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Abstract—Computation off-loading in mobile edge computing
(MEC) systems constitutes an efficient paradigm of supporting
resource-intensive applications on mobile devices. However, the
benefit of MEC cannot be fully exploited, when the com-
munications link used for off-loading computational tasks is
hostile. Fortunately, the propagation-induced impairments may
be mitigated by intelligent reflecting surfaces (IRS), which are
capable of enhancing both the spectral- and energy-efficiency.
Specifically, an IRS comprises an IRS controller and a large
number of passive reflecting elements, each of which may impose
a phase shift on the incident signal, thus collaboratively improv-
ing the propagation environment. In this paper, the beneficial
role of IRSs is investigated in MEC systems, where single-
antenna devices may opt for off-loading a fraction of their
computational tasks to the edge computing node via a multi-
antenna access point with the aid of an IRS. Pertinent latency-
minimization problems are formulated for both single-device and
multi-device scenarios, subject to practical constraints imposed
on both the edge computing capability and the IRS phase shift
design. To solve this problem, the block coordinate descent
(BCD) technique is invoked to decouple the original problem into
two subproblems, and then the computing and communications
settings are alternatively optimized using low-complexity iterative
algorithms. It is demonstrated that our IRS-aided MEC system
is capable of significantly outperforming the conventional MEC
system operating without IRSs. Quantitatively, about 20 %
computational latency reduction is achieved over the conventional
MEC system in a single cell of a 300 m radius and 5 active
devices, relying on a 5-antenna access point.

Index Terms—Intelligent reflecting surface, mobile edge com-
puting, latency minimization.

I. INTRODUCTION

A. Motivation and Scope

In the Internet-of-Things (IoT) era, myriads of machines and
sensors are envisioned to be connected [1]. However, since
these devices typically have limited computing capabilities,
resource-intensive applications cannot be readily supported by
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these devices due to their resultant excessive computational
latency. Aimed at tackling this issue, powerful computing
nodes can be deployed at the edge of the network (typically
co-located with the access points (APs)) [2]. As a benefit, the
computational latency of these resource-intensive applications
can be reduced, by employing both local computing on the
devices and edge computing for processing these computa-
tional tasks, provided that these tasks can be successfully off-
loaded. This paradigm is referred to as mobile edge computing
(MEC) [3]–[14]. At the time of writing, the potential of this
MEC paradigm has not been fully exploited, predominantly
because the computation off-loading link is far from perfect.
For example, the devices located at the cell edge typically
suffer from a low off-loading success rate, and/or their compu-
tation off-loading may impose higher latency than computing
their tasks locally. Hence these devices have to rely on their
own computing resources, which is however often incapable
of supporting resource-intensive applications. Therefore, it is
imperative to improve the performance of MEC systems from
a communications perspective.

The recent advances in programmable meta-materials [15]
facilitate the construction of intelligent reflecting surfaces
(IRSs) [16] for enhancing both the spectral- and energy-
efficiency of wireless communications. Specifically, an IRS
is comprised of an IRS controller and a large number of
passive reflecting elements. Under the instructions of the IRS
controller, each IRS reflecting element is capable of adjusting
both the amplitude and the phase of the signals reflected, thus
collaboratively modifying the signal propagation environment.
The gain attained by IRSs is based on the combination of both
the virtual array gain and the reflection-aided beamforming
gain. To elaborate, the virtual array gain can be achieved by
combining both the direct and IRS-reflected signals, while the
reflection-aided beamforming gain is realized by proactively
controlling the phase shift induced by the IRS elements. By
beneficially combining these two types of gains, the IRS
becomes capable of boosting the devices’ off-loading success
rate, hence improving the potential of MEC systems. In this
treatise, our attention is focused on investigating the role of
IRSs in MEC systems.

B. Related Works

1) Design of Mobile Edge Computing Systems: At the
current state-of-the-art, MEC systems can be categorized into
[5]: single-user [6]–[9] and multi-user systems [10]–[14].
Among the design metrics of single-user MEC systems, the
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computation off-loading strategy plays a crucial role. More
explicitly, the binary off-loading strategy of [6] was proposed
to decide whether the task is executed locally at the mobile
device or remotely at the edge-cloud node. By contrast, Wang
et al. [7] conceived a partial off-loading scheme for data-
partitioning oriented applications, where a fraction of the data
can be processed at the mobile device, while the rest at
the edge. However, in realistic multi-user systems, inter-user
interference is imposed both on the radio communications link
and on the computing node at the edge, which may erode
the overall performance of the MEC system. In order to cope
with this hindrance, Sardellitti et al. [10] jointly optimized the
transmit precoding matrices and the computational resources
allocated to each user in a multi-cell multi-user scenario, while
Sheng et al. [17] proposed an energy-efficient algorithm to
optimize the resource allocation of terminals, radio access
networks, and edge servers in a multi-carrier scenario. For
the system where the devices have to make their off-loading
decisions locally, Chen et al. [11] provided a distributed joint
computation off-loading and channel selection policy relying
on classic game theory. Recently, a specific user association
scheme was also developed for multi-user systems served by
multiple edge computing nodes [13], while a mobility-aware
dynamic service scheduling algorithm was proposed for MEC
systems [14]. Furthermore, Yang et al. [18] conceived an
over-the-air computation aided federated learning algorithm
for reducing both the latency and the power consumption, and
for preserving the users’ privacy in MEC systems. At the time
of writing, the computation offloading issue of the devices
in the face of hostile communications environments has not
been well addressed. Against this background, in this paper
the performance is improved by invoking IRSs. Let us now
continue by reviewing the relevant research contributions on
IRSs as follows.

2) Intelligent Reflecting Surface Aided Wireless Networks:
In order to explore the benefits of IRSs in wireless com-
munications, extensive research efforts have been invested
into their ergodic capacity analysis [19], channel estimation
[20], and practical reflection phase shift modeling [21], as
well as into the associated phase shift design [22]–[29].
Specifically, a joint design of the IRS phase shift and of
the precoding at the AP was proposed for minimizing the
transmit power, while maintaining the target receive signal-
to-interference-plus-noise ratio (SINR) [22], relying on the
sophisticated techniques of the semidefinite relaxation and
of alternating optimization. These investigations were then
extended to the more practical discrete phase shift setting
[23]. However, the excessive computational complexity of the
algorithm developed in [22] prohibits its application in large-
scale IRSs. In order to reduce the complexity, Guo et al.
[24] proposed three low-complexity algorithms, while Pan et
al. [26] provided a pair of majorization-minimization (MM)
algorithms and complex circle manifold methods for multi-
cell scenarios. Furthermore, in order to reduce the overhead
during the IRS channel estimation, Yang et al. [29] grouped
the IRS elements, where each group shares the same phase
shift coefficient, and optimized the power allocation and phase
shift in orthogonal frequency division multiplexing (OFDM)-

based wireless systems. Apart from the conventional commu-
nications scenarios, the role of IRSs was also investigated
both in terms of improving physical-layer security [30]–[33],
and simultaneous wireless information and power transfer
(SWIPT) [34], [35], where substantial gains were achieved.
These impressive research contributions inspired us to exploit
the beneficial role of IRSs in MEC systems.

C. Contributions and Organizations

Our main contributions are the employment of IRSs in MEC
systems, and the joint design of computing and communica-
tions for minimizing the computational latency of IRS-aided
MEC systems, detailed as follows.
• New IRS-aided MEC system design and latency mini-

mization problem formulation: In order to further exploit
the potential of MEC systems, we first propose IRS-
aided MEC systems, for assisting the computational task
off-loading of mobile devices. A latency-minimization
problem is formulated for multi-device scenarios, which
optimizes the computation off-loading volume, the edge
computing resource allocation, the multi-user detection
(MUD) matrix, and the IRS phase shift, subject to both
the total edge computing capability and to the IRS phase
shift constraints. Owing to the coupling effect of multiple
optimization variables, the latency-minimization problem
cannot be solved directly. Hence, relying on the block
coordinate descent (BCD) technique, the original prob-
lem is decoupled into two subproblems for alternatively
optimizing computing and communications settings.

• Computing design: Given a fixed communications setting,
we decouple the computation off-loading volume and the
edge computing resource allocation, again using the BCD
technique. Our analysis reveals that given a fixed edge
computing resource allocation, the optimal computation
off-loading volume can be determined by assuming the
equivalence of the latency induced by local computing
and by edge computing. Given a fixed computation off-
loading volume, the subproblem is proved to be a convex
problem, and the optimal edge computing resource can
be found by relying on the KKT conditions and on the
classic bisection search method.

• Communications design: Given a computing setting, the
objective function (OF) becomes available in a non-
convex sum-of-ratios form, which cannot be solved using
the algorithms developed in [22], [24], [26], [35]. To
tackle this challenge, this problem is transformed to an
equivalent parameterized form by introducing auxiliary
variables. Our analysis reveals that this equivalent form
can be decomposed into a series of tractable subproblems.
Then, an iterative algorithm is developed to find the
solution. In each iteration, the auxiliary variables are
updated using the modified Newton’s method, while upon
reformulating this series of tractable subproblems by
exploiting the equivalence between the weighted sum-
rate maximization problem and the weighted mean square
error (MSE) minimization problem, closed-form expres-
sions are provided for the MUD matrix and for the IRS



3

phase shift, using the weighted minimum MSE method
and MM algorithm, respectively. Our analysis reveals that
the proposed algorithm exhibits a low complexity.

• Study of the single-device scenario: In order to complete
the investigations, the single-device scenario is also stud-
ied, where neither the edge computing resource allocation
nor the multi-user interference has to be considered. A
low-complexity iterative algorithm is proposed by sim-
plifying the algorithm developed in the aforementioned
multi-device scenario.

• Numerical validations and evaluations: The numerical
results verify the convergence of the proposed algorithms,
and quantify the performance of our IRS-aided MEC
system in terms of its latency in diverse simulation
environments.

The rest of the paper is organized as follows. In Section II,
we establish the system model and formulate the latency
minimization problem. The solution of this latency minimiza-
tion problem is provided in Section III. In Section IV, we
investigate the solution of the special case, where a single
device is served by the MEC system. Our numerical results
are discussed in Section V. Finally, our conclusions are offered
in Section VI.

Notation: In this paper, scalars are denoted by italic letters.
Boldface lower- and upper-case letters denote vectors and
matrices, respectively; CM×N represents the space of M ×N
complex matrices; IIIN denotes an N × N identity matrix; j
denotes the imaginary unit, i.e. j2 = −1. The maths operations
used throughout the paper are summarized in Table I.

Table I: Math operations

Notation Operation

xxxT the transpose of xxx
XXXT the transpose of XXX
xxx∗ the complex conjugate of xxx
XXX∗ the complex conjugate of XXX
xxxH the Hermitian transpose of xxx
XXXH the Hermitian transpose of XXX
XXX−1 the inverse of XXX⊙

the Hadamard product
<{·} the real part of a complex number
arg{·} the argument of a complex number
| · | the absolute value of a scalar
‖ · ‖ the 2-norm of a vector
b·c the floor of a scalar
d·e the ceiling of a scalar

diag(xxx)
the diagonal matrix where

the diagonal elements are xxx

diag(XXX)
the vector whose elements are

the diagonal elements of XXX

CN (0, σ2)
Circularly Symmetric Complex Gaussian

associated with zero-mean and variance σ2

II. SYSTEM MODEL AND PROBLEM FORMULATION

In this section, our system model is elaborated on, from both
communications and computing perspectives. Following this, a
latency-minimization problem is formulated for our IRS-aided
MEC system, detailed as follows.

Figure 1: Illustration of the system model, where a N -element intelligent
reflecting surface (IRS) assists the computation off-loading of K single-
antenna devices to the edge computing node via the M -antenna access point.

A. Communications Model

As shown in Fig. 1, we consider an MEC system operating
in a single-cell scenario, where K single-antenna devices
may opt for off-loading a certain fraction of or all of their
computational tasks to an edge computing node via an M -
antenna AP through the wireless transmission link. The edge
computing node and the AP are assumed to be co-located
and connected using high-throughput low-latency optical fiber.
Then, the latency imposed by the data communication between
the AP and the edge computing node is deemed to be negligi-
ble. An IRS comprised of N reflecting elements is placed in
the cell for assisting the devices’ computation off-loading. We
assume that both the antenna spacing at the AP and the element
spacing of the IRS are high enough so that the small-scale
fading associated both with two different antennas and with
two different reflecting elements is independent, respectively.

The equivalent baseband channels spanning from the k-th
device to the AP, and from the k-th device to the IRS, as well
as from the IRS to the AP are denoted by hhhd,k ∈ CM×1,
hhhr,k ∈ CN×1, and GGG ∈ CM×N , respectively. These chan-
nels are assumed to be perfectly estimated1 and quasi-static,
hence remaining near-constant when devices are scheduled
for off-loading their computational tasks. As for the IRS,
we simply set the amplitude reflection coefficient to 1 for
all reflection elements and denote the phase shift coefficient
vector by θθθ = [θ1, θ2, . . . , θN ]T , where θn ∈ [0, 2π) for all
n ∈ {1, 2, . . . , N}.2 Then, we have the reflection-coefficient
matrix of the IRS ΘΘΘ = diag

{
ejθ1 , ejθ2 , . . . , ejθN

}
, where j

represents the imaginary unit. It is assumed that the IRS phase
shift setting is calculated at the AP in accordance with both
the channel and computing dynamics, which is then sent to
the IRS controller along the dedicated channel. The composite
device-IRS-AP channel is modeled as a concatenation of the
device-IRS link, the IRS reflection characterized by its phase
shift, and the IRS-AP link.

Here, it is assumed that the computation off-loading of
the K devices takes place over a given frequency band

1Naturally, this assumption is idealistic. Hence the algorithm developed in
this paper can be deemed to represent the best-case bound for the latency
performance of realistic scenarios.

2Due to the associated hardware limitations, only a limited number of
discrete phase shifts can be provided for each IRS element in practice [23].
Our proposed algorithms provide the best-case bound for the latency of
realistic scenarios. The phase-quantization effects are evaluated in Section V-
A3.
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B within the same time resource. Upon denoting the off-
loading power, and off-loading signal of the K devices, as
well as the noise vector by pt, sss = [s1, s2, . . . , sK ]T , and
nnn = [n1, n2, . . . , nM ]T , respectively, the signal yyy ∈ CM×1

received at the AP is readily formulated as

yyy =
√
ptHHHsss+nnn =

√
pt

K∑
k=1

(
hhhd,k +GGGΘΘΘhhhr,k

)
sk +nnn, (1)

where we assume nm ∼ CN (0, σ2) for m = 1, 2, . . . ,M .
Furthermore, we define hhhk , hhhd,k + GGGΘΘΘhhhr,k and HHH ,[
hhh1,hhh2, . . . ,hhhK

]
. As a computational complexity compromise

at the AP, a linear MUD technique is invoked. Upon denoting
the MUD matrix by WWW ∈ CM×K , the signal recovered at the
AP is obtained as

ŝss = WWWHyyy = WWWH(
√
ptHHHsss+nnn). (2)

As for the k-th device, its recovered signal is formulated as

ŝk = wwwHk

[
√
pt

K∑
j=1

(
hhhd,j +GGGΘΘΘhhhr,j

)
sj +nnn

]
, (3)

where wwwk is the k-th column of the matrixWWW . Then, the SINR
of the k-th device’s signal recovered is given by

γk(wwwk, θθθ) =
pt
∣∣wwwHk (hhhd,k +GGGΘΘΘhhhr,k

)∣∣2
pt
∑K
j=1,j 6=k

∣∣wwwHk (hhhd,j +GGGΘΘΘhhhr,j
)∣∣2 + σ2|wwwHk |2

.

(4)

Accordingly, upon assuming a perfect capacity-achieving
transmission scheme is invoked, we arrive at the maximum
achievable computation off-loading rate of the k-th device,
formulated as

Rk(wwwk, θθθ) = B log2

[
1 + γk(wwwk, θθθ)

]
. (5)

B. Computing Model

We consider the data-partitioning based application of [7],
where a fraction of the data can be processed locally, while the
other part can be off-loaded to the edge node. The computing
model is detailed for the local and edge computing as follows.
• Local computing: For the k-th device, Lk, `k, and ck

are used to represent its total number of bits to be
processed, its computation off-loading volume in terms
of the number of bits, and the number of CPU cycles
required to process a single bit, respectively. As for
the local computing, upon denoting the computational
capability at the k-th device in terms of the number
of CPU cycles per second by f lk, the time required
for carrying out the local computation is formulated as
Dl
k(`k) = (Lk − `k)ck/f

l
k.

• Edge computing: we denote the maximum number of
executable CPU cycles at the edge and the computational
capability allocated to the k-th device by fetotal and fek ,
respectively, which obey

∑K
k=1 f

e
k ≤ fetotal. Here, it is

assumed that the edge computing for the k-th device
only begins its operation, when all its `k bits are com-
pletely off-loaded. In this case, the total latency of edge

computing is jointly constituted by the computation off-
loading, and by the edge computing, as well as by the
end-to-end delay of sending the computational result
back. Given that the computation result is typically of
a small size [5], the feedback latency can be negligible,
upon using the technique of ultra-reliable low-latency
communications [36]. Then, the total latency imposed by
the computation off-loading and the edge computing is
given by De

k(wwwk, θθθ, `k, f
e
k) = `k/Rk(wwwk, θθθ) + `kck/f

e
k .

To this end, the latency of the k-th device can be readily
calculated by selecting the maximum value between those
imposed by the local and by the edge computing, formulated
as

Dk(wwwk, θθθ, `k, f
e
k) = max

{
Dl
k(`k), De

k(wwwk, θθθ, `k, f
e
k)
}

(6)

= max

{
(Lk − `k)ck

f lk
,

`k
Rk(wwwk, θθθ)

+
`kck
fek

}
.

C. Problem Formulation

In this paper, we aim for minimizing the weighted compu-
tational latency of all the devices, by jointly optimizing the
computation off-loading volume `̀̀ = [`1, `2, . . . , `K ]T , the
edge computing resources fffe = [fe1 , f

e
2 , . . . , f

e
K ]T allocated

to each device, the MUD matrix WWW , and the IRS phase shift
θθθ. Specifically, the weighted delay minimization problem is
formulated as

P0 : min
WWW,θθθ,̀`̀,fffe

K∑
k=1

$kDk(wwwk, θθθ, `k, f
e
k)

s.t. 0 ≤ θn < 2π, n = 1, 2, . . . , N,

`k ∈ {0, 1, . . . , Lk}, k = 1, 2, . . . ,K,
K∑
k=1

fek ≤ fetotal,

fek ≥ 0, k = 1, 2, . . . ,K.

(7a)
(7b)

(7c)

(7d)

where $k represents the weight of the k-th device. (7a)
specifies the range of the phase shift of the IRS elements; (7b)
indicates that the computation off-loading volume should be
an integer between 0 and Lk for the k-th device; Finally, (7c)
and (7d) restrict the range of the edge computing resources
allocated to each device.

Remark 1. In Problem P0, we have a total of four optimiza-
tion variables, namely, the off-loading volume, edge computing
resource allocation, MUD matrix, and IRS phase shift. The
optimization of the former two variables is related to the
computing setting, while the optimization of the other two
specifies the communications design. The difficulties of solving
Problem P0 are owing to three aspects. The first one is the
segmented form of the OF. The second one is the coupling
effect between the MUD matrix WWW and the IRS phase shift
vector θθθ. The final one is that the OF is non-convex regarding
the phase shift θθθ. Hence, it is an open challenge to obtain
a globally optimal solution directly. In this paper, a locally
optimal solution is provided. Specifically, upon using the
popular BCD technique for decoupling the communications
and computing designs, the segmented form of the OF can be
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easily transformed to a more tractable form. Similarly, optimal
solutions can be provided for the MUD matrix WWW and for
the IRS phase shift vector θθθ, after they are decoupled using
the BCD technique in the communications design. To tackle
the non-convexity regarding θθθ, the Majorization-Minimization
(MM) algorithm is invoked, which is capable of iteratively
approaching a locally optimal solution at low complexity.

III. JOINT OPTIMIZATION OF COMPUTING AND
COMMUNICATIONS SETTING

The joint optimization of computing and computations
settings is realized relying on the BCD technique. The pivotal
idea of the BCD technique is to optimize one of the variables
while fixing the other variables in an alternating manner,
until the convergence of the OF is achieved. In the rest of
this section, the joint optimization of the off-loading volume
and of the edge computing resource allocation is presented
while fixing the communications setting, followed by the joint
optimization of the MUD matrix and of the IRS phase shift
while fixing the computing setting. Our goal is the joint
optimization both of the communications and of the computing
design.

A. Joint Optimization of the Off-loading Volume and the Edge
Computing Resource Allocation While Fixing the Communica-
tions Settings

Given an MUD matrix WWW and an IRS phase shift vector θθθ,
Problem P0 can be simplified to

P1 : min
`̀̀,fffe

K∑
k=1

$kDk(`k, f
e
k)

s.t. (7b), (7c), (7d). (8a)

The optimization of `̀̀ and fffe can be decoupled, relying on the
aforementioned BCD technique, detailed as follows.

1) Optimization of `̀̀: The value of `̀̀ can be optimized, with
the aid of the proposition below.

Proposition 1. Given an MUD matrix WWW , and an IRS phase
shift coefficient vector θθθ. as well as an edge computing
resource allocation vector fffe, the optimal number of off-
loaded bits is given by

`∗k = arg min
ˆ̀
k∈
{
bˆ̀∗kc,dˆ̀

∗
ke
}Dk(ˆ̀

k), (9)

where b·c and d·e represent the floor and ceiling operations,
respectively, and ˆ̀∗

k is selected for ensuring that the value of
Dl
k(ˆ̀

k) becomes equivalent to that of De
k(ˆ̀

k), i.e.

ˆ̀∗
k =

LkckRkf
e
k

fekf
l
k + ckRk

(
fek + f lk

) . (10)

Proof: See Appendix A.
2) Optimization of fffe: Here, the edge computing resource

allocation fffe is optimized, while fixing the MUD matrix WWW ,
the IRS phase shift coefficient vector θθθ, and the off-loading
volume `̀̀. Specifically, upon substituting (10) into the OF of

Algorithm 1 Joint optimization of `̀̀ and fffe, given WWW and θθθ

Input: hhhr,k, hhhd,k, GGG, B, pt, σ2, K, $k, Lk, ck, f lk, fetotal, t
max
1 , ε,

WWW , θθθ, and f̂ff
e

satisfying (7c) and (7d)
Output: Optimal `̀̀∗ and fffe∗, given WWW and θθθ

1. Initialization
initialize t1 = 0, ε(0)1 = 1, fffe(0) ← f̂ff

e

calculate RRR using (5)
2. Joint optimization of `̀̀ and fffe

while ε(t1)1 > ε && t1 < tmax
1 do

• calculate `̀̀(t1+1) using (10)
• calculate fffe(t1+1) and µ by using (16) and the bisection search
method, respectively

• ε(t1+1)
1 =

∣∣obj
(
`̀̀(t1+1),fffe(t1+1)

)
−obj
(
`̀̀(t1),fffe(t1)

)∣∣
obj
(
`̀̀(t1+1),fffe(t1+1)

)
• t1 ← t1 + 1

end while
3. Output optimal `̀̀∗ and fffe∗
`̀̀∗ ← `̀̀(t1) and fffe∗ ← fffe(t1)

Problem P1, the problem can be reformulated as:

P1-E : min
fffe

K∑
k=1

$k(Lkc
2
kRk + Lkckf

e
k)

fekf
l
k + ckRk(fek + f lk)

s.t. (7c), (7d). (11a)

Problem P1-E can be proved to be a convex optimization
problem following the proposition below.

Proposition 2. Problem P1-E is a convex optimization prob-
lem.

Proof: See Appendix B.
Since Problem P1-E is convex and the Slater’s condition

[37] is satisfied 3, the Karush–Kuhn–Tucker (KKT) may be
imposed on the problem for finding its optimal solution.
Specifically, the Lagrangian function associated with Problem
P1-E is given by

L(fffe, µ,ννν) =

K∑
k=1

$k(Lkc
2
kRk + Lkckf

e
k)

ckRkf lk + (f lk + ckRk)fek

+µ

( K∑
k=1

fek − fetotal

)
, (12)

where the variable µ is the non-negative Lagrange multiplier,
while the optimal edge computing resource allocation vector
fffe∗ and the optimal Lagrange multiplier µ∗ should satisfy the
following KKT conditions, for k = 1, 2, . . . ,K:

∂L
∂fek

=
−$kLkc

3
kR

2
k[

ckRkf lk + (f lk + ckRk)fek
∗]2 + µ∗ = 0,

µ∗
( K∑
k=1

fek
∗ − fetotal

)
= 0,

fek
∗ ≥ 0.

(13)

(14)

(15)

The value of fek can be directly derived from (13) for a given

3In words, the Slater’s condition for convex programming states that strong
duality holds if all constraints are satisfied and the nonlinear constraints are
satisfied with strict inequalities.
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µ, which is written as

fek =

√
$kLkc3kR

2
k

µ − ckRkf lk
f lk + ckRk

, k = 1, . . . ,K. (16)

In order to ensure fek ≥ 0 in (16), we have
√

$kLkc3kR
2
k

µ −
ckRkf

l
k ≥ 0, which is reformulated as µ ≤ $kLkck

f l
k
2 . Given

that µ 6= 0 in (16), the optimal µ∗ can be found in the
range of (µl, µu] =

(
0,min

k

(
$kLkck
f l
k
2

)]
to ensure (14), us-

ing the well-known bisection search method associated with
the termination coefficient of ε, because

∑K
k=1 f

e
k can be

proved to be monotonically decreasing with respect to µ.
The procedure of solving Problem P1 is summarized in
Algorithm 1. The complexity of Algorithm 1 is dominated
by calculating fffe(t1+1) using (16) and by calculating µ using
the bisection search method. Its complexity is on the order of
O
(

log2(µu−µl

ε )K
)
. Thus the total complexity of Algorithm 1

is O
(
tmax
1 log2(µu−µl

ε )K
)
.

B. Joint Optimization of the MUD Matrix and the IRS Phase
Shift Coefficient While Fixing the Computing Settings

Given an off-loading volume vector `̀̀ and an edge comput-
ing resource allocation vector fffe, Problem P0 is reformulated
as

P2 : min
WWW,θθθ

K∑
k=1

$kDk(wwwk, θθθ)

s.t. 0 ≤ θn < 2π, n = 1, 2, . . . , N. (17a)

Remark 2. The challenges of solving Problem P2 are due to
two aspects. The first one is the segmented form of Dk(wwwk, θθθ)
that is caused by the operation max as detailed in (6), while
the second issue is that the OF is the summation of fractional
functions, with respect to WWW and θθθ as shown in the OF of
Problem P2-E1 below, which makes the problem a non-convex
sum-of-ratios optimization. In order to tackle these two issues,
we transform the problem as follows.

1) Problem Transformation: As detailed in Proposition 1,
the optimal solution of Problem P0 results in Dk = Dl

k = De
k.

Hence upon replacing Dk by De
k and removing the constant

terms, Problem P2 is reformulated as:

P2-E1 : min
WWW,θθθ

K∑
k=1

$k`k
Rk(wwwk, θθθ)

s.t. 0 ≤ θn < 2π, n = 1, 2, . . . , N. (18a)

It is then rewritten as the following equivalent form:

P2-E2 : min
WWW,θθθ,βββ

K∑
k=1

βk

s.t.
$k`k

Rk(wwwk, θθθ)
≤ βk, k = 1, 2, . . . ,K,

0 ≤ θn < 2π, n = 1, 2, . . . , N.

(19a)

(19b)

The following proposition may assist us in solving Prob-
lem P2-E2.

Algorithm 2 Joint optimization of WWW and θθθ, given `̀̀ and fffe

Input: hhhr,k, hhhd,k, GGG, B, pt, σ2, $k, `̀̀, and fffe

Output: Optimal WWW ∗ and θθθ∗, given `̀̀ and fffe

1. Initialization
initialize t2 = 0, ζ ∈ (0, 1), ε ∈ (0, 1), and θθθ(0) satisfying (7a)
calculate WWW (0) and RRR(0) using (31) and (34), respectively
calculate λλλ(0) and βββ(0) using (26)
2. Joint optimization of WWW , θθθ, λλλ and βββ
repeat
• update WWW (t2+1) and θθθ(t2+1) using Algorithm 3
• update λλλ(t2+1) and βββ(t2+1) as follows

λ
(t2+1)
k = λ

(t2)
k −

ζi
(t2+1)

χk
(
λ
(t2)
k

)
Rk
(
www

(t2+1)
k , θθθ(t2+1)

) , (20)

and

β(t2+1) = β(t2) −
ζi

(t2+1)

κk
(
β
(t2)
k

)
Rk
(
www

(t2+1)
k , θθθ(t2+1)

) , (21)

where i(t2+1) is the smallest integer among i ∈ {1, 2, 3, . . .}
satisfying

K∑
k=1

∣∣∣∣χk(λ(t2)
k −

ζiχk(λ
(t2)
k )

Rk(www
(t2+1)
k , θθθ(t2+1))

)∣∣∣∣2
+

K∑
k=1

∣∣∣∣κk(β(t2) − ζiκk(β(t2))

Rk(www
(t2+1)
k , θθθ(t2+1))

)∣∣∣∣2
≤ (1− ε3ζi)2

K∑
k=1

[∣∣χk(λ(t2)
k

)∣∣2 +
∣∣κk(β(t2)

)∣∣2]. (22)

• t2 ← t2 + 1
until the following conditions are achieved

λ
(t2)
k Rk(www

(t2)
k , θθθ(t2))− 1 = 0, (23)

βkRk(www
(t2)
k , θθθ(t2))−$k`k = 0 (24)

3. Output optimal WWW ∗ and θθθ∗
WWW ∗ ←WWW (t2) and θθθ∗ ← θθθ(t2)

Proposition 3. If (WWW ∗, θθθ∗,βββ∗) is the solution of Problem
P2-E2, a λλλ∗ = [λ1, λ2, . . . , λK ] exists that (WWW ∗, θθθ∗) satisfies
the KKT conditions of the following problem, when we set
βββ = βββ∗ and λλλ = λλλ∗

P2-E3 : min
WWW,θθθ

K∑
k=1

λk
[
$k`k − βkRk(wwwk, θθθ)

]
s.t. 0 ≤ θn < 2π, n = 1, 2, . . . , N. (25a)

Furthermore, (WWW ∗, θθθ∗) also satisfies the following equations,
when we set βββ = βββ∗ and λλλ = λλλ∗λk = 1

Rk(www∗
k,θθθ

∗) , k = 1, 2, . . . ,K,

βk = $k`k
Rk(www∗

k,θθθ
∗) , k = 1, 2, . . . ,K.

(26)

Correspondingly, if (WWW ∗, θθθ∗) is a solution to Problem P2-E3
and satisfies (26) when we set βββ = βββ∗ and λλλ = λλλ∗,
(WWW ∗, θθθ∗,βββ∗) is the solution of Problem P2-E2 associated
with the Lagrange multiplier λλλ = λλλ∗.

Proof: See Appendix C.
To this end, the sum-of-ratios form in Problem P2-E1
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has been transformed to a parameterized subtractable form
in Problem P2-E3, which can be solved in two steps [38]–
[40]: the first step is to obtain WWW ∗ and θθθ∗ by solving Problem
P2-E3, given βββ and λλλ; the second step is to update βββ and λλλ
using the modified Newton’s method until the convergence is
achieved. The procedure is summarized in Algorithm 2, where
we have

χk(λk) = λkRk(www∗k, θθθ
∗)− 1, k = 1, 2, . . . ,K, (27)

κk(βk) = βkRk(www∗k, θθθ
∗)−$k`k, k = 1, 2, . . . ,K. (28)

The complexity of Algorithm 2 is analyzed at the end of
Section III-B.

Let us now focus our attention on the first step of solv-
ing Problem P2-E3, i.e. optimizing WWW ∗ and θθθ∗, given a
set of βββ and λλλ as well as an off-loading volume vec-
tor `̀̀. In this case, Problem P2-E3 can be simplified to
max
WWW,θθθ

∑K
k=1 λkβkRk(wwwk, θθθ) subject to (25a), which constitutes

a weighted sum-rate maximization problem. As revealed in
[41], maximizing the weighted sum-rate can be accomplished
via weighted MSE minimization. The latter problem is easier
to handle, because it is convex regarding each optimization
variable, while fixing others. As such, we focus our attention
on constructing the corresponding weighted MSE minimiza-
tion problem. Specifically, following Theorem I in [41], we
introduce an auxiliary weight variable Υk for the k-th device
and formulate the corresponding weighted MSE minimization
problem as:

P2-E4 : min
WWW,θθθ

K∑
k=1

[
Υkek(WWW,θθθ)

− λkβk log2(λ−1
k β−1

k Υk)− λkβk
]

s.t. 0 ≤ θn < 2π, ∀n ∈ {1, 2, . . . , N}, (29a)

where the mathematical expression of {Υk} is given in Sec-
tion III-B3 and ek represents the MSE of the k-th user, which
is given by

ek(WWW,θθθ) , E
[
(ŝk − sk)(ŝk − sk)H

]
=
[√
ptwww

H
k (hhhd,k +GGGΘΘΘhhhr,k)− 1

]
×[√

ptwww
H
k (hhhd,k +GGGΘΘΘhhhr,k)− 1

]H
+pt

K∑
j 6=k

wwwHk (hhhd,j +GGGΘΘΘhhhr,j)(hhhd,j +GGGΘΘΘhhhr,j)
Hwwwk

+σ2wwwHk wwwk. (30)

As such, compared to Problem P2-E3, Problem P2-E4
becomes more tractable, because given an IRS phase shift co-
efficient vector, the OF of Problem P2-E4 is convex regarding
an optimization variable, while fixing the other one. Again, the
BCD technique is invoked for solving this problem as follows.

2) MUD Matrix Design: In Problem P2-E4, fixing the
phase shift coefficient vector θθθ and the auxiliary variable Υk,
the MUD vector can be obtained by forcing the first-order
derivative of the OF with respect towwwk as 0. After several steps
of mathematical manipulations, it is readily observed that the
above minimization is equivalent to minimizing the weighted

MSE. Then, the MUD vector is given by [42, Sec. 6.2.3]

wwwk =
√
ptJJJ
−1(hhhd,k +GGGΘΘΘhhhr,k), (31)

where JJJ = pt
∑K
j=1(hhhd,j+GGGΘΘΘhhhr,j)(hhhd,j+GGGΘΘΘhhhr,j)

H+σ2IIIM .

3) Auxiliary Variable Design: Fixing θθθ and wwwk, the optimal
auxiliary variable can be obtained by minimizing the OF of
Problem P2-E4 with respect to Υk, given by

Υk = λkβk(ek)−1. (32)

Furthermore, substituting (31) into (30), the MSE becomes

eMMSE
k = 1− pt(hhhd,k +GGGΘΘΘhhhr,k)HJJJ−1(hhhd,k +GGGΘΘΘhhhr,k).

(33)

Bearing in mind that the relationship between the SINR and
the MSE of the system equipped with the minimum mean
square error (MMSE) MUD is given by γk = (eMMSE

k )−1 − 1
[42, Sec. 6.2.3], (5) may be reformulated as

Rk = −B log2

(
eMMSE
k

)
. (34)

4) IRS Phase Shift Coefficient Design: In this subsection,
we focus our attention on optimizing the reflection phase
shift coefficients θθθ, while fixing the auxiliary variable Υk and
the MUD matrix WWW . Specifically, by substituting (30) into
the OF of Problem P2-E4 and removing the terms that are
independent of the phase shift coefficient vector θθθ, Problem
P2-E4 is reformulated as:

P2-E5 : min
θθθ

K∑
k=1

K∑
j=1

Υkptwww
H
k hhhjhhh

H
j wwwk

−
K∑
k=1

Υk
√
pthhh

H
k wwwk −

K∑
k=1

Υk
√
ptwww

H
k hhhk

s.t. 0 ≤ θn ≤ 2π, ∀n ∈ {1, 2, . . . , N}, (35)

where the first and the second terms in the OF can be
respectively formulated in expansion forms as

K∑
k=1

K∑
j=1

Υkptwww
H
k hhhjhhh

H
j wwwk

=

K∑
k=1

K∑
j=1

(
Υkptwww

H
k GGGΘΘΘhhhr,jhhh

H
r,jΘΘΘ

HGGGHwwwk

+Υkptwww
H
k hhhd,jhhh

H
r,jΘΘΘ

HGGGHwwwk

+Υkptwww
H
k GGGΘΘΘhhhr,jhhh

H
d,jwwwk + Υkptwww

H
k hhhd,jhhh

H
d,jwwwk

)
, (36)

and
K∑
k=1

Υk
√
pthhh

H
k wwwk

=

K∑
k=1

(
Υk
√
pthhh

H
d,kwwwk + Υk

√
pthhh

H
r,kΘΘΘ

HGGGHwwwk
)
. (37)

Upon defining AAA ,
∑K
k=1 ΥkptGGG

Hwwwkwww
H
k GGG, BBB ,∑K

j=1hhhr,jhhh
H
r,j , CCC ,

∑K
k=1

∑K
j=1 Υkpthhhr,jhhh

H
d,jwwwkwww

H
k GGG, and

DDD ,
∑K
k=1 Υk

√
pthhhr,kwww

H
k GGG, Problem P2-E5 may be rewrit-
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Algorithm 3 Joint optimization of WWW and θθθ, given λλλ and βββ

Input: hhhr,k, hhhd,k, GGG, B, pt, σ2, $k, tmax
2 , ε, λλλ and βββ

Output: Optimal WWW ∗ and θθθ∗, given λλλ and βββ
1. Initialization
initialize t3 = 0, ε(0)3 = 1, θθθ(0) satisfying (7a)
2. Joint optimization of WWW and θθθ
while ε(t2)3 > ε && t3 < tmax

3 do
• calculate WWW (t3+1) using (31)
• calculate ΥΥΥ(t3+1) using (32)
• calculate θθθ(t3+1) by solving Problem P2-E6 with the aid of
the MM algorithm

• ε(t3+1)
3 =

∣∣obj
(
WWW (t3+1),θθθ(t3+1)

)
−obj
(
WWW (t3),θθθ(t3)

)∣∣
obj
(
WWW (t3+1),θθθ(t3+1)

)
• t3 ← t3 + 1

end while
3. Output optimal WWW ∗ and θθθ∗, given λλλ and βββ
WWW ∗ ←WWW (t3) and θθθ∗ ← θθθ(t3)

ten as:

P2-E6 : min
θθθ

tr(ΘΘΘHAAAΘΘΘBBB) + tr
[
ΘΘΘH(CCC −DDD)H

]
+ tr

[
ΘΘΘ(CCC −DDD)

]
s.t. 0 ≤ θn ≤ 2π, ∀n ∈ {1, 2, . . . , N}. (38)

Defining φφφ , [φ1, . . . , φN ]T where φn = ejθn , and vvv =
[
[CCC−

DDD]1,1, . . . , [CCC −DDD]N,N
]T

, we have

tr(ΘΘΘHAAAΘΘΘBBB) = φφφH(AAA�BBB)φφφ, (39)

where � represents the Hadamard product, and

tr
[
ΘΘΘH(CCC −DDD)H

]
= vvvHφφφ∗, tr

[
ΘΘΘ(CCC −DDD)

]
= φφφTvvv. (40)

Further defining ΨΨΨ , AAA � BBB, we may equivalently rewrite
Problem P2-E6 as:

P2-E7 : min
φφφ
f(φφφ) = φφφHΨΨΨφφφ+ 2<

{
φφφHvvv∗

}
s.t. |φn| = 1, ∀n ∈ {1, 2, . . . , N}. (41)

Problem P2-E7 is a non-convex one because of the unit
modulus constraint on φn. In the following, the MM algorithm
[43] is invoked for solving this problem, which has two
steps. In the majorization step, we construct a continuous
surrogate function g(φφφ|φφφt), which represents the upperbound
of f(φφφ). Then in the minimization step, φφφ is updated by
φφφt+1 ∈ arg min

φφφ
g(φφφ|φφφt). As such, we may initialize φφφ0 that

satisfies the constraint (41), and then use the MM algorithm to
generate a sequence of feasible vectors {φφφt}, where t refers to
the iteration index. Now the surrogate function is constructed
with the aid of the proposition below.

Proposition 4. Denoting the maximum eigenvalue of ΨΨΨ by
λ̂max and given a solution φφφt at the t-th iteration, we have
the inequality below

f(φφφ) ≤ φφφH λ̂maxIIINφφφ− 2<
{
φφφH(λ̂maxIIIN −ΨΨΨ)φφφt

}
+(φφφt)H(λ̂maxIIIN −ΨΨΨ)φφφt + 2<

{
φφφHvvv∗

}
. (42)

Proof: See [26], [44].
Here, the terms on the right side of (42) is defined by our

surrogate function g(φφφ|φφφt). Then, Problem P2-E7 at the t-th

Algorithm 4 Joint Optimization of `̀̀, fffe, WWW and θθθ

Input: hhhr,k, hhhd,k, GGG, B, pt, σ2, $k, Lk, ck, fetotal, and ε
Output: Optimal `̀̀, fffe, WWW and θθθ

1. Initialization
initialize t4 = 0, ε(0)4 = 1
initialize θθθ(0) satisfying (7a) and fffe(0) satisfying (7c) and (7d)
calculate WWW (0) using (31)
2. Joint optimization of `̀̀ and fffe, given WWW (t4) and θθθ(t4)
calculate `̀̀(t4+1) and fffe(t4+1) using Algorithm 1
3. Joint optimization of WWW and θθθ, given `̀̀(t4+1) and fffe(t4+1)

calculate WWW (t4+1) and θθθ(t4+1) using Algorithm 2
4. Convergence checking

ε
(t4)
4 =

∣∣obj
(
`̀̀(t4+1),fffe(t4+1),WWW (t4+1),θθθ(t4+1)

)
−obj
(
`̀̀(t4),fffe(t4),WWW (t4),θθθ(t4)

)∣∣
obj
(
`̀̀(t4+1),fffe(t4+1),WWW (t4+1),θθθ(t4+1)

)
if ε(t4)4 > ε && t4 < tmax

4 holds then
t4 = t4 + 1
Go to Step 2

else
integerize `(t4+1) by (9)
Output the optimal `̀̀∗, fffe∗, WWW ∗ and θθθ∗

end if

iteration is reformulated as

P2-E8 : min
φφφ
g(φφφ|φφφt)

s.t. |φn| = 1, ∀n ∈ {1, 2, . . . , N}. (43)

Since (φφφt)H(λ̂maxIIIN −ΨΨΨ)φφφt is a constant for a given φφφt and
we have φφφH λ̂maxIIINφφφ = Mλ̂max, Problem P2-E8 can be
equivalently written as

P2-E9 : max
φφφ
<
{
φφφH
[
(λ̂maxIIIN −ΨΨΨ)φφφt − vvv∗

]}
s.t. |φn| = 1, ∀n ∈ {1, 2, . . . , N}. (44)

Then, the optimal solution of Problem P2-E9 is readily given
by

φφφt+1 = ej arg{(λ̂maxIIIN−ΨΨΨ)φφφt−vvv∗}. (45)

Accordingly, the optimal solution to Problem P2-E6 can be
obtained as

θθθt+1 = arg{(λ̂maxIIIN −ΨΨΨ)φφφt − vvv∗}. (46)

The termination condition of the MM algorithm is given by∣∣f(φφφt+1) − f(φφφt)
∣∣/f(φφφt+1) ≤ ε or t ≥ tmax

MM. The procedure
of solving Problem P2-E3 is summarized in Algorithm 3.

The complexity of Algorithm 3 is dominated by its Step 2.
Specifically, the complexity of calculating WWW (t3+1) by (31) is
on the order of O

(
max{KM3,KMN2}

)
; the complexity of

calculating ΥΥΥ(t3+1) by (32) is on the order of O(K). With
regard to the calculation of θθθ(t3+1) using the MM algorithm,
the complexity of calculating the eigenvalue λmax of ΨΨΨ is
on the order of O(N3), while for each iteration of the MM
algorithm, the main complexity lies in the calculation of φφφt+1

in (45), whose complexity is on the order of O(N2). Hence the
complexity of the MM algorithm is O(N3 + tmax

MMN
2). Sum-

ming these three terms together, we obtain the total complexity
of Algorithm 3 as O

(
max{N3 + tmax

MMN
2,KM3,KMN2}

)
.

Finally, the complexity of Algorithm 2 is mainly dependent
on updating WWW (t2+1) and θθθ(t2+1) using Algorithm 3, because
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all other steps are given by explicit mathematical expressions.

C. Overall Algorithm to Solve Problem P0

Based on the above discussions, we provide the detailed
description of the BCD algorithm used for solving Problem P0
in Algorithm 4. Note that a decreasing OF value of Problem
P0 is guaranteed in Step 2 and Step 3. Furthermore, the OF
value has a lower bound due to the constraint on the total
edge computing resources. Hence, Algorithm 4 is guaranteed
to converge.

The computational complexity of Algorithm 4 is mainly
dependent on its Step 2 and Step 3, whose complexities
have been analyzed in the above subsections. Furthermore,
the simulation results in Section V show that Algorithm 4
converges rapidly, which demonstrates the low complexity of
our algorithms.

IV. SPECIFIC CASE STUDY: THE SINGLE-DEVICE
SCENARIO

In order to fully characterize the IRS-aided MEC system,
a special case is investigated in this section, where a single
device is served by the MEC system. The optimization prob-
lem of the single-device scenario becomes much simpler for
the following reasons. Firstly, the edge computing resource
allocation no longer has to be considered, because all the edge
computing resources can be assigned to this single device.
Secondly, the sum-of-ratios form in Problem P2-E1 becomes
a single-ratio form, which implies that the optimization prob-
lem is more tractable. Thirdly, the multi-user interference does
not have to be considered, when the detection vector and the
IRS phase shift coefficient vector are optimized. The joint
optimization is detailed as follows.

Problem P0 can be simplified for the single-device scenario
as

P3 : min
www,θθθ,`

D(www,θθθ, `)

s.t. 0 ≤ θn < 2π, n = 1, 2, . . . , N,

` ∈ {0, 1, . . . , L},
(47a)
(47b)

where the OF D(www,θθθ, `) becomes

D(www,θθθ, `) = max

{
(L− `)c

f l
,

`

R(www,θθθ)
+

`c

fetotal

}
. (48)

As illustrated in Proposition 1, for a given set of www and θθθ,
D(www,θθθ, `) achieves its minimum value when ` is selected to
ensure (L−`)c

f l = `
R(www,θθθ) + `c

fe
total

. Therefore, the optimal value
of the relaxation of ` is given by

ˆ̀∗ =
LcRfetotal

fetotalf
l + cR

(
fetotal + f l

) . (49)

Then, Problem P3 is reformulated as

P3-E1 : min
www,θθθ

`

R(www,θθθ)
+

`c

fetotal

s.t. 0 ≤ θn < 2π, n = 1, 2, . . . , N, (50a)

Algorithm 5 Joint Optimization of `, www and θθθ proposed for
the single-user scenario

Input: hhhr , hhhd, GGG, B, pt, σ2, L, c, fetotal, and ε
Output: Optimal `, www and θθθ

1. Initialization
initialize t5 = 0, ε(0)5 = 1
initialize θθθ(0) satisfying (7a)
calculate www(0) using (53)
2. Joint optimization of www and θθθ
repeat
• calculate θθθ(t5+1) andwww(t5+1) using (55) and (53), respectively

• ε(t5)5 =

∣∣obj
(
www(t5+1),θθθ(t5+1)

)
−obj
(
www(t5),θθθ(t5)

)∣∣
obj
(
www(t5+1),θθθ(t5+1)

) , where the obj

refers to the OF of Problem P3-E3
• t5 = t5 + 1

until ε(t5)5 ≤ ε || t5 > tmax
5

3. Optimization of `̀̀
calculate ˆ̀(t5+1) using (49)
integerize `(t5+1) by (9)

which is equivalent to

P3-E2 : max
www,θθθ

R(www,θθθ)

s.t. 0 ≤ θn < 2π, n = 1, 2, . . . , N. (51a)

Substituting (4) and (5) into the OF of Problem P3-E2, and
taking several steps of mathematical manipulation, Problem
P3-E2 may be equivalently transformed into

P3-E3 : max
www,θθθ

pt
∣∣wwwH(hhhd +GGGΘΘΘhhhr

)∣∣2
σ2|wwwH |2

s.t. 0 ≤ θn < 2π, n = 1, 2, . . . , N. (52a)

Again, the BCD technique is invoked for optimizing www and θθθ
in Problem P3-E3. Specifically, given a θθθ,www can be optimized
following the well-known maximum ratio combining (MRC)
criterion [45], which is given by

www =
√
pt(hhhd +GGGΘΘΘhhhr)/σ, (53)

while for a given www, we have the following inequality for the
OF of Problem P3-E3,

pt
∣∣wwwH(hhhd +GGGΘΘΘhhhr

)∣∣2
σ2|wwwH |2

≤
pt
∣∣wwwHhhhd∣∣2
σ2|wwwH |2

+
pt
∣∣wwwHGGGΘΘΘhhhr

∣∣2
σ2|wwwH |2

.

(54)

The equality in (54) holds only when the IRS phase shift co-
efficient obeys arg{wwwHhhhd} = arg{wwwHGGGΘΘΘhhhr}. Accordingly,
the reflection phase shift vector θθθ may be readily obtained as

θθθ = arg{wwwHhhhd} − arg{diag{wwwHGGG}hhhr}. (55)

In Algorithm 5, we provide the overall algorithm that is used
for solving our optimization problem for the single-device
scenario.

The complexity of Algorithm 5 is dominated by calculating
θθθ(t5+1) and www(t5+1) using (55) and (53), whose complexities
are on the order of O

(
max{MN,N2}

)
and of O(MN2),

respectively. Hence the complexity of Algorithm 5 is on the
order of O(MN2).
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V. NUMERICAL RESULTS

In this section, the benefits of deploying the IRS in a MEC
system are evaluated, relying on our algorithms developed in
Section III and IV. We consider a single-cell MEC system for
both the single-device and two-device as well as multi-device
scenarios. As shown in Fig. 3, the AP’s coverage radius is
R = 300 m and the IRS is deployed at the cell edge. The
location of the device is specified both by d and by d in
the single-device scenario, while in the two-device scenario,
the devices’ locations are specified by (d1, d1) and (d2, d2),
respectively. Furthermore, in the multiple-device scenario, it
is assumed that the devices are uniformly distributed within
a circle, whose size and location are prescribed by its radius
r, as well as d and d, respectively. The default value of these
parameters are set in the “Location model” block of Table II.
As for the communications channel, we consider both the
small scale fading and the large scale path loss. Specifically,
the small scale fading is i.i.d. and obeys the complex Gaussian
distribution associated with zero mean and unit variance, while
the path loss in dB is given by

PL = PL0 − 10α log10

( d
d0

)
, (56)

where PL0 is the path loss at the reference distance d0; d and
α represent the distance of the communications link and its
path loss exponent, respectively. Here we use αua, αui and
αia to denote the path loss exponent of the link between the
device and the AP, that of the link between the device and
the IRS, as well as that of the link between the IRS and the
AP, respectively. The zero-mean additive white Gaussian noise
associated with the variable of σ2 is imposed on the off-loaded
signal. The default settings of these parameters are specified in
the “Communications model” block of Table II. The variables
Lk, ck and f lk obey the uniform distribution, whose ranges are
given in the “Computing model” block of Table II.

Table II: Default simulation parameter setting

Description Parameter and Value

Location model R = 300 m
d = d1 = d2 = 10 m

Communication model

Bandwidth = 1 MHz
PL0 = 30 dB, d0 = 1 m

αua = 3.5, αui = 2.2, αia = 2.2
M = 5

pt = 1 mW
σ2 = 3.98× 10−12 mW

Computing model
Lk = [250, 350] Kb

ck = [700, 800] cycle/bit
f lk = [4, 6]× 108 cycle/s

Weight $k = 1/K
Convergence criterion ε = 0.001

The following subsections detail our simulation results, in
terms of the properties of our proposed algorithm and of
the latency performance in both the single-device, and two-
device, as well as multi-device scenarios in various simulation
environments. The following three schemes are considered:
• With IRS: The off-loading volume, edge computing re-

source allocation, MUD matrix, and IRS phase shift are
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Figure 2: Convergence of the algorithms for (a) the single-device scenario
using Algorithm 5 and (b) the two-device scenario using Algorithm 4. The
parameters are set as follows: fetotal = 50 × 109 cycle/s; ck = 750 cycle,
Lk = 300 Kb, and f lk = 0.5×109 cycle/s for all devices. (a): d = 280 m;
(b): d1 = d2 = 280 m.

optimized relying on Algorithm 4 and Algorithm 5 in the
multi-device and single-device scenarios, respectively.

• RandPhase: The off-loading volume, edge computing
resource allocation, as well as MUD matrix are optimized
using Algorithm 4 and Algorithm 5 in multi-device and
single-device scenarios, respectively, while skipping the
step of designing the IRS phase shift, which is randomly
set obeying the uniform distribution in the range of
[0, 2π).

• Without IRS: The composite channel GGGΘΘΘhhhr,k taking into
account the IRS is set to 0. The off-loading volume, edge
computing resource allocation, and the MUD matrix are
designed following Algorithm 4 and Algorithm 5 in the
multi-device and single-device scenarios, respectively.

A. Properties of the Proposed Algorithms

In this subsection, the properties of Algorithm 4 and 5 are
investigated, with the aid of numerical results.

1) Convergence: Fig. 2 shows the device-average latency
versus the number of iterations under various settings of the
IRS phase shift number, i.e. N = 10, 20, and 40, for both
the single-device and multi-device scenarios. We have the
following two observations. Firstly, a larger number of phase
shifts leads to a slightly slower convergence, especially for
the multi-device scenario. This is because more optimizing
variables are involved. Secondly, the proposed algorithms are
capable of achieving a convergence within 5 iterations, which
validates its practical implementation.

2) Impact of the Initialization Settings: As elaborated on in
Remark 1, locally optimal results are provided by our proposed



11

(a) (b) (c)

Figure 3: Top-view setting of (a) the single-device scenario, (b) the two-device scenario, and (c) the multiple-device scenario.
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Figure 4: Simulation results of the the maximum and minimum latency versus
the realization index obtained under 100 random initialization settings for (a)
the single-device scenario using Algorithm 5 and (b) the two-device scenario
using Algorithm 4. “Max” and “Min” refer to the maximum and minimum
value, respectively. The parameters are set as follows: N = 40. (a): d =
280 m; (b): d1 = d2 = 280 m.

algorithms. Hence, the results obtained are directly dependent
on the initialization settings of Algorithm 4 and 5. In order
to clarify its impact, Fig. 4 presents the latency performance
under different initialization settings both for single- and
multi-device scenarios. Specifically, for each realization of
the wireless channels and computing tasks to be processed,
100 locally optimal results are obtained using our proposed
algorithms, where each of the initializations is randomly set.
Among these locally optimal results, the maximum latency
value that can be deemed to be the worst-case result using
our proposed algorithms is labeled as “Max” in Fig. 4, while
the minimum latency value is labeled by “Min” in Fig. 4
which may resemble the globally optimal result. It is shown
that these two values are almost identical for the single-device
scenario, while their gap ranges from 2% to 17% in the multi-
device scenario, which implies that our proposed algorithms
are capable of approaching the optimal performance.
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Figure 5: Simulation results of the latency versus the realization index
under different assumptions of IRS phase shifts for (a) the single-device
scenario and (b) the two-device scenario. “Cont.”, “1-bit” and “2-bit” refer
to the assumptions of continuous, 1-bit, and 2-bit phase shifts, respectively.
The parameters are set as follows: N = 40. (a): d = 280 m; (b):
d1 = d2 = 280 m.

3) Impact of the Phase Quantization: Due to the associated
hardware limitation, only a limited number of discrete IRS
phase shifts can be provided in practice [23], which pro-
hibits the direct implementation of our proposed algorithms.
An intuitive practical solution to this issue is to round the
continuous phase shift obtained to its nearest discrete phase
shift. Naturally, a performance loss is imposed, owing to the
associated quantization effect. Fig. 5 evaluates the impact
of phase quantization on the latency, where three practical
assumptions are considered. Specifically, under the assumption
of continuous phase shifts, the phase shift of each IRS element
can be set as an arbitrary value in the interval of [0, 2π];
Determined by a 1-bit control signal, the phase shift of each
IRS element has to be either 0 or π under the assumption of
1-bit phase shift; for a 2-bit control signal, the phase shift of
each IRS element has to be one of the values in the set of{

0, π2 , π,
3π
2

}
. Particular to the schemes under discrete phase

shift assumptions, the values of WWW , `̀̀, and fffe are updated
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Figure 6: Simulation results of the latency versus the number of the IRS
elements in the single-device scenario, where we set d = 280 m and fetotal =
50× 109 cycle/s.

based on the quantized phase shifts and then the latency is
calculated accordingly. We have the following observations.
Firstly, as expected, the latency decreases upon increasing the
number of discrete phase shifts. Secondly, the performance
gap between the schemes under the assumptions of continuous
phase shifts and 2-bit phase shifts ranges from 1% to 5%,
which implies that the quantization loss becomes negligible
for as few as four phase shifts in practice.

B. Single-Device Scenario

Fig. 6-8 present the latency versus various parameter set-
tings in the single-device scenario, discussed as follows.

1) Impact of the Number of Reflecting Elements: Fig. 6
presents the latency versus the number of the reflecting ele-
ments, for the various phase shift design schemes. Our obser-
vations are as follows. Firstly, the performance gap between
the schemes “Without IRS” and “RandPhase” becomes higher
upon increasing the number of reflecting elements, which
implies that the IRS is capable of assisting the computation
off-loading even without carefully designing the phase shift.
This is because the received SINR can be improved by
deploying an IRS for computation off-loading. The gain was
termed as the virtual array gain in Section I. Secondly, the
performance gain of the scheme “With IRS” over the scheme
“RandPhase” is around 11 ms when we set N = 10, while it
becomes 46 ms when we have N = 100. This implies that a
sophisticated design of the IRS phase shift response provides
a beamforming gain, and that increasing the number of IRS
elements leads to a higher reflection-based beamforming gain.
Combining these two types of gains together, IRSs are capable
of efficiently reducing the latency in MEC systems.

2) Impact of the Edge Computing Capability: Fig. 7 shows
the latency versus the edge computing capability, for various
IRS phase shift schemes. Our observations are as follows.
For all these three schemes, the increase of fetotal drastically
reduces the latency when fetotal is of a small value, while the
reduction of the latency becomes smaller when fetotal reaches a
certain threshold value, say 30× 109 cycle/s. This is because
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Figure 7: Simulation results of the latency versus the edge computing
capability in the single-device scenario, where we set d = 280 m and
N = 40.
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Figure 8: Simulation results of the latency versus the device location in the
single-device scenario, where we set N = 40 and fetotal = 50×109 cycle/s.

the latency imposed by the edge computing dominates when
fetotal is of a small value, whereas the latency imposed by
computation off-loading plays a dominant role when fetotal
reaches a high value. Therefore, it is not necessary to equip the
edge computing node with an extremely powerful computing
capability for latency minimization.

3) Impact of the Device Location: Fig. 8 depicts the latency
versus the device location, equipped with various IRS phase
shift schemes. Our observations are as follows. In the case
where no IRS is employed, the latency increases upon increas-
ing the distance between the AP and the device. In the case
where the IRS’s phase shift is randomly set, the advantage of
using the IRS becomes visible when the distance between the
device and the IRS is less than 20 m. By contrast, the benefit
of the IRS becomes notable for a much larger coverage of
100 m for the “With IRS” scheme. This observation implies
that a sophisticated design of the IRS phase shift response is
capable of extending the coverage of the IRS. Furthermore,
the latency reaches its maximum value at d = 260 m and
thereafter becomes smaller for the “With IRS” scheme. This is
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Figure 9: Simulation results of the latency versus the number of the IRS
elements in the two-device scenario, where we set d1 = 260 m, d2 = 280 m,
and fetotal = 50× 109 cycle/s.

because the direct device-AP link dominates the computation
off-loading when the device’s location obeys d ≤ 260 m, while
the composite device-IRS-AP link plays a dominant role, when
we have d ≥ 260 m. This observation further consolidates that
a higher gain can be achieved in the near-IRS area, where the
composite device-IRS-AP link dominates the computation off-
loading.

C. Multi-Device Scenario

Fig. 9-12 present the latency in the two-device scenario, and
Fig. 13-14 show the latency in the multiple-device scenario,
which are discussed as follows.

1) Impact of the Number of IRS Elements: Fig. 9 depicts
the latency versus the number of the IRS elements in the two-
device scenario, equipped with various phase shift schemes.
Apart from the insights obtained in the single-device scenario,
we also have the following observations. Firstly, Device 2
outperforms Device 1 for the “With IRS” scheme, whilst
Device 1 has a lower latency both for the “Without IRS”
and “RandPhase” schemes compared to Device 2. This is
in accordance with the comparative relationship between the
devices located at d = 260 m and at d = 280 m in terms of
the latency using those three phase shift schemes, as shown in
Fig. 8. This also implies that IRSs may change the latency
ranking of the devices in MEC systems. Secondly, upon
increasing the number of IRS elements, Device 2 obtains a
higher gain than Device 1. This is because Device 2 is located
closer to the IRS, where the composite device-IRS-AP channel
dominates the computation off-loading. Again, this implies
that given a specific path loss exponent, a higher array and
passive beamforming gain may be achieved if the device is
located closer to the IRS.

2) Impact of the Edge Computing Capability: Fig. 10
presents the latency versus the edge computing capability in
the multi-device scenario, equipped with various phase shift
schemes. This scenario follows similar trends to the single-
device case illustrated in Fig. 7.
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Figure 10: Simulation results of the latency versus the edge computing
resource in the two-device scenario, where we set d1 = 260 m, d2 = 280 m,
and N = 40.
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Figure 11: Simulation results of the latency versus the user location in the
two-device scenario, where we set d2 = 280 m, N = 40, and fetotal =
50× 109 cycle/s.

3) Impact of the Device Location: Fig. 11 plots the latency
versus the location of Device 1, while fixing the location of
the AP, the IRS, and Device 2. As for the “With IRS” scheme,
the curve of Device 1’s latency intercepts that of Device 2 at
d1 = 220 m and d1 = 280 m, which implies that the devices
at these two locations have the same channel gain. In other
words, the IRS is capable of assisting the device at d = 280 m
to achieve the same latency as the device at d = 220 m.
Note that the specific values of these two equivalent-latency
locations are dependent on the specific values of the path loss
exponents of the device-IRS, IRS-AP, and device-AP channels,
as presented below.

4) Impact of the Path Loss Exponent: Fig. 12 illustrates
the latency versus the path loss exponent value associated
with the IRS. It can be observed that the intercept point
disappears, when αIRS is changed for the “With IRS” scheme.
Furthermore, the latency of devices increases upon increasing
αIRS. This is because higher αIRS leads to a lower array and
beamforming gain by the IRS. This provides important insights
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Figure 13: Simulation results of the device-average latency versus the number
of devices K. The parameters are set as follows: d = 280 m, d = 10 m,
r = 10 m, N = 40, and fetotal = 50× 109 cycle/s.

for engineering design: the location of the IRS should be
carefully selected to avoid obstacles, for achieving a lower
αui and αia.

5) Impact of the Number of Devices: Fig. 13 shows the
latency versus the number of devices in the cycle in multi-
device scenario. It can be readily observed that the device-
average latency increases upon increasing the number of de-
vices in the IRS-aided MEC system. This is partially because
of the reduced edge computational resources allocated to each
device and partially due to the reduced beamforming gain
achieved at each device. The former issue may be overcome
by equipping the edge node with more powerful computing
capability, while the latter problem can be solved by deploying
more IRSs in the MEC system for forming stronger beams.
Nonetheless, compared to the “Without IRS” scheme, our
“With IRS” scheme is capable of reducing the device-average
latency from 177 ms to 139 ms, when we have 5 devices in the
MEC system. This again validates the benefits of our proposed
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Figure 14: Simulation results of the device-average latency versus the ICI-to-
noise ratio. The parameters are set as follows: K = 3, d = 280 m, d = 10 m,
r = 10 m, N = 40, and fetotal = 50× 109 cycle/s.

system.
6) Impact of Inter-Cell Interference: In realistic scenarios,

inter-cell interference (ICI) also degrades computation off-
loading. To quantify the impact of ICI, Fig. 14 presents the
latency versus the ICI-to-noise power ratio, where the BS is
assumed to know the power of the received interference but
not the specific signal transmitted from other cells. Observe
that the benefit of employing IRSs in MEC systems decreases
upon increasing the ICI-to-noise power ratio. To elaborate,
when computation off-loading is used in the face of strong
ICI, the fraction of tasks that can be off-loaded becomes
marginal. In this case, the wireless devices have to rely on their
own computing capabilities. In other words, the potential of
IRSs may not be fully exploited. This observation suggests
an important insight for engineering design: the spectrum
allocation of adjacent cells has to be carefully managed for
minimizing the ICI in IRS-aided MEC systems.

VI. CONCLUSIONS

In order to reduce the computational latency, an IRS
was proposed for employment in MEC systems. Based on
this model, a latency-minimization problem was formulated,
subject to practical constraints on the total edge computing
capability and IRS phase shifts. Sophisticated algorithms were
developed for optimizing both the computing and commu-
nications settings. The benefits of using IRSs in the MEC
system were evaluated under various simulation environments.
Quantitatively, the device-average computational latency was
reduced from 177 ms to 139 ms, compared to the conventional
MEC system operating without IRSs in a single cell associated
with the cell radius of 300 m, a 5-antenna access point and 5
active devices. Furthermore, the rapid convergence of our pro-
posed algorithm was confirmed numerically, which validates
their benefits. As our future work, an energy-minimization
based design will be conceived for IRS-aided MEC systems.
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APPENDIX A
THE PROOF OF PROPOSITION 1

ˆ̀
k ∈ [0, Lk] is used to represent the relaxation [46] of

the integer value `k ∈ {0, 1, . . . , Lk}. Furthermore, given the
values of WWW,θθθ and fffe, we define the delay associated with
ˆ̀
k to be D̂k(ˆ̀

k) , max
{
Dl
k(ˆ̀

k), De
k(ˆ̀

k)
}

, which can be
reformulated from (6) as a segmented form below

D̂k(ˆ̀
k) =


(Lk−ˆ̀

k)ck
f l
k

, 0 ≤ ˆ̀
k ≤ LkckRkf

e
k

fe
kf

l
k+ckRk(f l

k+fe
k)
,

ˆ̀
k

Rk
+

ˆ̀
kck
fe
k
,

LkckRkf
e
k

fe
kf

l
k+ckRk(f l

k+fe
k)
< ˆ̀

k ≤ Lk.

(57)

A glance at (57) reveals that D̂k(ˆ̀
k) decreases upon in-

creasing ˆ̀
k in the range of ˆ̀

k ∈
[
0,

LkckRkf
e
k

fe
kf

l
k+ckRk

(
fe
k+f l

k

)],

while D̂k(ˆ̀
k) increases upon increasing ˆ̀

k in the range

of ˆ̀
k ∈

[
LkckRkf

e
k

fe
kf

l
k+ckRk

(
fe
k+f l

k

) , Lk]. Therefore, it is readily

inferred that D̂k(ˆ̀
k) achieves its minimum value when we

set ˆ̀
k =

LkckRkf
e
k

fe
kf

l
k+ckRk

(
fe
k+f l

k

) , which is denoted by ˆ̀∗
k. Bearing

in mind that the optimal value of `k has to be an integer,
it may be obtained by carrying out the operation `∗k =

arg min
ˆ̀∈
{
bˆ̀∗kc,dˆ̀

∗
ke
}Dk(ˆ̀

k). This completes the proof.

APPENDIX B
THE PROOF OF PROPOSITION 2

Let us denote the second derivative of the OF of Problem
P1-E with respect to fek by Φ1-E , which is calculated as

Φ1-E =
2$kLkc

3
kR

2
k(f lk + ckRk)[

fekf
l
k + ckRk

(
fek + f lk

)]3 . (58)

Since the values of $k, ck, Rk, f lk are all positive and we
have Lk ≥ 0, fek ≥ 0, it may be readily demonstrated that
Φ1-E ≥ 0. Hence the OF is a convex function with respect
to fek . Furthermore, the constraint functions (7c) and (7d) are
all of linear forms. Hence, Problem P1-E is shown to be a
strictly convex problem.

APPENDIX C
THE PROOF OF PROPOSITION 3

The Lagrangian of Problem P2-E2 is given by

L(WWW,θθθ,βββ,λλλ) =

K∑
k=1

βk +

K∑
k=1

λk
[
$k`k − βkRk(wwwk, θθθ)

]
(59)

where {λk} is the non-negative Lagrange multiplier. If
(WWW ∗, θθθ∗,βββ∗) is the solution of Problem P2-E2, there exists

λλλ∗ satisfying the following KKT conditions

∂L
∂θk

= −λ∗kβ∗kORk(www∗k, θθθ
∗) = 0, k = 1, 2, . . . ,K,

∂L
∂wwwk

= −λ∗kβ∗kORk(www∗k, θθθ
∗) = 0, k = 1, 2, . . . ,K,

∂L
∂βk

= 1− λ∗kRk(www∗k, θθθ
∗) = 0, k = 1, 2, . . . ,K,

λ∗k
[
$k`k − β∗kRk(www∗k, θθθ

∗)
]

= 0, k = 1, 2, . . . ,K,

λ∗k ≥ 0, k = 1, 2, . . . ,K,

$k`k − β∗kRk(www∗k, θθθ
∗) ≤ 0, k = 1, 2, . . . ,K,

0 ≤ θ∗k ≤ 2π, k = 1, 2, . . . ,K.

(60)

(61)

(62)

(63)
(64)
(65)
(66)

Since we have Rk(wwwk, θθθ) > 0, (62) is equivalent to

λ∗k =
1

Rk(www∗k, θθθ
∗)
, ∀k ∈ {1, 2, . . . ,K}, (67)

and then (63) is equivalently written as

β∗k =
$k`k

Rk(www∗k, θθθ
∗)
, ∀k ∈ {1, 2, . . . ,K}. (68)

Furthermore, Eq. (60), (61) and (66) are exactly the KKT
conditions of Problem P2-E3, when we set λλλ = λλλ∗ and
βββ = βββ∗. This proves the first conclusion of Proposition
3. Following the same procedure, the second conclusion of
Proposition 3 may also be readily shown.
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