γ (1 + y)− 1)

uΩB

) NB∑

t=1

t(mB−1)
∑

lb=0

Atclb

(
(γ (1 + y)− 1)

u

)lb





×




1

u
exp

(

−
wy

uΩE

) NE∑

w=1

w(mE−1)
∑

le=0

AwcleΘ0




xmP−1

Γ (mP) (ΩP)
mP

exp

(

−
x

ΩP

)

dydx

(a)
= 1 +

NB∑

t=1

t(mB−1)
∑

lb=0

NE∑

w=1

w(mE−1)
∑

le=0

lb∑

kb=0

(
lb

kb

)

(γ − 1)lb−kbγkbAtAwclbcleΘ1(βBγ + βE)
−(kb+le)

×

∞∫

0

(

1

γ0min
(
σ
x
, 1
)

)lb−kb

exp

(

−
βB (γ − 1)

γ0 min
(
σ
x
, 1
)

)

xmP−1

Γ (mP) (ΩP)
mP

exp

(

−
x

ΩP

)

dx

(b)
= 1 +

NB∑

t=1

t(mB−1)
∑

lb=0

NE∑

w=1

w(me−1)
∑

le=0

lb∑

kb=0

(
lb

kb

)

AtAwclbcle(γ − 1)lb−kbγkb

× (βE + βBγ)
−(kb+le)

[

C exp

(

−
βB (γ − 1)

γ0

)

+D

]

Θ1, (A.10)

whereβB = t
ΩB
, βE = w

ΩE
, φ = βB

βE
, C =

(
1
γ0

)lb−kb
(

1−
Γ
(

mP,
σ
ΩP

)

Γ(mP)

)

,B =
(

1
ΩP

+ βB(γ−1)
γp

)

,D =

1
Γ(mP)(ΩP)

mP

(
1
γp

)lb−kb Γ(mP+lb−kb,σB)

BmP+lb−kb
, andΘ1 =







−
(

βe

βe+βyγ

)

Γ(kb + le + 1) if le = 0

−
(

βe

βe+βyγ

)

Γ(kb + le + 1) + leΓ(kb + le) if le > 0
.

The manipulation in(a) and (b) are achieved with the support of binomial expansion and [18,

Eq. (3.351)].

APPENDIX B

PROOF OFLEMMA 2

To prove the Lemma 2, we firstly expand the first order of CDF of Gamma RVY = |ht|
2 as

FY (y)
y→0
≈

1

mt!

(
y

Ωt

)mt

. (B.1)

By applying (B.1) into the CDF ofγB|X , we have

FγB|X
(x) ≈

[
1

mB!

(
x

ΩB

)mB
]NB

=
1

(mB!)
NB

(
x

ΩB

)mBNB

. (B.2)

To this end, the asymptotic of SOP is computed by substituting (B.2) into (A.9) and (A.5). After

some manipulations, we reach (12), which concludes our proof.
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APPENDIX C

PROOF OFLEMMA 3

The secrecy capacity is computed by solving following integral

C =
1

log (2)

∞∫

1

log (γ) fγ̂ (γ) dγ

(a)
=

1

log (2)



 log (γ)Fγ̂ (γ)|
∞
1

︸ ︷︷ ︸

→0

−

∞∫

1

1

γ
Fγ̂ (γ) dγ





(b)
=

−1

log (2)

∞∫

0

1

x+ 1
Fγ̂ (x+ 1) dx

=
−1

log (2)

NB∑

t=1

t(mB−1)
∑

lb=0

NE∑

w=1

w(me−1)
∑

le=0

lb∑

kb=0

lb−kb∑

dy=0

(
lb − kb

dy

)(
lb

kb

)

(−1)lb−kb−dy(βB)
−(kb+le)AtAwclbcle

×

∞∫

0

(x+ 1)dy+kb−1(
φ−1 + 1 + x

)−(kb+le)

×




C exp

(

−
βB

γ0
x

)

+H exp

(

−
σβB

γp
x

)mP+lb−kb−1∑

p=0

σp

p!

(
βy

γp

)p−(mP+lb−kb)

(

x+ γp
βyΩx

)mP+lb−kb−p




∆dx

(c)
=

−1

log (2)

NB∑

t=1

t(mB−1)
∑

lb=0

Ne∑

w=1

w(me−1)
∑

le=0

lb∑

kb=0

lb−kb∑

dy=0

(
lb

kb

)(
lb − kb

dy

)

AtAwclbcle(−1)lb−kb−dy(βB)
−(kb+le)Θ3,

(C.1)

where

∆ =







−φ−1
(
φ−1 + 1 + x

)−1
Γ (kb + le + 1)

︸ ︷︷ ︸

Â

if le = 0

Â + leΓ (kb + le) if le > 0

.

The step(a) is obtained by using integral by part and the termlog (γ)Fγ̂ (γ) goes to zero

while γ → ∞ with the help of L’ Hospital rule. The step(b) is computed by changing variable

x = γ−1. After some manipulations,(c) is computed by using partial fraction method combined

with the definition of Tricomi’s confluent hyper-geometric function, i.e.,U (a, b, z), which is

defined in of [18, Eq. (9.211.4)].Θ3 is provided in (15). Finally, we can complete our proof.
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Fig. 2: Secrecy outage probability with differentNB andσ values.
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