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Abstract—With the increasing number of mobile devices, mobile crowdsensing (MCS) has garnered significant attention in research.
However, computing infrastructures such as edge/cloud nodes, which are necessary for processing sensor data, are not always readily
available. To address this issue, we propose a cooperative computing framework that enables the offloading of sensor data to nearby

mobile devices with unused computational resources (known as helpers) for processing. Our approach considers a scenario with
multiple sources and multiple helpers, where computational tasks can be partially offloaded to several helpers. We jointly optimize task
offloading strategy, communication resources, and computational resources to minimize the weighted sum energy consumption of
mobile devices. We model the optimization problem as a mixed-integer nonlinear programming (MINLP), with the source-helper
assignment solved using a distributed algorithm based on matching theory, and the joint task partition and resource allocation problem
solved using an alternating optimization (AO) method. Simulation results demonstrate the efficacy of our cooperative computing
framework and scheduling scheme, which offer significant advantages over local computing in terms of reducing the weighted sum

energy consumption and improving the task completion ratio.

Index Terms—Mobile crowdsensing (MCS), cooperative computing

1 INTRODUCTION

OBILE crowdsensing (MCS) is emerging as a promis-
M ing paradigm for a wide range of applications, thanks
to the rapid development of the Internet-of-Things (IoT),
embedded artificial intelligence, integrated sensing and
communication (ISAC) technology, and the proliferation
of mobile devices. This convergence of technologies has
enabled large-scale and real-time data sensing [1], signifi-
cantly improving the daily lives of citizens and providing
fresh perspectives for urban societies [2]. In contrast to
traditional sensor networks like IoT, which are the primary
candidates for deploying sensing infrastructure for smart
city applications, MCS stands out for three key character-
istics: mobility, crowd participation, and diverse sensing
tasks. The dynamic nature of mobile devices necessitates
the development of strategies to adapt to their movements
and changing environmental conditions. By leveraging the
power of crowds, MCS utilizes the built-in sensors of mobile
devices to collaboratively perform sensing tasks, eliminating
the need for dedicated sensing devices. Furthermore, the
diverse range of mobile devices with their multitude of
sensors enables MCS to handle a wide variety of sensing
tasks. As a result, MCS offers several advantages, including
low network costs, flexible deployment, and easy mainte-
nance. Its applications span various domains, such as traffic
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Fig. 1. lllustration of MCS in the absence of power computing infrastruc-
ture.

management [3], environment monitoring [4], and collision
warning [5].

The state-of-the-art techniques in MCS have primarily
focused on various aspects. Due to differences in location
and data accuracy of mobile devices, some researchers have
studied the assignment problem of sensing tasks [6], [7].
The authors in [8], [9], [10] have investigated the issues
of user privacy and data aggregation. Additionally, data
analysis plays a crucial role in extracting useful information
from various types of user sensor data [11], [12]. However,
it is worth noting that most of the current research pre-
dominantly focuses on the sensor data aspect, with little
consideration given to the computation of data itself.

As the volume of sensor data grows, mobile devices are
typically incapable of processing it by themselves [13], [14],
[15]. To tackle this challenge, conventional solutions like
mobile edge computing (MEC) [16], [17], fog computing
[18], and cloud computing [19] have been proposed. Nev-
ertheless, accessing a powerful computing infrastructure is
not always convenient or readily available for all scenarios
[20], [21], [22], [23]. Therefore, the network needs to be
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capable of processing sensor data using its own computa-
tional resources. Bearing in mind that due to the mobility
and random distribution of devices in MCS systems, not
all devices are suitable for participating in sensing tasks at
a given time. This means that sensing tasks are assigned
to specific mobile devices selectively [6], [7] and the com-
putational tasks typically occur sporadically or impulsively
[24], it implies that there might be idle devices within
the network that can provide additional computational re-
sources. This specific advantages has inspired us to propose
a mobile cooperative computing framework that can adapt
to situations where access to powerful computing nodes is
absent, as depicted in Figure 1. Specifically, we group the
mobile sensing devices in MCS into source devices (SDs)
and helper devices (HDs) during each time slot. A portion
or even all of the computational tasks at the SDs can be
offloaded to nearby helpers. By doing so, we can leverage
the computational resources available on idle devices to
execute computational tasks beyond the capabilities of a
single device. Consequently, this approach eliminates the
dependency on edge/cloud computing servers.

To fully exploit the benefits of our center-less cooperative
computing framework, it is crucial to carefully design both
the task offloading strategy decision and the allocation of
communication and computational resources. Numerous re-
searchers have investigated resource scheduling schemes in
similar frameworks. For instance, authors in [25] proposed
an efficient low-complexity algorithm to solve the resource
allocation problem in ISAC-aided wireless ad hoc networks,
aiming to achieve lower transmission delay. In [26], the con-
trol of power allocation, sensing, compression, and trans-
mission was jointly investigated within a wirelessly pow-
ered crowdsensing framework. However, jointly optimizing
coupled variables in the proposed distributed system is
still a challenging task due to several factors. Firstly, the
formulation of the proposed framework takes into account
all design requirements and constraints pertaining to both
communications and computations. The optimization of
coupled variables gives rise to a highly complex mixed-
integer nonlinear programming (MINLP) problem, which
is notoriously difficult to solve. Secondly, the absence of
centralized scheduling in the distributed system, coupled
with the need to schedule multiple resources, can lead
to substantial overhead during information interaction for
scheduling purposes. If the scheduling schemes employed
are not rational, there is a risk of the sensing tasks not being
completed on time.

In order to facilitate the on-time computational task exe-
cution for the system in the absence of powerful computing
infrastructure, we conceive a novel cooperative computing
framework, which enables the source-helper assignment
and task partition as well as communication and computa-
tional resource allocation in a distributed manner. The main
contributions of this paper are highlighted as follows.

o Cooperative computing framework design: We propose
a cooperative computing framework for MCS that
leverages orthogonal frequency division multiple ac-
cess (OFDMA)-based device-to-device (D2D) links
for task offloading. This is the first treatise jointly
considering offloading strategy decision and re-
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source allocation problem for distributed MCS sys-
tems. The weighted sum energy consumption of
all sensing and computing devices is minimized,
by jointly optimizing the offloading strategy, in-
cluding source-helper assignment and task partition,
the communication resource allocation, including the
sub-carriers and transmission power, and the com-
putational resource allocation, subject to the appli-
cation delay constraint. The optimization problem is
formulated as a MINLP problem, which is solved by
a sophisticated solution that uses a matching theory-
based distributed algorithm to partition the mobile
devices into several clusters, while optimizing the re-
maining variables using an alternating optimization
(AO) method.

o Cooperative computing cluster formulation algorithm: To
reduce the overhead of information interaction, we
design a dispersive resource efficiency based source-
helper assignment (DRESHA) algorithm for solv-
ing the source-helper assignment problem. Specifi-
cally, helpers are assigned to SDs to form multiple
non-overlapped cooperative computing clusters, and
then some helpers may be reassigned within clusters
based on the task partition result. The cooperative
computing clusters are obtained after a number of
iterations, until the convergence is attained.

o Task partition and resource allocation algorithm: To solve
the weighted sum energy consumption minimiza-
tion problem in each cooperative cluster, we pro-
pose a joint task partition and resource allocation
(JTPRA) algorithm, which decomposes the original
problem into two subproblems, namely, task par-
tition problem and resource allocation problem. A
low-complexity solution was proposed relying on the
AO method.

o Numerical validations and evaluations: Extensive nu-
merical results are presented to demonstrate the ef-
fectiveness of the proposed framework and schedul-
ing scheme proposed, showing significant reductions
in energy consumption while ensuring task comple-
tion ratios under given delay constraints.

The remainder of the paper is structured as follows: Sec-
tion 2 presents the related works of cooperative computing,
Section 3 introduces the system model and problem formu-
lation, Section 4 explains the cooperative computing cluster
formulation algorithm, Section 5 proposes a solution for the
weighted sum energy consumption minimization problem
in each cluster, Section 6 presents numerical results obtained
from simulations, and finally, Section 7 summarizes our
findings and draws conclusions.

2 RELATED WORKS

In this section, the related works of cooperative computing
are reviewed by classifying them into MCS, D2D-enabled
MEC, and fog computing scenarios, as follows.

2.1 Cooperative Computing in MCS

As sensor data becomes increasingly complex and fine-
grained, computing offloading techniques are introduced to
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enhance MCS, reducing time delays and high bandwidth
costs. In recent years, most work has been done under
the framework of centralized servers [27], [28], [29], such
as MEC, fog computing, and cloud computing. For ex-
ample, Zhou et al. [30] combined deep learning and edge
computing techniques with MCS to provide robust data
validation and local data processing. To preserve privacy
and deal with malicious participants, Ma et al. [31] proposed
two privacy-preserving reputation management schemes
for edge computing enhanced MCS. In [32], the authors
proposed a novel framework integrating mobile sensing and
crowd computing, utilizing the crowd to solve problems
without involving cloud servers in the backend. While the
authors verified the feasibility of the framework, they did
not address the resource scheduling issues inherent in the
framework. This consolidate our motivation to study the
problem of offloading strategy decision and resource alloca-
tion in generic scenarios.

2.2 Cooperative Computing in D2D-enabled MEC

Similar to our mobile cooperative computing framework for
MCS, there has been some researches on D2D-enabled MEC,
which allows mobile devices to offload tasks to neighboring
devices via D2D communication links. Specifically, Chen
et al. [33] proposed a novel D2D crowd framework with
a bipartite-matching-based binary task assignment policy,
but without considering communication and computational
resource allocation. Furthermore, He et al. [34] conceived
a resource allocation scheme for an OFDMA-based D2D-
enabled MEC scenario, where the number of devices sup-
ported by the cellular networks is maximized by jointly
optimized task splitting, transmission power, and compu-
tational resource, but they limited the number of available
D2D links per task device. For eliminating this shortage,
a D2D-enabled single-user and multi-helper MEC system
was proposed in [35], the computing delay is minimized by
optimizing users task assignment jointly with the time and
rate for task offloading, as well as the computing frequency.
Authors in [36], [37] studied a multi-user cooperative mobile
edge computing offloading system, in order to minimize
the total energy consumption of all mobile users under
the delay constraint, a two-level alternation method frame-
work was proposed to solve the challenging optimization
problem. However, these aforementioned studies deal with
offloading strategy and resource allocation in a centralized
manner, which is not feasible for the center-less architec-
ture of our proposed framework. Therefore, it is necessary
to design a distributed scheduling scheme for the mobile
cooperative computing framework in MCS.

2.3 Cooperative Computing in Fog Computing

The task offloading strategy has been extensively researched
in the field of fog computing due to the high demand for
computing offloading from mobile devices, the limited
number of tasks that a single fog node can support requires
the collaboration of multiple fog nodes through cooperative
computing. To optimize the use of fog computing, various
offloading strategies have been studied in the past few
years. Most existing scheduling schemes utilize self-
organizing distributed methods such as game theory [38],
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[39], [40] and matching theory [41], [42], [43]. Unfortunately,
the majority of these studies focus on the offloading strategy
component and do not consider resource allocation. For
instance, Chen [38] proposed a game theory-based
approach to the distributed computing offloading decision-
making problem in a multi-channel wireless interference
environment. In [41], a matching-theory based distributed
algorithm was introduced to solve the joint source-helper
assignment and task partition problem in a heterogeneous
fog network. While there are some differences between the
these studies and the problem at hand, their distributed
algorithm design ideas are valuable references for this

paper.

In summary, previous researches have focused on cen-
tralized server frameworks, but we propose a distributed
scheduling scheme for cooperative computing in MCS,
considering both offloading strategy decision and resource
allocation. We draw inspiration from game theory-based ap-
proaches and matching-theory based algorithms in fog com-
puting. Our contribution fills the gap in existing research
by addressing resource scheduling issues and proposing a
center-less architecture for cooperative computing.

3 SYSTEM MODEL AND PROBLEM FORMULATION

As shown in Figure 2, we consider an MCS scenario, com-
prising |U| single-antenna mobile sensing devices. A subset
of these devices is responsible for executing sensing tasks
within a specified delay constraint. The offloading strategy
decision and resource allocation are based on time slots as
the fundamental unit [44], [45], [46]. As depicted in Figure
3, each time slot consists of two phases, namely, sensing
and computing phases. In the sensing phase, mobile devices
gather sensor data, which is subsequently processed in the
computing phase. It is assumed that the data processing
must be completed within a duration of 7. During the
computing phase, mobile devices are categorized into two
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types: SDs and HDs. To elaborate, SDs refer to the devices
engaged in sensing tasks during the sensing phase, denoted
by set N. The remaining idle devices are referred to as
HDs and are represented by set K (i.e, Y = K UN). Each
HD can assist at most one SD in any given time slot .
For ease of reference, we use K,, to denote the set of HDs
assigned to SD n, forming a cooperative computing cluster
as illustrated in Figure 2. The notation {0} U KC,, represents
all mobile devices in the n-th cluster, where the element 0
is the cluster head (i.e., SD n). In this notation, subscript 7y,
indicates mobile device k within cluster {0} U KC,,. Similar
to most of the previous works [17], [48], [49], [50], [51], we
assume partial offloading for each SD. To enable concurrent
task offloading and effective utilization of channel resources,
communication for task offloading is carried out using the
OFDMA scheme, which comprises | M| orthogonal sub-
carriers. Additionally, we assume that the sub-carriers can-
not be reused in SD-HD links. The sub-carriers assigned to
the n-th cluster are denoted by M,,.

3.1 Channel Model

The channel gain h;", between mobile device a and b over
the sub-carrier m is modeled as the product of path loss T,
and small-scale fading coefficient g;",, i.e.,

m m 2
ha,b = Ta,b|ga,b| . (1)
Here, the path loss is determined by the distance between
the two mobile devices, represented by d,, 1, and is given by
Ty =Td§ )

a,b’

where T denotes the average channel power gain at the
reference distance of one meter, and ¢ is the path loss
exponent. Small-scale fading is assumed to be independent
and identically distributed (i.i.d.) and follows a complex
Gaussian distribution having zero mean and unit variance.
We assume a block fading channel model. In other words,
the channel gain between any two mobile devices remains
unchanged during each time slot.

3.2 Computing Model

The computational task of SD n can be represented as a two-
tuple {V,,, C,,}, where V,, denotes the input data size of the
task, and C,, denotes the number of CPU cycles required to
compute one bit of the task. The deadline of all tasks is the
duration of cooperative computing phase 7'. In this paper,
we consider the partitionable tasks, where the input data
can be arbitrarily partitioned for parallel processing. The
computational task of SD n can be divided into multiple
fractions for local computing and for cooperative comput-
ing, respectively. Denoting by V,,, the data size of the task
to be computed on mobile device ny, we have

|Kn |

Vi =Vag + Y V. 3)
k=1

1. In many-to-many task offloading framework (e.g. [47]), overlapped
clusters require coordination in resource allocation during scheduling.
This leads to information sharing between clusters. In a multi-carrier
system, these interactions can be expensive, particularly given mobile
devices’ processing capabilities. Hence, as a practical compromise, we
adopt this assumption.
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In addition, denoting by f,, the computing capability of
mobile device ny in terms of CPU cycles per second, the
delay for computing can be readily formulated as

Vnk Cn
for

Upon assuming the dynamic voltage and frequency scaling
techniques used [52], the energy consumption of per CPU
cycle becomes 4, =k fka, where £ is the energy coefficient
that depends on the integrated chip structure. Therefore, the
energy consumption for computing can be given by

oy (Vnk ) fnk) = Vnk Onank . (5)

tow Vas fr) = (4)

3.3 Data Transmission Model

Let o € {0,1} be a binary indicator of the sub-carrier
allocation for the D2D link between SD n and HD ng,
where «;;) = 1 indicates that sub-carrier m is allocated
to the link, while a; = 0 otherwise. We have M, =
{mla =1,vm € M,Vk € K, }. Since the rapid develop-
ment of source coding [53] and data compression [26] tech-
nologies, and the data size of computing outcomes is much
smaller than that of the input data, its transmission time can
be either neglected or regarded as a small constant that does
not affect our analyses [54].

As the sub-carriers are not reused within D2D links, the
receive signal noise ratio (SNR) of HD n; from SD n on
sub-carrier m becomes

m m b Zlk: h;ﬁ) Nk
SNRnk (pﬂk) = T’ (6)
where p;' is the transmission power of SD n allocated to
HD ny, on sub-carrier m, and o2 is the power of the additive
white gaussian noise (AWGN). The maximum achievable
transmission data rate is given by

Mol
Z ! Blog, (L+SNR]),  (7)

Tnk ’I’L)C ) Z)’I’LJC
where B is the bandwidth of each sub-carrier.

The total cooperative computing delay consists of the
transmission delay and the computing delay. The transmis-
sion delay can be expressed as

Vi
o (Vos ot pi ) = —2, 8)

Tny,

Similarly, the total energy consumption is composed of
transmission energy consumption and computing energy
consumption. The transmission energy consumption is
given by
M|
ff ff
ezk (Vnkaank?pnk - tO Z ankpnk (9)

3.4 Weighted Sum Energy Consumption Minimization
Problem Formulation

The network lifetime is a non-negligible performance metric
for wireless sensor network, due to the limited energy
capacity of devices [55], hence our goal is to minimize
the weighted sum energy consumption, by performing
jointly optimizing source-helper assignment, task partition,
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sub-carrier allocation, transmission power allocation, and
computing frequency allocation. The weighted sum energy
consumption in the n-th cooperative computing cluster is
given by

(I)n (]C’n) Vnk7f"k’azlk’pzlk)

|KCn | IKnl (10)
=D A€+ > gty
k=0 k=1

where the positive weighting factors \,,, account for fair-
ness among devices based on their remaining battery life.
Mathematically, the total weighted sum energy consump-
tion minimization problem can be formulated as

V]
PO : min d = P, 11a
s P=2 (U

L T
{erm Hopi
st to¢ <T,Vn e N, (11b)

texe 427 < T Wk € K,V € N,

(11¢)
Kn N Ky =0,Yn # 1/, (11d)
Y
U K. ck, (11e)
n=1
IKnl
Va :Vno +ZVnk,Vn€N, (11f)
k=1
0<V,, <Vo,Vke {0} UK,,VneN,
(11g)
0 § fnk S fmax,Vk € {0} UlCn,Vn - N,
(11h)
a;t € {0,1},Ym € M,Vk € K,
VYn e N, (11i)
[N Knl
SN ar <1.¥meM, (1))
n=1 k=1
[Kn| |Mn]
Z Z azlkpzlk S pmaX7vn S N,
k=1 m=1
(11k)
0 < pp < Pmax, Ym € M, Vk € IC;,,
VYn € N. (111)

Here, constraints (11b) and (11c) ensure that the task exe-
cution delay of SD does not exceed the maximum tolerable
delay. Constraint (11d) guarantees each HD can be assigned
to at most one SD, and constraint (11e) indicates all assigned
HDs must come from the original HD set. Constraint (11f)
guarantees that the task partition sizes add up to the original
task size. Constraints (11g), (11h), and (111) give the bounds
on task dividing, computing capability, and transmission
power, respectively. Constraint (11j) enforces that each sub-
carrier can only be allocated to at most one D2D link. Finally,
constraint (11k) implies that the sum transmission power
does not exceed the total power constraint for each SD.
Table 1 presents a summary of the key notations used in
this paper.

Transactions on Mobile Computing

5
TABLE 1
List of key notations
Symbol Definition
T Delay limit of computational tasks
u Set of mobile sensing devices
N Set of SDs
K Set of HDs
Kn Set of HDs in n-th cluster
M Set of orthogonal sub-carriers
M Set of sub-carriers assigned to n-th cluster
haty Channel gain between device a and b on sub-carrier m
hah, Location-based channel gain between device a and b
Tap Path loss between device a and b
T Average channel power gain at the reference distance of 1 m
da b 3D distance between device a and b
€ Path loss exponent
gy Small-scale fading between device a and b on sub-carrier m
Vn Input data size of task n in bit
Chn Computing complexity of task n in CPU cycle
Vi Offloading partition size of task n to device ny,
fry Computing capability of device nj,
fmax Maximum computing frequency of each device
toe Delay of device nj, for computing
On,y, Energy consumption by each CPU cycle of device n
K Energy coefficient of computing
€y Energy consumption of device ny for computing
gy, Indicator if sub-carrier m allocated to SD n and HD ny
SNRy, SNR between SD n and HD nj, on sub-carrier m
Phy Transmission power of SD n to HD nj, on sub-carrier m
Pmax Maximum transmission power of each device
a2 Additive white Gaussian noise
Tny Transmission data rate from SD n to HD ny,
B Bandwidth of sub-carrier
t?f: Delay of transmission task to HD ny,
e%i Energy consumption of transmission task to HD n,
@5 Weighted sum energy consumption in n-th cluster
0 Resource efficiency
Any Weight factor of mobile device ny,
Vi Lagrange multiplier of constraint (25¢) in P1-2C"
W Lagrange multiplier of constraint (12f) in P1-2C”
n Lagrange multiplier of constraint (12i) in P1-2C”
ug Auxiliary variable for P1-2C"
B Auxiliary variable for P1-2C”
€ Convergence criterion

Remark 1. Problem PO is a MINLP problem and does not have
an exact solution in polynomial time. Based on further analysis of
PO, the following features can be found. First, the task partition
and resource allocation results can vary depending on the source-
helper assignment decisions. Second, the performance of source-
helper assignment cannot be evaluated until the task partition
and resource allocation results are generated. Finally, the number
of assigned HDs in each cluster does not follow the principle of
“the more, the better” since the task is offloaded to HDs with
the lowest weighted energy consumption, and assigning too many
inefficient HDs does not aid in reducing the weighted sum energy
consumption.

A distributed scheduling scheme is proposed to ad-
dress Problem P0. The scheme consists of two algorithms,
namely, a matching theory-based distributed algorithm
called DRESHA to solve the cooperative computing clus-
ter formulation (source-helper assignment) problem in the
outer loop, and a JTPRA algorithm, aiming to solve the joint
task partition and resource allocation problem in each clus-
ter, in the inner loop. The scheme comprises the following
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three phases.

(1) Cooperative Computing Cluster Formulation: A dis-
tributed source-helper assignment scheme is utilized
to determine the HD set KC,, for any SD, forming co-
operative computing clusters based on the resource
efficiency;

(2) Joint Task Partition and Resource Allocation: After
determining source-helper assignment, the task par-
tition and resource allocation problem P1 is formu-
lated in each cooperative computing cluster, and its
sub-optimal solution can be obtained by solving the
problem below

IKCal Il
PL: mifn A€+ 3 Apyed, (12a)
an,ﬁ:pﬁ: k=0 k=1
s.t. 12 < T, (12b)
texe 42 < T,k € Kn, (12¢)
Il
Vi =Vag + > Vo, (12d)
k=1

0< Vy, <V, ¥k € {0}UK,, (120

0 < far < fmax, Vk € {0} UK, (121)

an: € 40,1}, Ym € M,,,Vk € K, (12g)

Ko

> o <1,¥me M, (12h)

k=1

[Knl |Knl

SN anpl < Pmaxs (12i)

k=1 m=1

0 < pn' < Pmax, ¥m € My, Vk € Kp;
(12))

(3) Redundant HDs Rejection: To remove redundant
HDs in each cooperative computing cluster, only
HDs that have been assigned with a task are accepted
by the SD, HDs without assigned tasks are rejected
and may subsequently be assigned to other clusters
in the next iteration.

The details of phases (1) and (3) are provided in Section
4, while the detail of phase (2) is shown in Section 5.

4 COOPERATIVE COMPUTING CLUSTER FORMU-
LATION

The challenges associated with the formulation of cooper-
ative computing clusters are as follows: i) the weighted
sum energy consumption cannot be calculated until the
source-helper assignment is complete, owing to the strong
coupling of the optimization variables; ii) source-helper
assignment is a combinatorial optimization problem, which
is NP-hard; and iii) information interaction is a significant
burden in the distributed systems if centralized methods
are used. Therefore, it is intractable to obtain the globally
optimal solution. To overcome these difficulties, we propose
the DRESHA algorithm, which is based on the matching
theory. We introduce the resource efficiency to describe the
preference of HDs to SDs, which is calculated using easy-to-
access information such as device location, task complexity,
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and remaining battery life. The source-helper assignment
problem is formulated as a many-to-one matching problem,
and the DRESHA algorithm is used to obtain a helper-
optimal [56] solution for source-helper assignment in a
distributed manner.

4.1 Preliminary of Matching

Bipartite matching problems with two-sided preferences is
to map agents of one set to agents of the another disjoint
set. The source-helper assignment problem considered can
be readily formulated as a many-to-one bipartite matching
between the set of SDs N and the set of HDs K, where
each HD £ is allowed to choose almost one SD from set V.
Formally, the source-helper assignment matching problem
can be defined as follows.

Definition 1. The source-helper assignment matching is defined
as a many-to-one mapping function p from set N'U K into the set
of all subsets of N'U K such that:

o Foreveryagentn € N, | (n)| < |K|and pu(n) € 2;

o Foreveryagentk € K, |p (k)| < 1and u(k) € N UG;

o n = p(k)ifand only if k € p(n).

The stable matching theory is based on preference re-
lation, which is a strict, transitive, and complete relation
between agents from two disjoint sets. We use k >, k' to
denote the preference ordering if agent n prefers agent k to
k'; Given a set of agents H C KC, let Ch,, (H) denote n’s most
preferred subset of H according to its preference relation.
Stability is considered a fundamental requirement in any
sensible matching, which means no agent has incentives to
deviate from the matching result. The specific definitions for
stability are as follows.

Definition 2. A matching function p is stable, if there exists
no blocking pair (n,k): if k ¢ u(n),n ¢ wu(k), such that k €
Ch,, (u(n) Uk) and n = p (k).

4.1.1 Preference of HD to SD
Furthermore, acquiring and exchanging channel state in-
formation of all D2D links is a crucial task that incurs a
complexity overhead of O (|[N]|K||M]). To reduce the cost
of information interaction and complexity of the algorithm,
we use location-based channel gain instead of actual chan-
nel gain in the source-helper assignment scheme, and it is
pressed as . .

hay =~ Yap = Td, 5, (13)

basing on the location-based channel gain we can define
resource efficiency as following.

The primary objective of source-helper assignment is to
reduce the weighted sum energy consumption. HDs prefer
to provide task offloading services to SDs with lower energy
consumption. However, achieving weighted energy effi-
ciency is not possible until resource allocation is complete.
Thus we use resource efficiency to indicates the affection of
HD on SD, and it is defined as

0(n, k) =

1
% + M\ekCh
Blog, (1—5——;%)

(14)

Therefore, the preference of HD to SD can be constructed as
n=rn,0(n,k)>0(mn k), Vkek. (15)
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4.1.2 Preference of SD to HD

Then, the preference of SD to HD depends on the task
partition result given by the JTPRA algorithm, which is
constructed as

k>n k:’,Vnk>0anan;€:O,Vn€N. (16)

4.2 Dispersive Resource Efficiency based Source-
Helper Assignment Algorithm

Based on the classical Gale-Shapley algorithm, the DRESHA
algorithm is proposed to solve the source-helper assign-
ment problem, and the task partition and resource alloca-
tion results are obtained by JTPRA within each iteration.
The overall working flow is depicted in Algorithm 1. The
outputs are the results of source-helper assignment {,,},
task partition {V,, }, sub-carrier allocation {@ }, trans-
mission power allocation {p" }, and computing frequency
allocation {f,, }. Initially, all ‘mobile devices exchange the
necessary information so that HDs can set up preference
lists (steps 3-5). Then, each unassigned HD sends a proposal
to the most preferred SD that has not proposed yet (steps
8 and 9). After all unassigned HDs send proposals, the
cooperative computing clusters are formulated, and the joint
task partition and resource allocation problem is solved
by the JTPRA algorithm, and SD rejects HDs that are not
assigned with any tasks (steps 13-17). After rejecting all
redundant HDs in each cluster, new cooperative computing
clusters are formulated. The algorithm repeats the above
steps until all cooperative computing clusters converge.

4.3 Stability and Complexity Analysis

For stability and complexity, there are two key results as
follows.

Proposition 1. The DRESHA algorithm is stable.

Proof. The proposition can be proved by contradiction.
Suppose there is a blocking pair (n, k). Since n =5 p(k),
HD n must have proposed to SD n (steps 8 and 9), if SD n
accept HD k in the end, k ¢ p (n) will not hold. On the other
hand, SD n reject HD k in the end, k € CH,, (2 (n) U k) will
not hold, because SD must not reject preferred agent (step
17). In the conclusion, DRESHA algorithm is stable. O

Proposition 2. The overall time complexity of DRESHA al-
gorithm is O (|J\/|2|IC|5log2fmax + \N|2\IC|5|M|>, which is

polynomial.

Proof. Considering the worst case, for |K| SDs,
the complexity of setting up preference list is
O (IK||N]); the maximum iteration loop is |K||N],
in each iteration: the complexity of find the most
preferred SD is O (JA]), the complexity of JTPRA

algorithm is O (IV] K] 1ogy fina + W | M] )
(proven in Subsection 5.4), and the complexity
of rejecting redundant HDs is O (|K]|). Therefore

2. Since precise sub-carrier allocation between clusters requires ex-
tensive channel state information exchange, and there is no clear
mathematical relationship between the state of mobile devices and
the number of sub-carriers required by each cluster, we choose this
allocation method between clusters as a compromise.

Transactions on Mobile Computing

Algorithm 1 DRESHA Algorithm

Ensure {Kn}, AV} {a ' 1, {p }, and {fn, }.
: Set iteration index [ =

2: Randomly and equally allocate sub-carriers to each clus-
ter 2 to ensure {M,, }.

3: Calculate A,,, according to the remaining battery life of
each mobile device.

4: Every SD n broadcasts the device location and task
complexity message to its achievable HDs in parallel,
and sets K\ = (.

5: Every HD k sets up preference list L; according to
equation (14), and sets its status as unassigned.

6: repeat

7:  for Junassigned HD k with non-empty preference list

Lk do

8: Find the most preferred SD n from Ly.
9: Send proposes message to SD n, remove n from Ly,
and set status as assigned.
10: Add HD k to the temporary assignment set KD of

SD n.
11:  end for
12:  for each cluster head SD n € N/, that o + K

do
13: Given ICSLZ) and M, obtain V', , fr,, ), and p;;"
by solving P1 using JTPRA (Algorithm 6).
14; S GO
15: for each HD n,, € ICSH) do
16: if V,,, is O then
17: SD n sends re]ect message to HD ny, and
remove n from /Cp, (+1),
18: Set HD k as una551gned.
19: end if
20: end for
21:  end for
22 I+ 1+1

23: until IC(lfl) Vn € K.
24: return {K,}, {Vnk} {ar 1, {pnmk} and {fn, }.

the overall time complexity is O(|K||N]) +
KIINT) + O (INP KT 1o fanas + INTPICPIM] ) +

K1),
NPICP 108 fmas + NPl IM]). =

which an  be simplified as

5 JOINT TASK PARTITION AND RESOURCE ALLO-
CATION DESIGN

The JTPRA algorithm is proposed to optimize the design
of task partition and resource allocation within each co-
operative computing cluster. The original problem, P1, is
intractable due to the coupling of the optimization variables.
The JTPRA algorithm decomposes P1 into two subprob-
lems, namely, the task partition problem P1-1, and the com-
munication and computational resource allocation problem
P1-2. The AO method is applied to optimize the design
of the computational task partition (V,,, ) while fixing the
communication and computational resource allocation (az, ,
p;., and f, ), followed by optimizing the resource allo-
cation while fixing the task assignment. These steps are
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Algorithm 2 Task Partition Algorithm
Require: o), p;, and f,.
Ensure: V.
1: Set unassigned task bits V! =V}, and device index i =
0.
2: Calculate the efficiency F,, of each device k € {0} UK,
using following equations

2
AnoKCn [y n=>0
Jo Ml
n Ang mZZI apy Pry 9 )
— 5 —— + A kCnfy,, otherwise.

k

(20)
3: Sort devices in ascending order of E,,, and the sequence
is expressed as: eg, €1, ..., €.
4: while VR > 0 do
5: n < e;.
6:  Assign task according following equations

ch"" n=20
A . (21)
W, otherwise.

7: 11+ 1.
8: end while
9: return V.

iteratively updated in the outer loop until convergence is
achieved. The details of the task partition and resource
allocation are presented in the following sections.

5.1 Task Partition Optimization

Given a fixed resource allocation results o)’ , p,’ , and fp,,
the task assignment problem can be given by

P1-1: min An, Cp [ Vao
N

[ M|
Kal | Ang Zl o Do
+ — e+ M KGR [ | Vs
I; Tnk k k k
(17a)
s.t. (12b),(12c), (12d), (12e) .
where constraints (12b) , (12¢), (12d) can be recast as
Tfn
0< Vy < C—no, (18)
and
T fn,rn
0<V,, <=—E Vkek,. 19
T T Cary Tt fos ()

It is observed that P1-1 is a linear programming problem,
and the optimal partition strategy is assigning the task to
the most efficient device until V,,, (or V,,,) reaches its upper
bound. This problem is readily to be solved by a method
similar to the water filling algorithm, and the solution is
summarized in Algorithm 2.

8

5.2 Communication and Computational Resource Allo-
cation

Given a fixed computational task partition V', , the com-
munication and computational resource allocation problem
can be formulated as

|Kn|
. 2
P1-2: min Z A 6C Vo, fr,
o em k=0
71k7 T‘Lk
Mo |
1Kl Ao Vi D2 o pi.
+ Z m=1 , (22a)
k=1 T

s.t. (12b), (12¢), (12f) , (12g) , (12h) , (12i) , (12j) .

It is readily seen that constraint (12b) is tight when the
optimal computing frequency allocation of local computing
is obtained, which can be expressed as

_ V’I’LU On

fao = =, 23)

then the resource allocation solution of cooperative comput-
ing can be obtained by solving the following problem:

1Kol
P1-2C: min Y Ay, kCpVi, f2,
kL k=1

ay P
M|
K| AngVay D2 Qo Py
+> m=1 : (24a)
k=1 T'nk

s.t. (12¢), (12f) , (12g) , (12h) , (12i) , (12j) ,

and P1-2C is a non-convex MINLP problem since the binary
optimization variable a; and the sum-of-ratio minimiza-
tion in the objective function (OF). In order to tackle these
issues, firstly, it is rewritten as the following equivalent
form:

K|
PL2C": min Y (Mg, kCo Vi, f2, + Br). (25a)
ap i B=1
M, |
/\ﬂovﬂk Z azlkpzlk
s.t. T::1 S ﬂk;v‘k € ICTH
) (25b)
Vnkfnk

n > Tmr s k ns
Ty = TFo — CoVi Vk e K (25¢)

(12f), (12g) , (12h) , (12i) , (12j) .

The following proposition lends us convenient to solving
P1-2C'.

Proposition 3. If (Bk,fnk,c‘v;’;,ﬁfk) is the optimal solution
of P1-2C', then there exist @t = {u1,us,...,uy} such that

Page 8 of 40
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( fnk NN ﬁfk) is the optimal solution of the following problem
fO?’ Ui = ﬂk and ﬂk = Bk
1Ko

P12C”: min Y [ Ay kCiVa, f2, (26a)
oy py, 1
|Mal
+ug Anovnk Z Olzlkpfk - ﬂkrnk B
m=1

c),(12f), (12g) , (12h) , (12i) , (12f) ,

- (25
and (fnk, nk,pnk> also satisfies the following equations for

uy = Uy, and By, = By:

1
ug = k€ Ky (27)
Tny
[Mon|
AgVie Y apepit = Birn, =0,k € K. (28)
m=1

Correspondingly, if (fnk,&nmk, ﬁnmk> is the optimal solution of
P1-2C" and satisfies (27), (28) when set wy, = Gy, and By, = B,
(,Bk, fnk,&nmk,ﬁnmk> is the optimal solution of P1-2C’.

Proof. The Lagrangian duality gap of the optimization
problem is zero in multi-carrier systems when the num-
ber of sub-carriers goes to infinity according to the time-
sharing condition [57], [58]. It is verified that the duality

gap vanishes, even in systems with a practical number of
sub-carriers [59]. So the duality gap of P1-2C’ and P1-2C"

vanishes. if (Bk, fnk,&fk, ﬁ;’;) is the solution of P1-2C’,
there exists non-negative Lagrange multiplier @, satisfying
the following KKT conditions
oL
9B
(M|
e | Mg Vo Z QM P — By, | =0,k € K, (30)

=1—Ugfy, =0,Vk € Ky, (29)

| M|

AngVie Y Gepie — Brin, <0,Yk € Ko, (31)
m=1

> 0,k € Ky, (32)

where L is the Lagrange function of P1-2C’. Since 7,,, > 0,
(29) is equivalently to

! Yk € Ky (33)

Tny,

U =

and since 4y > 0, (30) is equivalently to
[Ma|
>\n0 V'nk: Z nkpnk

Furthermore it is readily to prove the rest KKT conditions
of P1-2C’ are exactly the KKT conditions of P1-2C", when
u, = Uy and B, = Bk So the first conclusion is proved.
Following the same procedure the second conclusion can be
proved. |

Bfn, = 0,Yk € Koo (34)

Transactions on Mobile Computing
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The optimization problem P1-2C" remains a non-convex
MINLP problem that cannot be solved in polynomial time
due to its high computational complexity. Fortunately, the
duality gap of the optimization problem vanishes in multi-
carrier systems. Thus, the Lagrangian duality method [60]
is invoked for solving P1-2C".

Given uy and By, the Lagrangian function of P1-2C" is
formulated as (35), shown at the top of next page, where
Ve = [1,720 s vk) S wk = [wi,wa, ... wi]” and 7 are the
Lagrange multiplier vectors. The dual function is obtained
as

min . E (fnk,azl7pzl7ﬁyk7wk‘7n)

G (i, wr, ) = § Tt P
st. (126), (12g), (12h), (12)),
(36)
and the Lagrange dual problem is formulated as
P1-2C"-dual : max G (i, wk, M) , (37a)
Yk Wk,
s.t. v >0,k € Gy, (37b)

wp > 0,Vk € Koy, (370)
n > 0. (37d)

Since the duality gap vanishes, we can obtain a near-
optimal solution of P1-2C” by solving P1-2C"-dual, the
dual function (36) can be reformulated as

[Knl M| .
G (7, wksn Z Fo (Ve wi) + > B (1)
m=1
\icnl (38)
- Z wkfmax — T)Pmax>
where
Fm (’Yka wk)
. . 2 Ve Vig fre
= fnl?é%f (Ankﬁcnvnkfnk + Tfnk _ Cnvnk + wkfnk> ’
(39)
and
P (V1)
[Knl
= min 35 [V + 0
pf:EDp =t
Pr P m
— (ugBr + i) Blog, (1 %)] ’
(40)

domain Dy is defined by constraint (12f), domain D, is
defined by constraints (12g) and (12h), domain D,, is defined
by constraint in (12j). The solution of communication and
computational resource allocation can be obtained by the
primal-dual method as follows.

5.2.1 Computational Resource Allocation

Since the strong duality holds for the primal and dual
problem, the optimal computing frequency allocation vec-
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IKnl | Mo | Mo o
= A KC Vo fr ik | Ang Vi, > ampie — B Z ! Blog, (1 + %>

k=1 m=1
[Ka

+ Z Yk
k=1

(M|
Vi fr

m=1

|Kn | [Kn | [ Mn]

hion
w) + Zwk fnk fmax +77 Z Z ankpnk Pmax
k=1

—_— Bl 1
Tfnk _ CnVnk Z O‘nk 082 ( + o2

k=1 m=1

(35)

Algorithm 3 Computational Resource Allocation

Require: V,,,, v, wi, and €.
Ensure: f,
1: fork € K,, do

2 Set fiB =C, Vo, /T and B = frax.
3:  repeat
4 Set f,, = (ka + fUB) /2.
5: Calculate (f"’“ "5 fp"‘“’%’wk’n) according to equa-
'k
tion (41).
OL(frp @ DT ks,
6o if (fk“gffk'*’““’“”)>0then
7: Set = fup-
8: else
9 Set f};f = fon-
10: end if
OL( fny, 00" sPr Yk Wk s
11:  until (Jng 5fp k) <e
"k
12: end for

13: return f,

tor fnk should satisfy the following Karush-Kuhn-Tucker
(KKT) condition:

OL (fr, 0, DI Vi, Wi, M)

0 fr,
_ —(fg;’%“’“) = 2 5C Vi frn (41)
CnY,
- (Tf%i e =0k E K,

where F (fn., Ye,wk) = AnkCnVi, f2, + Tfficfn‘ﬁ +

wi fn,. However, it is difficult to write the closed-form
expression of the optimal solution. Fortunately, £ is convex
regarding f,,, and ‘9—’6 increases monotonically among f,,
since T'f,, > C, Vn,c Thus, the bisection method can be
adopted to obtain the optimal f,,, within C,,V,,, /T < fn, <
fmax- The procedure is detailed in Algorithm 3.

5.2.2 Communication Resource Allocation

According to (38), after determining fnk, G (Vk,wk,n) is
decomposed into | M,,| sub-problems which can be inde-
pendently solved at each sub-carrier. It is readily seen that
(40) is convex regarding p;', we get the optimal power
allocation to D2D link k on sub-carrier m, expressed as

e In2 (ApyurVo, + 77) R

Since each sub-carrier can be allocated to almost one D2D
link, P,,, (74, n) can be obtained, by searching over all |K,|

possible D2D links, as follows:
02 )
43)

Hence, the sub-carrier allocation result is achieved as

Py (k1) = min { (urAng Vauy, + 1) Prrs

— (ugBr + i) Blog, (1

1, ifk=k*= P,
I e ST I
k 0, otherwise,
and the optimal power allocation is
m P, ifapy =1
= 45
P, {0, otherwise. (45)

5.2.3 Lagrange Multipliers Update

After solving sub-problems in (39) and (40), G (Vk,wk, ")
can be calculated by equation (38). Then we have to find
a suitable set of 7,, w, and 1 to maximize G (g, wk,7),
which can be realized by the sub-gradient method [57].
Specifically, the Lagrange multipliers are updated by a step
size sequence ¢ in the sub-gradient direction s, the update
of v, wi, and 1 can be performed as follows:

Tk (l + 1) = [’Yk (l) + 5’)% (l) S’Yk]+ ) (46)
wr (L4 1) = [wi (1) + 60, (D) 5w, ]S (47)
n(l+1) =)+, 1) sy)", (48)

where [ is the iteration index, 6., (1) = 6, (1) /I, du, (I) =
dw, (1) /1, 6, (1) = 0,(1)/l, and the corresponding sub-
gradients are given as

[Mo] m pm
Vnkfnk pnkhﬂo Nk
T T e Oty 2 o Plom (1 T ).

m=1

(49)

Sw = fn,C - fmaxa (50)
[Kn | [Ma]

Sp = Z Z O‘Z;pzlk — Pmax- (51)
k=1 m=1

With given u;, and B}, the dual-based communication and
computational resource allocation algorithm can be summa-
rized in Algorithm 4.
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Algorithm 4 Dual-based Resource Allocation

Require: uy, B, lmax, and €.
Ensure: oy, p;' , and f,,
1: Set initial Lagrange multipliers 7, wy and 7.
2: Set iteration index [ = 0, £(¥) = 0.
3: repeat
4. Obtain f, via Algorithm 3.
5.  for each sub-carrier m € M,, do
6: fork € ,, do
7: Calculate py,; according to equation (42).
8 end for
9: Calculate P, (vx,n) according to equation (43).
10: Obtain sub-carrier allocation result a;,; and optimal
power allocation pj;’ using equation (44) and (45).
11:  end for
12:  Calculate £UFY according to equation (35).
13:  Update vy, wy and 1 according to equation (46), (47)
and (48), respectively.
14: 1+ 1

4+ 1.
| Zpa-n
15: until

2] <eorl > lpax.

16: return a;, p;',and f,, .

5.2.4 Auxiliary Variables Update

Then, we can update parameter u; and B to obtain the
global near-optimal solution (ank,pnk,fnk>, which satis-
fies the following conditions:

Win, — 1= 0,Yk € Kn, (52)
and
M|
Britn, = AoV D Gmpm =0,Yk € Kn.  (53)
m=1
Referring to [61], we define x (ux) = ugfp, — 1 and

(Mo

Y (Br) = Brn, — Ano Vi, Z am pr, and B and wuy is

updated by a modified Newton s method as follows:

HO) )
()
41 _ ()
uy, D ey ) (54)
nk
and o < (z))
¢y
l(€l+1) _ /Bl(cl) EAERA LY (55)
MO
Nk

where (V) is the smallest integer among ¢ € {0,1,2,...}
satisfying
2

n @) i (1)
< (-0 3 [ () 0 (0],
k=1

(56)
where ¢ € (0,1) and o € (0,1).
The procedure of solving Problem P1-2 is summarized
in Algorithm 5.

Algorithm 5 Communication and Computational Resource
Allocation
Require: V,,, and e.
Ensure: o, p;’ ,and f,,
1: Obtain optimal fy,, according to equation (23)
2: Set iteration index [ = 0, ¢ € (0,1), o € (0,1), and
randomly generate feasible solution o] ( ), pnk( )
3: Calculate uéo) and 8;”
4: repeat
5. Given u,(cl) and B, obtain am (“'1), o (+1) " and
f ¢ A 2 by sohng P1- 2C” via Algonthm 4.
6: Updata u(l+1 and ﬂ 1) accordmg to equation (54)
and (55).
7. I+ 1+1.
8: until Vk € IC,,, ‘x (ug)

9: return oy, p;', and

using (27) and (28), respectively.

<eand ‘@b (ﬁ,ﬁ”)( <e

Algorithm 6 JTPRA Algorithm
Require: {K,}, {M,}, lnax, and €.
Ensure: V., o, p" , and f,, .

1: Set iteration index [ = 0, <I>£10) =0.

2: Randomly generate feasible solution a;;’; (O), j (0), f ;Ok)
3: repeat
4: Givena)® (l),pnmk ® ,and fnk, obtain V5, lH) by solving

P1-1 via Al orithm 2.

5. Given V,(f,jl , obtain a7, (l“),pﬂc +1) and f%l:'l) by
solving P1-2 via Algorithm 5.

6:  Calculate <I>(l+1) according to equation (10).

IR

|q>(l) q>(l 1)‘
until W < eorl > lmax-

® N

9: return V., , a7, p; ,and f,, .

5.3 Overall Joint Task Partition and Resource Alloca-
tion Algorithm to Solve P1

According to Subsections 5.1 and 5.2, the procedure of
optimizing V., a7, py , and fn,. is shown in Algorithm
6. To this end, the task partition and communication and
computational resource allocation problem P1 is solved.

5.4 Computing Complexity Analysis

Proposition 4. The overall complexity of joint task partition and
resource allocation algorithm in all cooperative computing clusters
is O <\N| K|* 1ogs funax + [N \IC|4|./\/1|>, which is polynomial.
Proof. In each cluster, the joint task partition and resource
allocation problem P1 is decomposed into two subprob-
lems: P1-1 and P1-2, then they are solved iteratively with
maximum number of iterations [ax.

Firstly, for problem P1-1, the complexity of sort op-
eration is O (|K,|log, |K,|), and the complexity of task
partition is O (|K,,|) in the worse case. So the the complexity
of solving P1-1is O (|, | log, |Kn)).

Then, we have three layer iteration to solve problem
P1-2, the first layer (outermost) is updating auxiliary vari-
ables (uy, B1) with the complexity independent of |KC,|,
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TABLE 2
Default Parameters
Parameters Values
T 100 ms
[N 4
K] 16
IM] 64
T 1x1073
dab Uniform distributed in [0, 1000] m
£ 2
Vi Uniform distributed in [100000, 140000] bits
Ch Uniform distributed in [900, 1000] cycle/bit
Smax 400 MHz
K 2x 10~
Pmax 10 mW
o? 1x 1077 mW
B 12.5 KHz
€ 0.001

so the complexity is O (|KC,]); the second layer is up-
dating Lagrange multipliers (v, wg, 1) by sub-gradient
method, with complexity converges in O <|1Cn\2) [57];
the third layer (innermost) is solving (39) and (40), the
complexity of obtaining the optimal computing frequency
by bisection method is O (|K,|10gs fmax), and the com-
plexity of obtaining sub-carrier and power allocation is
O (IM,||Ky]). Therefore, the complexity of solving P1-2

i5 O (1ICal* 108, finas + o | M)

Finally, the overall time complexity for solving P1 can
be abbreviated as O (|1Cn\4 logs fuax + |ICn|4|/\/ln|>.

As such, the overall complexity of solving P1 in all
clusters is O (\JV'| IK|* 10y fmax + [N |IC|4|M\>. O

6 NUMERICAL RESULTS

We present the numerical results that evaluate the proper-
ties and performance of proposed distributed scheduling
scheme and the performance of cooperative computing
framework. The maximum communication distance of each
mobile device is set to 400 meters. The remaining battery
life of each mobile device follows a uniform distribution
between 80% and 100%, and A, is calculated by a per-
centage of the remaining battery life of device nj to the
total remaining battery life of all mobile devices®. The rest
default parameters are shown in Table 2. To demonstrate
the performance of our proposed DRESHA algorithm, we
introduced a number of corresponding reference schemes:

o DRESHA Without Reassignment (DRESHA-WR): In
each iteration of the DRESHA algorithm, SDs will
not reject redundant HDs (steps 15-20 in Algorithm
1 will not be performed).

o DRESHA Using Distance as Affection (DRESHA-
Distance): The preference of HD to SD is recon-
structed as n > n',di, < din,Vk € K. In other
words, instead of resource efficiency, distance is used
as the measure of the affection of HD on SD.

3. Although the calculation of A\, has an impact on the maximiza-
tion of lifetime of all mobile devices, this is not the key point of this
paper, hence we choose this simple method for calculation.

12

o DRESHA Using Computing Complexity as Affection
(DRESHA-Complexity): The preference of HD to SD
is reconstructed as n =5 n/,C, < C,,Vk € K. In
other words, instead of resource efficiency, comput-
ing complexity of task is used as the measure of the
affection of HD on SD.

o DRESHA Using Weight Factor as Affection (DRESHA-
Factor): The preference of HD to SD is reconstructed
asn =, W, A\kn < Apn, ¥k € K. In other words,
instead of resource efficiency, weight factor of device
is used as the measure of the affection of HD on SD.

o Maximum Computing Frequency (MCF): The compu-
tational resource is not optimized, all mobile devices
use the maximum computing frequency (fr, = fmax)
to compute tasks.

e Equal Power Allocation (EPA): The transmission power
is not optimized, SDs distribute transmission power

equally among their allocated sub-carriers (pj;, =

Pmax
AT

6.1 Properties of Proposed Algorithm

In this subsection, we thoroughly examined two important
properties of the proposed algorithm: convergence behav-
ior and deviation from the globally optimal solution. The
detailed results of our analysis are presented below.

6.1.1 Convergence Behavior

The proposed DRESHA algorithm consists of multiple lay-
ers of iterations. The convergence of the iterative algo-
rithms involved has a significant impact on the execution
time of the DRESHA algorithm. Therefore, we investigated
the convergence of sum-of-ratios optimization algorithm
(Algorithm 5), AO method (Algorithm 6), and DRESHA
algorithm (Algorithm 1).

o

T T T T T T T T
—e— Cluster 1 (assigned with 2 HDs) —e— Cluster 3 (assigned with 3 HDs)
—+— Cluster 2 (assigned with 3 HDs) —#&— Cluster 4 (assigned with 3 HDs) 1
. . a 2 e e A e

’;
E
8 oY S
o
E 6 q
°
g
o 4 =
k)
S
o A A i é A H
1 2 3 4 5 6 7 8 9 10
Iteration Index
(a)
= 7 T T T T T T T T
£ —e— Cluster 1 (assigned with 2 HDs) —e— Cluster 3 (assigned with 3 HDs)
5 6" —+— Cluster 2 (assigned with 4 HDs) —#&— Cluster 4 (assigned with 4 HDs) |7
14 ‘\‘; -
L5L . "
o N
§4 \'\
el \
S 3L L B
a :
uc_’ b S S S S B
6 T o o o o o .

Iteration Index

Fig. 4. Convergence of the Algorithm 5 in different cooperative com-
puting clusters. The parameters are set as follows: (a) |K| = 16, (b)
|KC| = 28, and the rest are default.

Figure 4 illustrates the convergence behavior of Algo-
rithm 5 with varying numbers of HDs. Across two diverse
scenarios considered, the results indicate that the proposed
sum-of-ratios optimization algorithm for P1-2C' in each
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cooperative computing cluster achieves convergence within
four iterations. Similarly, Figure 5 showcases the conver-
gence behavior of Algorithm 6 for P-1, where the weighted
sum energy consumption in each cluster also converges
within four iterations.

In Figure 6, we display the iteration count required for
Algorithm 1 to achieve convergence (as specified in step 23
of Algorithm 1). Notably, the proposed DRESHA algorithm
demonstrates rapid convergence in scenarios with varying
numbers of SDs (clusters) and sub-carriers. This behavior
is particularly intriguing. When the number of helpers is
abundant or sparse, the algorithm converges swiftly. In rich
helper environments, SDs encounter minimal competition
for helpers from each other, leading to quick stabilization.
Conversely, in scenarios with a scarcity of helper resources,
SDs rarely reject matched helpers, resulting in similarly
rapid stabilization. However, when the number of helpers

Transactions on Mobile Computing

13

n
©

T
9 =—@— DRESHA
==] = Exhaustive Search
28N , i
E I
So7k\ |
a
g \
2 26 A} N
8 \
> \
25 N 1
N
~
24 1 : 4
E <
() ~
9 ~
Q -
%23 N < - >
© ~
~
St Is.& = 1
~
~
21 i i i
5 6 7 8
Number of HDs

Fig. 7. Comparison of DRESHA and exhaustive search in terms of
weighted sum energy consumption.

falls within an intermediate range, SDs engage in competi-
tive interactions for helper, which extends the convergence
process over several iterations.

Drawing from the analyses presented in Subsections 4.3
and 5.4, we can confidently conclude that the computing
complexity of the proposed algorithms is polynomial, mak-
ing them practically implementable.

6.1.2 Comparison With Exhaustive Search

In order to evaluate the gap between the outcomes achieved
by the proposed DRESHA algorithm and the globally opti-
mal solution, we performed a comprehensive comparative
analysis utilizing an exhaustive search approach. The ex-
haustive search method, which employs a brute-force search
strategy, is capable of attaining the globally optimal solution
for optimization problems. However, it is important to note
that the computational complexity of the exhaustive search
method increases exponentially with the number of SDs,
HDs, and sub-carriers involved. To mitigate this computa-
tional burden, we conducted the comparative analysis in a
small-scale scenario, where the number of SDs was set to
2, the number of sub-carriers was set to 16, and all other
parameters were maintained at their default values.

The obtained numerical results, depicted in Figure 7,
reveal that the solutions provided by DRESHA are sub-
optimal. In comparison to the globally optimal solution,
DRESHA leads to an increase in the weighted sum en-
ergy consumption ranging from 2.4% to 7.0%. Moreover,
the deviation from the globally optimal solution escalates
with a higher number of HDs. This can be attributed to
the disparities between our proposed algorithm’s source-
helper assignment scheme and the globally optimal solu-
tion, which become more pronounced as the number of
HDs increases. Nevertheless, it is crucial to acknowledge the
intricate interplay between source-helper assignment and
resource allocation, as well as the communication overhead
inherent in distributed systems. Despite the observed sub-
optimality, our proposed algorithm remains practical and
applicable, as it takes into account the complexities and
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TABLE 3
The task completion ratio under local computing and cooperative
computing framework, the results are obtained under 100 random
scenario parameters, where |N'| = 10, |[K| = 40, |[M| = 160.

F Local Cooperative Cooperative
ramework . . .
(Algorithm) Computing Computing Computing
(None) (DRESHA-WR) | (DRESHA)
T = 50 ms 0.000% 0.800% 1.000%
T = 100 ms 0.000% 58.800% 70.200%
T = 150 ms 0.000% 80.060% 98.890%
T = 200 ms 0.000% 98.350% 100.000%
T = 250 ms 12.500% 100.000% 100.000%
T = 300 ms 67.200% 100.000% 100.000%
T = 350 ms 100.000% 100.000% 100.000%

challenges inherent in achieving a globally optimal solution
within real-world, resource-constrained environments.

6.2 Performance of Cooperative Computing

To evaluate the effectiveness of our proposed mobile co-
operative computing framework, we compared the task
completion ratio and the weighted sum energy consumption
of our proposed framework with that of local computing.
Our evaluation is presented below.

6.2.1 Task Completion Ratio

Table 3 shows the results obtained from local computing,
cooperative computing using DRESHA-WR, and coopera-
tive computing using DRESHA. The following observations
were made: Firstly, in situations where tasks exhibit high
delay sensitivity (computational demands exceeding the
capacity of a single mobile device), cooperative computing
can effectively increase the percentage of tasks completed
on time compared to local computing. This underscores
the effectiveness of our proposed cooperative computing
framework in mitigating the insufficient computing capa-
bilities of individual mobile devices. By harnessing the com-
putational resources of the entire network, our framework
addresses this challenge to a considerable extent. Secondly,
under identical conditions, DRESHA demonstrates superior
performance in terms of on-time task completion when con-
trasted with DRESHA-WR. This distinction arises from the
iterative process employed by DRESHA, which intelligently
reallocates redundant HDs from each cluster to an alterna-
tive resource pool. This iterative approach efficiently caters
to the computational requirements of resource-constrained
clusters, thereby ensuring a greater number of tasks are
completed on time.

6.2.2 Average Weighted Sum Energy Consumption

Table 4 presents the average weighted sum energy con-
sumption under different computing frameworks and al-
gorithms, assuming all computational tasks are completed
on time (7' = 350 ms). Notably, our proposed cooperative
computing framework consumes less weighted energy, and
the result of DRESHA is better than that of DRESHA-WR.
While wireless task offloading may introduce additional
energy costs compared to local computing, cooperative
computing remains advantageous in some heterogeneous
networks (e.g. devices have different energy efficiency or
energy weights) as SDs can offload tasks to more efficient
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TABLE 4
Offloading Framework Comparison, when T = 350ms, || = 10,
|K| = 40, |[M| = 160.

. Average Weighted Energy
Framework (Algorithm) Consumption of Each Task
Local Computing
(None) 18.2699 mW
Cooperative Computing
(DRESHA-WR) 10.4637 mW
Cooperative Computing
(DRESHA) 9.2262 mW
48 L . , :
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Fig. 8. The weighted sum energy consumption versus the number of
helper devices (HDs) using different affections.

devices to reduce the overall network expense of comput-
ing.

6.3 Performance of Proposed Algorithm

In this subsection, we first evaluated the effect of using
‘resource efficiency” as a matching preference. Then, the per-
formance of the proposed algorithm was examined under
different parameter settings.

6.3.1 Performance of Proposed Affection

Figure 8 depicts the numerical results of the weighted sum
energy consumption as a function of the total number of
HDs for four schemes employing different affection crite-
ria. It is evident that the advantage of the resource effi-
ciency based algorithm, DRESHA, over other algorithms
(DRESHA-Distance, DRESHA-Complexity, and DRESHA-
Factor) becomes increasingly pronounced with higher num-
bers of HDs. This phenomenon is attributed to the fact that
in scenarios with a limited number of HDs, SDs have only
a few choices for matching. Consequently, the distinctions
between algorithms employing diverse affection criteria
are marginal. However, as the number of HDs escalates,
reliance on a singular criterion for preference can lead to
inappropriate source-helper matches. This, in turn, inflates
the overall system’s weighted sum energy consumption.
The resource efficiency based algorithm proposed in this
paper accounts for factors including device distance, task
complexity, and energy weight factor. This comprehensive
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consideration ensures the selection of matches that align
with the optimization objective. Numerical outcomes vali-
date that adopting resource efficiency as a preference metric
results in a reduction of weighted energy consumption by
1% to 13.5%.

6.3.2 Impact of Various Settings

To further evaluate the performance of DRESHA, we com-
pared it with reference schemes across various settings,
encompassing variations in the number of HDs, delay limit,
computational resource, and communication resource. The
findings from these evaluations are detailed below.

Figure 9 displays the simulation results of the weighted
sum energy consumption versus the total number of HDs
for four schemes. Our observations are as follows. Firstly, an
increase in the number of HDs corresponds to a decreasing
trend in weighted sum energy consumption. The marginal
benefit of introducing additional HDs stems from their
capacity to efficiently share computing loads, thereby re-
ducing the overall system’s energy consumption. However,

Transactions on Mobile Computing

=@ DRESHA

=1 =DRESHA-WR ;
160 - MCF : : B
= = EPA ;

%‘
£
c
S
a
£
3
(2]
c
o
o
3100 - 4
[}
f =
w
£
3
]
hel
jo}
z
o
(]
=

80 - : : : B

400 500 600 700 800
The Maximum CPU Frequency (MHz)

Fig. 11. The weighted sum energy consumption versus the maximum
computing frequency of mobile devices.

—@— DRESHA
. ~—I =DRESHA-WR

S0 : ; MCF 4

g S — = EPA

3 ~.

~

5 B5 b 7\,‘ vvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvv 4

5 ~

g A

2 IR

2 60 g i

3 ~.

> \h

555 *__5_ 4

o —-__5._“

i}

£ 50 -~ i

3

@

8

£45

K= - - -

- e

=40 =
D

i i
48 64 80 96
Number of Sub-carriers

Fig. 12. The weighted sum energy consumption versus the number of
sub-carriers.

as the number of available helpers grows, the selection of
efficient helpers becomes more critical, and an excess of
helpers may not significantly impact energy consumption.
It is this characteristic that inspired us to design DRESHA
algorithm. Secondly, the disparity between DRESHA and
DRESHA-WR results is minimal in scenarios with limited
HDs. DRESHA'’s distinct advantage becomes apparent as
the number of alternative HDs increases, resulting in a 1%
to 11% reduction in weighted sum energy consumption.
Finally, under different numbers of HDs, both DRESHA and
DRESHA-WR outperform algorithms (MCF and EPA) that
do not optimize computational or communication resources.
Specifically, DRESHA reduces around 8% to 20% and 33%
to 38% of weighted sum energy consumption compared to
MCF and EPA, respectively.

Figure 10 displays the simulation results of the weighted
sum energy consumption versus the delay limit of compu-
tational tasks. A comparative analysis of MCF, EPA, and
DRESHA reveals intriguing insights. The weighted sum
energy consumption using MCF decreases by 11%, while



oNOYTULT D WN =

Transactions on Mobile Computing

EPA’s decrease is more significant at 43%, both in response
to increasing task delay tolerance. This trend underscores
the greater impact of optimizing computational resources
compared to communication resources. In contrast, the
weighted sum energy consumption using DRESHA de-
creases by 59%.

Figure 11 presents the correlation between weighted
sum energy consumption and the maximum computing
frequency of mobile devices. Notably, an escalation in
the maximum computing frequency leads to an 11% to
14% reduction in weighted sum energy consumption for
computational resource optimization schemes (DRESHA,
DRESHA-WR, and EPA). This is attributed to the improved
likelihood of Algorithm 3 identifying optimal points with
an extended search range. Conversely, MCF, which does
not optimize computational resources, exhibits a gradual
increase in energy consumption due to the imbalance be-
tween communication and computational resources. This is
further highlighted by a 253% increase in MCF’s weighted
sum energy consumption when the maximum computing
frequency is elevated from 400MHz to 800MHz.

Figure 12 represents the results of weighted sum energy
consumption versus the number of sub-carriers, it can be
seen that the energy consumption diminishes alongside
an increasing number of sub-carriers. This is because the
Shannon capacity formula is a concave function with respect
to transmission power, and allocating power to a new sub-
carrier can yield greater gains than allocating the same
power to an existing sub-carrier when the difference in gain
between the sub-carriers is not significant. Furthermore, a
larger number of sub-carriers amplifies the selection options
for SDs, enabling the choice of sub-carriers with superior
channel gains. These results reinforce DRESHA’s superior-
ity, evidenced by a 6% to 37% reduction in weighted sum
energy consumption compared to other schemes.

7 CONCLUSION

The processing of sensor data on mobile devices with re-
source constraints and limited access to computing servers
presents a challenge. To address this, we proposed a mobile
cooperative computing framework for MCS that utilizes
the idle resources of devices in the network to collabo-
rate on tasks. Based on the model, a weighted sum en-
ergy consumption minimization problem was formulated,
while considering task execution delay limits and prac-
tical constraints on communication and computing capa-
bilities. We developed a distributed scheduling scheme to
optimize offloading strategy, communication resources, and
computational resources. A fast convergence of DRESHA
algorithm was shown through numerical analysis, and we
evaluated the performance of the cooperative computing
framework under various simulation environments. Results
demonstrated that cooperative computing can effectively
improve the task completion ratio and reduce weighted
sum energy consumption compared to local computing.
Additionally, we evaluated the performance of DRESHA
by comparing it to several schemes. In our future work,
we intend to delve into the prediction of task allocation
and sensor data volumes, thereby enhancing our ability to
schedule resources across multiple time slots. Furthermore,
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we aim to address the complexity of our distributed algo-
rithm for mitigating scheduling burdens on resource-limited
mobile devices. Additionally, we aim to bridge the gap
between the optimal solution and the results we obtained
by exploring deep learning to solve the resource allocation
problem. These forthcoming pursuits are poised to propel
our research to new heights in order to address evolving
demands and emerging challenges in the field.
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