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Abstract—Building on the ubiquity of electric power infras-
tructure, power line communications (PLC) has been successfully
used in diverse application scenarios, including the smart grid
and in-home broadband communications systems as well as
industrial and home automation. However, the power line channel
exhibits deleterious properties, one of which is its hostile noise
environment. This article aims for providing a review of noise
modeling and mitigation techniques in PLC. Specifically, a
comprehensive review of representative noise models developed
over the past fifty years is presented, including both the empirical
models based on measurement campaigns and simplified math-
ematical models. Following this, we provide an extensive survey
of the suite of noise mitigation schemes, categorizing them into
mitigation at the transmitter as well as parametric and non-
parametric techniques employed at the receiver. Furthermore,
since the accuracy of channel estimation in PLC is affected by
noise, we review the literature of joint noise mitigation and
channel estimation solutions. Finally, a number of directions
are outlined for future research on both noise modeling and
mitigation in PLC.

Index Terms—Power-line communications, background noise,
impulsive noise, narrow-band interference, noise modeling and
mitigation techniques.

I. INTRODUCTION
A. Power-Line Communications

Power-line communications (PLC) has been considered as
a means of data transmission since the late 19th century [1,
Ch. 1]. Early applications include narrow-band voice and data
communications over both medium- and high-voltage power
lines for telemetry, telecontrol and teleprotection purposes, as
the predecessors of to contemporary smart grid communica-
tions [2]-[6]. However, communications over power-lines have
not received wider attention until the late 1990s [7], when both
the telecommunications services and the electricity industry
were deregulated [8]. Since then, PLC has evolved rapidly and
has been harnessed in various scenarios [1]. Specifically, two-
way automatic communication systems [9] were developed in
1982 both for advanced metering and distribution automation.
In 1997, the first use of PLC for residential customers’
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Internet access services was announced by Nortel and Norweb
Communications in the U.K, which was capable of providing a
data rate of 1 Mbps [10]. Since the early 2000s, PL.C has also
found applications in domestic broadband applications. For
example, products allowing data rates of 14 Mbps (HomePlug
1.0), then 85 Mbps (HomePlug Turbo), and then 200 Mbps
(HomePlug AV, HD-PLC, UPA) have become progressively
available on the market over the past two decades.

1) Applications of PLC: The applications of PLC are

summarized as follows.

e The Smart Grid is a modernized power grid that sup-
ports energy transmission and distribution by relying on
both wireless and wireline communications techniques
[8], [11]. Particularly, PLC plays a unique role in this
context. One of its advantages is that the functions of both
sensing and communicating can be supported by PLC,
because apart from its intrinsic communications function,
both power quality and grid device health (e.g., cracked
insulators, broken strands, etc.) can be readily revealed
by analyzing the communications signals received [12]-
[14]. Another advantage is that the application of PLC
in smart grids substantially reduces the cost of both
the construction and of the maintenance of the indis-
pensable telecommunications functions in the grid [8].
An additional advantage is that power lines provide a
communication path that is completely controlled by the
power transmission and distribution sector.

o Smart Factories can also be supported by PLC, which
facilitates the interconnection of controllers and motors
[1, Ch. 7] [15], [16]. When compared to other alter-
natives, power lines often represent the shortest routes
between the controllers of electronic devices, because
the signal passes through the minimum number of relays
or gateways [17]. Beneficially, low-latency transmission
links relying on PLC become available for mission-
critical industrial automotive applications.

o Intelligent Transportation can also be supported by PLC
[1, Ch. 10]. Specifically, smart lighting systems are
capable of substantially reducing the energy consumption
by adapting the lighting intensity on the basis of time and
of the residents’ demand. However, the geographical ex-
tension of street light posts imposes economic challenges
on deploying the communications infrastructure required
[18]. Furthermore, since the car wiring constitutes the
third highest factor of their overall weight, immediately
after the engine and the gearbox, the power lines can
also be exploited for PLC in automatic control and in
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multimedia streaming by setting up in-vehicle local area
networks in cars [19], ships [20] and airplanes [21].

o The Smart Home concept can also be supported by PLC
for example by constructing home area networks that
interconnect appliances with smart meters or domestic
photovoltaic systems both for supporting energy con-
sumption profiling and automatic control [1, Ch. 7] [22].

e Broadband network services can be accessed through
PLC links that set up a local area network [23] and/or act
as a backbone ! for connecting WiFi or LiFi ? networks
[1, Ch. 8] [26]-[30]. Furthermore, PLC has the advantage
of supporting network coverage in the blind spots of
wireless communications, such as underground scenarios
[31].

2) Categories of PLC: The applications mentioned in Sec-
tion I-A1 are fairly diverse and thus rely on different types of
PLC systems. From the perspective of their frequency bands,
PLC can be generally categorized into three classes, i.e. ultra-
narrowband (UNB), narrow-band (NB) and broad-band (BB)
PLC [11], [32], [33], which are detailed below.

e UNB PLC systems operate in the frequency band of 0.3 —
3.0 kHz. They are capable of providing rates on the order
of bits per second (bps) over long distances of 100 km
and more. They are mainly deployed for grid maintenance
and monitoring, for example, meter reading in remote
areas [11].

e NB PLC systems use the frequency band of 3 — 500 kHz.
They are mainly deployed in building automation, trans-
portation control and smart energy management for trans-
mitting control signals and meter reading. Low data-rate
NB PLC systems typically have been based on single-
carrier (SC) frequency-shift keying modulation, and pro-
vide data rates of kbps, while more recently developed
high data-rate NB PLC systems use multi-carrier (MC)
modulation and are designed to offer a wider range of
data rates up to hundreds of kbps [11], [33].

e BB PLC systems utilize the frequency band of 1.8 —
100 MHz and deliver up to Gbps-level rates using MC
modulation. They are mainly applied within home areas,
for supporting high-rate applications, such as Internet
access, online gaming and high-definition television [26].

The smart grid uses the techniques of UNB PLC, of NB PLC,
and of BB PLC, while NB PLC is usually invoked in the
smart home, in smart factories and in intelligent transportation.
Broadband network access services typically exploit BB PLC.

B. Noise in PLC

The characterization of power line noise dates back to the
early 1970s [34], where Smith documented the power spectral
density of power line noise both in an urban office and in a

IShlezinger et al. [24] have demonstrated that a two-transmit-port-two-
receive-port PLC system is capable of delivering Gbps-level data rates over a
frequency range of upto 100 MHz following the configuration of the ITU-T
G.9963 standard. This data rate enables PLC to be a competitive candidate for
diverse backbone applications. The recent advance of full-duplex techniques
[25] also pushes the data rate of PLC even further.

2Li-Fi (short for light fidelity) is wireless communication technology which
utilizes light to transmit data and position between devices.

rural farm. Following this, various models have been proposed
for characterizing the noise in PLC [32], [35]-[79]. In the
following, we will briefly introduce both the categories and
characteristics of the noise in power lines.

1) Noise Categories in PLC: Signal transmissions in PLC
are contaminated by impairments emitted either by electrical
devices connected to the power grid or by coupling of radio
signals. The impairments are often referred to as noise in
parlance and generally categorized into the following five
classes shown in Fig. 1 [40], [47], [60].

o Colored background noise is mainly due to spurious emis-
sions from common household appliances and equipment.
Its power spectral density (PSD) decays upon increasing
the frequency and it is mostly concentrated at frequencies
of below 1 MHz.

e Narrow-band interference originates from the ingress of
broadcast radio signals and thus often has a high power
in a narrow bandwidth and fluctuates throughout the day.

e Periodic impulsive noise synchronous with the mains fre-
quency is caused by power supplies, mostly by the switch-
ing action of rectifier diodes. It occurs synchronously
with the mains cycle and hence has a repetition rate of
50 or 100 Hz, dependent on whether the devices are only
affected by the absolute value of the main voltages or also
by their polarity [54]. The duration of its impulse is short,
usually some microseconds.

o Periodic impulsive noise, which is asynchronous with the
alternating current (AC) voltage of the mains frequency,
is mainly caused by switching power supplies. It typically
has a repetition rate between 50 kHz and 200 kHz and a
discrete-line spectrum spaced by the repetition rate.

e Non-periodic asynchronous impulsive noise appears ape-
riodically, because it typically originates from unpre-
dictable switching transients. The duration of its impulse
typically spans from some microseconds upto a few
milliseconds [40].

2) Behavior and Impacts of Noise in PLC: In contrast
to the noise process in wireless communications, which is
usually modeled by a additive white Gaussian noise (AWGN),
the noise in PLC typically exhibits complex behavior and
severely degrades the integrity of PLC. Let us elaborate further
from the perspectives of both the background noise and of
the impulsive noise. Specifically, in contrast to the AWGN
whose PSD is flat, the PSD of the background noise in PLC
typically decreases upon increasing the frequency [45]. In this
case, the noise level has to be individually estimated at each
subcarrier for the ease of data detection in the system relying
on MC modulation. Furthermore, the behavior of impulsive
noise in PLC is predominantly characterized by the following
four aspects.

o The impulses are usually of high power, hence the desired
signals can be severely contaminated in the PLC relying
on low-power transmitters. For example, the non-periodic
asynchronous impulsive noise [40] and the periodic im-
pulsive noise appearing at certain frequencies [67] are
capable of reaching 50 dB above the background noise.

o Its samples commonly exhibit non-Gaussian distribution
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Fig. 1: Tllustration of PLC transmission systems contaminated by channels and by diverse noise components.

[40], hence the optimality of the detector originally opti-
mized for Gaussian noise environments no longer holds.
Therefore, it is imperative to conceive sophisticated de-
tector designs for PLC noise environments.

o It often occurs in form of a burst, which may obliterate
multiple packets, because the bursts of errors may exceed
the error correction capability of the associated forward
error correction (FEC) codes [32]. These error bursts
can be beneficially randomized upon dispersing them by
interleaving or avoided by automatic repeat-and-request
(ARQ). However, some long-duration impulse bursts may
last for multiple transmission time slots. This inevitably
requires a large number of retransmission attempts or a
substantial interleaver depth 3.

o It is of high occurrence probability, which leads to the
fact that PLC transmission links are frequently under the
risk of contamination, and hence degrading the reliability
of PLC [32].

3) Importance of Noise Characteristics and Modeling:
The accurate knowledge of the noise characteristics and the
development of noise models have at least three benefits as
follows.

o It enables the characterization of the PLC medium and of
the associated theoretical limits for data communications.

« It facilitates the design of high-performance transceivers
operating reliably over PLC channels, possibly close to
the theoretical limits.

e Accurate noise models allow the regeneration of noise
samples for simulation testing of PLC systems.

All these benefits motivate us to review the research contribu-
tions on the topic of noise modeling and mitigation in PLC.

C. Prior Work

A range of excellent surveys has been published on the topic
of noise modeling and mitigation in PLC [79]-[82], but they
were focused on a specific noise modeling perspective or a
limited number of noise mitigation techniques. To elaborate,
Shongwe et al. [80] summarized several simplified mathe-
matical noise models and reviewed the family of nonlinear
noise mitigation techniques at the receiver’s input along with

3The occurrence of error bursts is not unique to the PLC transmission
systems. In wireless communications, however, they are usually imposed by
fading, while the error bursts in PLC are commonly caused by noise. The
behavior difference between the noise process and fading distinguishes PLC
from wireless communications.

the benefits of channel coding. Mariyam et al. [81] intro-
duced three impulsive noise models designed for interleaving-
assisted PLC systems, and reviewed a suite of the nonlinear
pre-processing aided noise mitigation techniques used at the
receiver’s input, along with channel coding and compressed-
sensing-aided mitigation. Han et al. [79] surveyed the noise
models of PLC that are based on measurement campaigns.
Laksir et al. [82] provided an inspirational survey of the recent
trends in impulsive noise reduction techniques, which catego-
rizes the noise mitigation techniques both at the transmitter and
at the receiver based on their error handling mechanisms as
well as detection and mitigation strategies. Furthermore, noise
modeling and mitigation was also touched upon by the impres-
sive surveys [33], [83]. Specifically, Berger et al. [83] reviewed
the salient aspects of multiple-input multiple-output (MIMO)-
based PLC, including its relationship with the classic wireless
MIMO schemes, along with sophisticated signal processing
techniques proposed for MIMO PLC. They also touched
upon the channel and noise characterization of MIMO PLC
solutions. Cano et al. [33] presented an overview of the state-
of-the-art in PLC, which covered its potential applications,
regulatory and standardization efforts, their channel and noise
characterization as well as signal processing techniques. By
contrast, our survey provides a comprehensive review of noise
modeling from the twin-fold perspectives of empirical as well
as of simplified mathematical modeling. More explicitly, we
cover ten different noise mitigation techniques by classifying
them into noise mitigation at transmitters, as well as both
parametric and non-parametric noise mitigation at the receiver.
We also cover the pivotal results of joint noise mitigation and
channel estimation, portraying the historical evolution of this
field in a coherent manner.

D. Contributions and Organization

An extensive review of the family of noise modeling and
mitigation techniques related to PLC over the past fifty years
is presented in this survey. For completeness, we commence
with a brief introduction to the channel characteristics and
modulation schemes in PLC. Following this, a comprehensive
review of representative noise models developed over the past
fifty years is presented. Furthermore, an extensive survey of
noise mitigation schemes is provided. Additionally, since the
accuracy of channel estimation in PLC is affected by noise,
we review the literature of joint noise mitigation and channel
estimation. Finally, a number of research opportunities are
outlined for the future work of both noise modeling and
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mitigation in PLC. Our original contributions are summarized
as follows.

o The research advances in noise modeling over the past
half-a-century are reviewed. Depending on whether any
experimental campaign is involved, we categorize the
noise models in PLC into empirical models and simplified
mathematical models. Specific to the empirical models,
we review the research efforts of all the five noise
components of PLC introduced in Section I-B, whilst the
family of simplified mathematical models are classified
into discontinuous and bursty impulse models, depending
on whether the impulse noise events occur in burst.

o We critically review the noise mitigation techniques in
PLC, by classifying them into the transmitter and the
receiver based techniques. The latter are further cate-
gorized into parametric and non-parametric approaches,
depending on whether the statistical knowledge of im-
pulsive noise is required. These mitigation techniques are
compared in terms of the type of target noise, mitigation
performance, spectral efficiency, computational complex-
ity and processing delay.

o Given that the channel estimation is directly impaired
by noise in PLC, we appraise a range of techniques
conceived for joint noise mitigation and channel estima-
tion, with special emphasis on pilot insertion and iterative
estimation.

o A number of future directions and extensions are high-
lighted for both noise modeling and mitigation in PLC.
This may inspire our valued readers in their future work.

Furthermore, noise has also been an crucial issue in some
other communications fields, e.g. digital subscriber lines [84],
underwater acoustic communications systems [85], and wire-
less communications [86]. Compared to those in other com-
munications systems, the noise process of PLC - including
colored background noise, narrow-band interference and three
types of impulsive noise - exhibits the most complex behavior
and has attracted substantial research attention. Hence, this
article providing a comprehensive survey of noise modeling
and mitigation in PLC exemplifies the techniques tackling the
noise issues of those systems.

The remainder of this article is organized as follows. In
Section II, we briefly introduce the channel characteristics and
modulation schemes in PLC. Section III presents our review
of noise modeling in PLC, while in Section IV we investigate
the family of noise mitigation in PLC. The research advances
in joint noise mitigation and channel estimation are presented
in Section V, followed by a range of challenges and future
research directions in Section VI. Finally, we conclude in
Section VII. The glossary is included at the end of this article.

II. PLC CHANNELS AND MODULATION SCHEMES

For completeness, we continue by briefly introducing the
PLC channel characteristics and its modulation schemes.

A. Transmission Channel Characteristics
The early analysis of PLC channel properties dates back

to 1980s [87], where the authors have provided some insight-
ful results on the data transmission characteristics of power
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Fig. 2: Illustration of an example of a four-path channel in PLC.

lines. Other influential measurement-based contributions in-
clude [44], [50], [54], [88]-[95].

Here we briefly summarize the properties of the power-line
channel. Firstly, the power-line channel exhibits a frequency-
dependent low-pass characteristic, imposed by the cable and
dielectric losses as well as by radiation effects [94]. Secondly,
multi-path propagation is observed in PLC [44], which is
caused by signal reflections at cable junctions and by the
connection and disconnection of loads. These phenomenolog-
ical propagation effects can be incorporated into a model that
defines a specific frequency response for NB-PLC [32] and for
BB-PLC [44], [89]. The reflections also cause further signal
attenuation due to an extension of the signal-path lengths [11].
Thirdly, the PLC channel exhibits a linear periodically time-
varying (LPTV) nature, which is influenced by the appliances
connected. More explicitly, some appliances contain non-linear
devices, such as thyristors, whose impedance varies with the
mains frequency periodically. In this case, the channel can be
modeled by an LPTV process synchronized to the mains [47],
[50]. We note that this LPTV model was originally proposed
for BB-PLC [50] and it was also confirmed to hold in NB-PLC
[93].

An alternative approach is to start from a transmission line
theory based presentation of signal propagation, which permits
the consideration of specific topologies and load configurations
both in BB-PLC [90], [91] and in NB-PLC [96] as well as in
MIMO PLC scenarios [97]. Fig. 2 shows a sample frequency
response for a power line channel based on the multipath
model of [44], for clarifying the channel characteristics of
power lines.

B. Modulation in PLC

As shown in Fig. 1, modulation is a fundamental function
block in PLC systems. Here we introduce the types of mod-
ulation and demodulation used in PLC, from the perspectives
of SC versus MC as well as coherent versus noncoherent
modulation schemes, respectively.

1) Single-Carrier versus Multi-Carrier Modulation: His-
torically, SC modulation schemes have been adopted in UNB



IEEE DRAFT

PLC and NB PLC systems, which use bandwidth of a few
kHz [11] and provide low-rate (bps to kbps) services at a
low complexity. MC modulation in the form of orthogonal
frequency-division multiplexing (OFDM) and wavelet-OFDM
may be used for BB PLC [26] and also for NB PLC sys-
tems [98]. This allows low-complexity single-tap equalization,
when transmitting over the frequency-selective PLC channel.
Furthermore, MC modulation facilitates the employment of
bit-loading algorithms for each subcarrier, which results in
an improved throughput [99]. MC modulation may also be
beneficial in the presence of impulsive noise if uncoded
modulation is considered, because the impulsive noise power
becomes averaged over all subcarriers after the discrete Fourier
transform (DFT) block [32].

2) Coherent versus Noncoherent Modulation: Data can
be transmitted via phase-shift keying (PSK) and quadrature
amplitude modulation (QAM) in both SC and MC modulation
schemes that rely on coherent detection, or via frequency-shift
keying (FSK) and differential PSK (DPSK) using noncoherent
detection. The advantages of the latter are that no explicit
channel estimation and no accurate carrier-frequency synchro-
nization are required, thus generally less complex receiver
structures and less pilot overhead are required [100]. On the
other hand, a signal-to-noise ratio (SNR) penalty is incurred.
For these reasons, noncoherent detection is typically applied
in low data-rate PLC systems and when the transmission of
relatively short data packets is desired [32].

III. NOISE MODELING

The accurate knowledge of noise characteristics in PLC is a
prerequisite for designing a high-performance transceiver for
establishing a reliable transmission link over electric wires.
However, the derivation of analytic expressions for empirical
noise models in PLC is quite a challenge [49]. Therefore,
almost all existing models are established by curve fitting
based on measurement results. Early characterization of power
line noise dates back to early 1970s [34]. Following this,
various empirical models have been proposed for character-
izing the noise in PLC [32], [35]-[79]. The advantage of
empirical models is to accurately reflect the characteristics
of noise, but unfortunately they do not lend themselves to
convenient performance analysis and system design, because
often intractable functions have to be invoked for pursuing a
high modeling accuracy. To overcome this hindrance, various
simplified mathematical models have been proposed [65], [80],
[101]-[121]. In this section, we briefly introduce the character-
istic parameters of noise process in PLC, and then review both
the empirical modeling and simplified mathematical modeling
options, which are detailed below.

A. Characteristic Parameters of Noise

As described in Section I-B, the different noise components
exhibit different behavior. In this subsection, we present their
characteristic parameters. Specifically, since the background
noise in PLC is a superposition of diverse noise components,

d IAT d
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Value of Noise Realization (mV)
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3t Impulsive noise 1
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Fig. 3: Illustration of an example of analog noise process in PLC [60], where
tq and tiaT denote the duration and inter-arrival time of impulses, respectively.

its realization can be modeled as a collection of Jg sinusoids,
given by:

JB
np(t) =Y Apsin (2mfft + o). (1)

Jj=1

where the random variables of A{B, ffé and 0/}3 are the
amplitude, “pseudo-frequency” and phase of the j-th sinusoid,
respectively. Having a high f7 means that the background
noise has a higher power spectral density at the high frequen-
cies. Furthermore, given that the background noise exhibits
a non-flat frequency-domain representation [40], the power
spectral density denoted by Sg(f) is used for characterizing
its spectral behavior. In typical PLC systems, Sp(f) decreases
upon increasing the operational frequency.

The impulsive noise process is a collection of J; decaying
sinusoids [53], where the sinusoid functions are multiplied by
exponential functions. Furthermore, since impulsive noise oc-
curs discontinuously, the corresponding rectangular functions
affect the impulsive noise process as follows:

oo Jr

nr(t) = Z Z Al sin <27rf} (t - tzrr) + a}')

i=1 j=1

t—t t—t
X exp % x| —=1, @
T7 td

where again the random variables A7, f} and a]I' represent the
amplitude, “pseudo-frequency” and phase of the j-th decaying
sinusoid, respectively. A higher A7 implies that the impulsive
noise may overwhelm the signal received. Furthermore, 77
corresponds to the damping factor; the rectangular function
M(t/t,) represents the square pulse duration of ¢’ having
a constant amplitude in the interval of 0 < ¢ < 1 and
the amplitude of O elsewhere; finally, ¢i denotes the arrival
time of the ¢-th impulsive noise burst. As shown in Fig. 3,
tiar = ti, — izt — ' denotes the inter-arrival time between
two consecutive impulsive noise bursts. Note that tjar is of
a constant value for the periodic impulsive noise, while it
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becomes a random variable for the non-periodic asynchronous
impulsive noise.

Based on the above-mentioned variables, a range of addi-
tional characteristic parameters can be obtained for providing
further insights into the associated performance analysis and
system design. One is the background-to-impulsive noise
power ratio. Upon denoting the PSD of impulsive noise by
S1(f), we may formulate the background-to-impulsive noise
power ratio as:

_ Sp(f)
Si(f)’

which is used for characterizing the power ratio between the
background noise and the impulsive noise at the frequency f.
Having a lower value of k() implies that the impulsive noise
has a higher PSD at the frequency f. The other one is the
ratio of the average burst-duration to the average inter-burst
duration, which is given by [117]:

k(f) 3)

Eft4]
Eltiar]’

where E[z] represents the expectation of x. This can be used
for characterizing the ratio between the average temporal
interval duration impaired by impulsive noise and that is free
from the impulsive noise.

A:

4)

B. Empirical Modeling

As mentioned in Section I-B1, the noise in PLC can be
generally classified into five categories, which are discussed
by considering their models as follows.

1) Colored background noise: Several classic models of
the PLC’s background noise are introduced below, in terms
of the sample-value of their noise realization and spectrum.
Bearing in mind that the signal can be transmitted using either
one-dimensional or two-dimensional modulation schemes in
PLC [3], we discuss modeling of the sample-value of their
noise realization in the context of these two cases individu-
ally. Specifically, the sample-value of one-dimensional noise
realization is commonly modeled by a zero-mean Gaussian
distribution [42], [45], [74], whose probability density function
(PDF) is given by:

fap(z f):;ex (_ﬁ) (5)
T g\ 2e0))

where o7 5(f) = Sp(f) represents the variance of the
noise at the frequency of f. As a further extension of the
one-dimensional noise realization, the magnitude of the two-
dimensional noise is typically modeled by a Rayleigh PDF
[38]:

f\AB|2(m7f)

X .1'2
"2, T (‘202,B<f>> - ©

where o2 5(f) is the variance of the real and imaginary noise
voltage value. Another model of the two-dimensional noise’s

magnitude is the Nakagami-m distribution [49], [56], whose
PDF is formulated as:

2 m \" o ma?
flAB‘Q('Tmf) = m <Q(f)> ? 1exp <_Q(f)> >

)

where T'(+) is the Gamma function [122]; Q(f) represents the
mean power of z at the frequency f; m = (H:E[xz])2 /var[z?].
Note that the Nakagami-m distribution is exactly the same as
the Rayleigh distribution, if we set m = 1.

The measurement results of the background noise’s spec-
trum are often fitted into a negative exponentially decaying
function [122]. Specifically, Hooijen [39] modeled the PSD in
an exponential form, given by:

SB(f) _ 10(K—3.95><1075f) [W/HZ], (8)

where f is the frequency in Hz. K slowly changes over time
and resembles the Gaussian distribution associated with the
mean value of 5.64 and with the variance value of 0.25.
Furthermore, Phillips [41] formulated the model as a first
order exponential function, whose amplitude spectral density
is expressed as:

Se(f) = So+ Siexp (-j;) ) 9
where (Sp, S1, f1) = (—35,35,3.6) for residential environ-
ments and (Sp, S1, f1) = (—33,40,8.6) for industrial en-
vironments; f is the frequency in MHz; the amplitude of
Sp(f) is in pV(dB)/Hz"%. Note that V2 /Hz is usually used
as the unity of the PSD and hence V/Hzl/ ? here is used
for representing the corresponding amplitude spectral density.
Furthermore, Esmailian et al. [45] proposed a three-parameter
model, which is given by:

Sp(f) = a+b|f|° [dBm/Hz] (10)

where f is the frequency in MHz. Here we have (a,b,c¢) =
(—140,38.75,0.720) for the best case and (a,b,c) =
(—145,53.23,—0.337) for the worse case. Additionally, the
attempts of applying MIMO techniques in PLC [123] inspires
the modeling of the MIMO PLC’s background noise. It can be
characterized in both the frequency domain [62], [66] and in
the time domain [69]. In Table I, we summarize the influential
modeling efforts concerning the empirical background noise,
from the perspectives of its voltage, environment, frequency
band, the sample-value of its noise realization and its spectral
behavior.

2) Narrow-band interference: Narrow-band interference is
a typical impairment imposed by uncoordinated PLC devices
and uncoordinated man-made appliances [32]. It can be char-
acterized in terms of the sample-value of its realization, as
well as both by its temporal behavior and spectral behavior.
Specifically, Philipps [41] confirmed that its sample-value of
realization obeys the lognormal distribution in both residential
and industrial environments. The temporal behavior of narrow-
band interference in PLC was investigated in [121] based on
the data measured both in Italy and China, which revealed that
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TABLE I: Milestone papers on background noise modeling. Here CDF corresponds to cumulative density function; MIMO refers to multiple-input multiple-
output PLC channels; AR represents auto-regressive model. The “Dash” here means that the article does not deal with the subject in the column.

[ Year | Paper [ Voltage | Environment | Frequency | Sample value of noise realization | Spectrum |
1972 | Smith [34] low office/industry 10 kHz — 1 GHz Rayleigh empirical
1997 | Arzberger et al. [38] low - 20 — 150 kHz Sum of Rayleigh empirical
1998 | Hooijen [39] low home 9 — 95 kHz - ®)
2000 | Philips [41] low | office and home 0 — 30 MHz - 9)
2002 | Cooper and Jeans [42] low home 9 — 148.5 kHz Gaussian ®)
2003 | Esmailian et al. [45] low | office and home 1 — 30 MHz Gaussian (10)
2003 Benyoucef [46] low | office and home 1 — 30 MHz - O]
2003 | Tang et al. [48] low home 1 —10 MHz empirical CDF ®)
2005 | Meng et al. [49] low lab and home 1 —30 MHz Nakagami-m empirical
2007 | Tao et al. [56] medium substation | 40 kHz — 2 MHz Nakagami-m )
2007 | Tsuzuki et al. [57] low cargo ships 0 — 100 MHz - empirical
2010 | Cortes et al. [60] low lab and office 0 — 25 MHz Gaussian empirical
2010 | Andreadou et al. [61] - - 0 — 20 MHz - )
2011 | Bert et al. [64] - - 0 — 100 MHz - (10)
2012 | Hashmat et al. [66] low home (MIMO) 2 — 150 MHz - (10)
2012 | Hashmat et al. [69] low home (MIMO) 2 — 150 MHz - | Vector AR
2013 | Antoniali et al. [71] low vehicle 0 — 50 MHz - white
2016 | Guerrieri et al. [74] low vehicle 2 — 100 MHz Gaussian white

narrow-band interference exists all the time in both countries
in the low frequency bands below 100 kHz. As for the
spectral behavior, Benyoucef [46] characterized its spectrum
as a superposition of Jn; Gaussian-like functions, formulated

as:
JINi

_£2
Sni(f) = ZA]- exp —M
j=1

2B? ’ (i

J
where Jyj presents the total number of the impairment sources;
Aj, fo; and B; denote the amplitude of the interference, the
central frequency and the bandwidth of the j-th impairment,
respectively. These four parameters vary over the time and
their statistics are detailed in Table II of [46] for office
sites and residential buildings, respectively. Apart from the
models based on measurement campaigns, Milioudis et al.
[72] theoretically derived the modeling equations with the aid
of the field-to-transmission-line coupling equations, given a
certain network topology in medium-voltage scenarios. Since
the number of research contributions dealing with narrow-band
interference is limited, they are not compared in tables.

3) Periodic impulsive noise synchronous with the mains
frequency: Given that its fixed inter-arrival time is observed
[124], the periodic noise synchronous with mains is typically
characterized by using its sample-value of noise realization,
spectrum and noise duration. Specifically, Vines et al. [7]
investigated the properties of periodic noise originated from
universal motors and light dimmers as well as other noise
sources on residential power distribution circuits. Katayama
et al. [55] proposed a noise model based on the temporal
cyclostationary Gaussian process, where the mean value of
the noise was zero and its variance varied synchronously with
the mains. The PDF of the sample-value of its noise realization
is given by

(x(t. 1))

exp —72032(157” , (12)

fan (x(t, f)) = m
P10

where we have o2, (t, f) = 02,(t)Sp2(f). Here, upon denoting
its period, impulse duration and arrival time by Tp,, 7p, and

tpy, respectively, we have

Apy, t € [tpa + mTpy, tpr + Tp2 + mTpy];

. (13)
0, otherwise,

Tp(t) =
where m represents the m-th occurrence of the periodic
impulsive noise; upon denoting the duration of an AC cycle by
Tac, its period is given by Tp, = 0.5Txc [55]. The spectrum
was represented using a linearly time-invariant (LTI) system,
which was expressed as an exponential function [55]:

Sea(f) = 5 exp(—alf]).

Note that the difference between (5) and (12) is that the
variance of (12) fluctuates over time due to its cyclostationary
behavior. Similarly, Canete et al. [50] modeled the periodic
impulsive noise as a superposition of noise components origi-
nated from various sources, where each noise component had
a specific spectrum. Note that the spectra in [50], [55] were
modeled using fixed spectral shapes. In practice, however,
the spectra of periodic impulse noise processes exhibits time-
varying behavior [32].

To pursue a higher modeling accuracy, Nassar ef al. pro-
posed a multiple-filter aided model [67]. In this model, a given
period of time is divided into Jpg intervals Rq, Ra, ..., Rjp,-
Assuming that the noise is stationary in each interval R;, the
noise is represented as the response of a LPTV system denoted
by h[k, 7] to a stationary input of s[k], given by:

(14)

Jp2
npalk] =Y [k, 7]s[T] = > lper, Y hylrlslrl,  (15)
T j=1 T
where 14 is the indicator function (14 = 1 if A is true,

0 otherwise) and Jpy represents the number of noise spec-
tral shapes; we have hlk, 7] = Z}Ji 1 hj[T]lker,. Similarly,
Gianaroli et al. [70] developed the periodic noise generator
based on the deseasonalized auto-regressive moving aver-
age (DARMA) model [125], [126]. Specifically, the auto-
regressive moving average (ARMA) model [127, Ch. 3] is
usually used for describing a stationary stochastic process.
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TABLE II: Milestone papers on modeling periodic impulsive noise, where LTI and LPTV represent linearly time-invariant and linearly periodic time-varying,
respectively, and DARMA refers to deseasonalized auto-regressive moving average process. The “Dash” here means that the article does not deal with the

subject in the column.

[ Year [ Paper [ Voltage [ Environment | Frequency [ Sample value of noise realization | Spectrum | Duration
1984 | Vines et al. [36] low home 5 — 100 kHz - empirical -
2002 | Cooper et al. [42] low home 9 — 148.5 kHz Gaussian LTI -
2005 | Canete et al. [50] low indoor 0 — 20 MHz Gaussian Mixture LTI -
2005 | Suljanovic et al. [51] high corona 150 — 3500 kHz Gaussian LPTV -
2006 | Corripio et al. [54] low indoor 1 — 20 MHz - LTI -
2006 | Katayama et al. [55] - - 3 — 450 kHz Gaussian LTI -
2010 | Cortes et al. [60] low indoor 1 —30 MHz - empirical -
2012 | Nassar et al. [67] low/medium smart grid 3 — 500 kHz Gaussian LPTV | empirical
2012 | Barmada et al. [68] low | electric vehicle 0 — 30 MHz - - -
2012 | Gianaroli et al. [70] low indoor 1 —30 MHz Gaussian DARMA -
2013 | Antoniali e al. [71] low | electric vehicle o - Z‘ﬁgﬁi:} -
2016 | Guerrieri et al. [74] low vehicle | 10kHz — 40 MHz - - | empirical

However, the cyclostationary nature of the periodic impulsive
noise prohibits the direct employment of ARMA models. In
order to overcome this issue, the “deseasonalization” technique
of [127, Ch. 13] is invoked for removing associated cyclosta-
tionary component in the periodic noise and for producing a
stationary sequence. Then we may characterize the noise using
the ARMA model, which can be represented by:

P

npa k] = s[n] — Ze[j]x[k; — i1+ > elilnw[k — ], (16)

i=1

where s[k] is a real-value white Gaussian process, whose
samples have zero mean and a certain variance. Furthermore,
{051}, and {¢[i]}]_, are the parameters of the g-th order
MA and the p-th order AR parts, respectively. These two sets
of parameters can be computed recursively by invoking the
innovations algorithm of [128] and Yule-Walker equations of
[127], respectively. Then the seasonalization technique [127,
Ch. 12], which is the inverse process of the deseasonalization
technique, is applied to restore the cycrostationary sequence.

Apart from the afore-mentioned modeling efforts, periodic
impulsive noise synchronous to the mains is also investigated
numerically in the literature [60], [68], [71], [74], [75]. Specif-
ically, Cortes et al. [60] revealed that the periodic noise having
the repetition rate of 100 Hz was more harmful in BB-PLC
than the one having the repetition rate of 50 Hz, because the
latter one was usually restricted within the frequency range
of 0 — 1 MHz, while the former one appeared at the higher
frequencies. Moreover, it was shown that the periodic noise
in electric vehicles was mainly caused by the motor drive
and by AC/DC converter in [68], [71], [74]. Furthermore, the
distribution of the high voltage periodic noise was evaluated
in [75]. In Table II, we summarized the influential research
contributions on the modeling of periodic impulsive noise
synchronous with the mains.

4) Periodic impulsive noise asynchronous with the mains
frequency: Given its periodic nature, the periodic impul-
sive noise processes that are asynchronous with the mains
frequency can also be characterized using their amplitude,
duration, period and spectrum. It was revealed in [59] that
the periodic impulsive noise asynchronous with the mains
typically has much lower amplitude and duration, but much

higher repetition rate than those of the synchronous noise com-
ponents. However, apart from their different cyclic periods,
the periodic impulsive noise processes that are asynchronous
or synchronous with the mains frequency have no substantial
difference in terms of their temporal behavior [79]. Therefore,
the periodic impulsive noise processes asynchronous with the
mains frequency can also be modeled by the cyclostationary
processes detailed in Section III-B3.

Furthermore, the corona noise caused by high-voltage elec-
tric wires and by electromagnetic disturbances also belong to
the category of periodic impulsive noise that is asynchronous
with the mains. Specifically, its period was characterized using
a fixed inter-arrival time and its spectrum was represented
using a certain shape of the PSD. As for the sample-value
of its noise realization, it was modeled by the Gaussian
distribution [51]. Moreover, Guezgouz et al. [63] modeled
the electromagnetic disturbances imposed by printers on the
PLC network using a sum of two damped sinusoidal functions,
given by:

np1 (t) = A sin (wlflt> X exp (—alflt)

—i—Agl sin (wglt) X exp (—aglt) , (A7)

where AP! = 0.058, A5' = 0.01, P! = 27 - 11 - 106 rad/s,
Wil = 27 - 26 - 105 rad/s, of! = 5-10° and of! = 2-
10. Since the number of the research contributions dealing
with periodic impulsive noise asynchronous with the mains
frequency is limited, they are not compared in tables.

5) Non-periodic asynchronous impulsive noise: In contrast
to the periodic impulsive noise, the non-periodic asynchronous
impulse noise exhibits random values of duration and IAT.
Hence it has to be characterized using more variables, in-
cluding the sample-value of noise realization, duration and
IAT. The early investigation on mechanism of non-periodic
asynchronous impulsive noise dates back to late 1970s [35].
In the following, we present some commonly-used models
individually.

The sample-value of its noise realization was modeled by
the Gaussian distribution in [43], [52], [53], [58], [65] and
its PDF is given by (5). Furthermore, the sample-value of its
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TABLE III: Milestone papers on modeling non-periodic asynchronous impulsive noise, where IAT represents inter-arrival time and AR refers to auto-regressive
process. The “Dash” here means that the article does not deal with the subject in the column.

[ Year [ Paper | Voltage | Environment | Frequency | Sample Value | Duration | TIAT ]| Temporal Corr. [ Spectrum |
1979 [35] low residential 10 kHz-1 GHz empirical - -
1989 [37] low intra-building 30 — 80 kHz Rayleigh empirical empirical - -
2002 [40] medium/low substation/apartment 0.2 — 20MHz empirical Exponential Exponential Partitioned Markov AR
2002 [43] low indoor 1 — 20MHz Gaussian Weibull Weibull -
2003 [45] low office and home 1 — 30 MHz Beta-like Gaussian Mixture Gamma -
2006 [52] low vehicle 4 — 21MHz Gaussian empirical empirical empirical
2006 [53] low indoor 1 — 20MHz Gaussian constant exponential
2008 [58] low vehicle 0 — 40MHz Gaussian empirical empirical empirical
2011 [64] low home 0 — 100MHz Middleton Exponential Exponential
2011 [65] low home 0 — 100MHz Gaussian Exponential Exponential - -
2014 [73] high Substation 800 MHz — 2.5 GHz Gaussian Exponential Exponential Partitioned Markov empirical
2016 [75] low home appliances 0 — 100MHz empirical empirical - empirical
noise realization may also be modeled to resemble the Beta- and
like distribution, whose PDF is formulated to be [45]: r .
g1 0 0 agiu
z—8)\2 (17—=z (5
(55°)” (F55)r) 0 922 92,u
fa,(x) = , 8<zx<17mV. (18) _
3 G = ol 2D
( ) : .. .. 0
In terms of the duration of t; and IAT of #par, they are g g ‘gw’w g“(’)’U
. g . U,1 U,2 U,
commonly modeled to obey the exponential distribution [40], L7 ’ v J

[53], [64], [65], whose PDF is given by [65]:

ftau) (£) = Aagar) exp (*/\d(IAT)t> 5 (19)
where Agiar) is the impulsive noise’s duration or IAT. Ad-
ditionally, the Gaussian mixture distribution and the Gamma
distribution were proposed for ¢4 and tiar [45], respectively,
while Schiffer [129] modeled ¢jar using a Poisson process.

Given that impulse-free and impulse-infested temporal in-
tervals appear sequentially in PLC systems, we may also use a
two-state Markov chain to model this noise process. However,
it was revealed in [40] that the statistics of the impulse
duration and of the IAT may be modeled by the superposition
of several exponential distributions associated with different
mean values. Based on this observation, Zimmermann and
Dostert [40] proposed a noise model with the aid of the
so-called partitioned Markov chains, which are capable of
carefully balancing the modeling accuracy and its adaptability.
Specifically, the temporal behavior of the noise process is
represented using J noise states Z;, Vj = {1,---, J}, which
are partitioned into two groups: the impulse-free states Z;,
Vi ={1,2,---,v} corresponding to the IAT, and the impulse-
infested states Z;, j = {v+1,v+2,---,J} corresponding to
the impulse duration. The values in each state of both groups
obey the exponential distribution associated with a specific
mean value. The transition probability among the states can
be described using the matrix U for impulse-free states and by
the matrix G for the impulse-impaired states, which are given
below:

_ul,l 0 cee 0 Ul,G_
0 U2 9 U2,Gq
U= . s 20
: 0 20)
0 0 Uy  Uy,G
uGg,1 UG2 ug, 0

where the element u; ;» represents the transition probability
from the state Z; to the state Z;;; more particularly u; g
refers to the transition probability from the specific impulse-
free state Z; to any of the impulse-impaired states, while
ug,; corresponds to the transition probability from any of the
impulse-impaired states to the particular impulse-free state Z;.

Apart from these models represented by analytical expres-
sions, the asynchronous impulsive noise has also been inves-
tigated based on straightforward observations. For example,
Degardin et al. [58] evaluated the nature of impulsive noise of
in-vehicle power lines in both static and dynamic conditions,
which revealed that the pulse amplitude and the pulse duration
of in-vehicle PLC were smaller than those of in-house PLC.
Moreover, considering that plug-in/out and on/off-switching
events of home appliances were the main source of the
asynchronous impulsive noise in indoor PLC, Antoniali et al.
[75] assessed the behavior of impulses originated from various
home appliances, which indicated that the aperiodic impulsive
noise was caused by plug-in events and by a small fraction of
unpluging events. Furthermore, the noise from appliances was
also investigated for indoor PLC [49], which implied that most
appliances contributed no noise to the broad-band frequencies,
except light-dimmers and appliances equipped with motors. In
Table III, we summarize the seminal research contributions on
modeling non-periodic asynchronous impulsive noise.

Remark 1. The behavior of the noise in NB-PLC significantly
deviates from that in BB-PLC. Specifically, both colored back-
ground noise and narrow-band interference as well as periodic
impulsive noise synchronous with the mains frequency are
dominant in NB-PLC [32], [55]. By contrast, both periodic im-
pulsive noise and non-periodic asynchronous impulsive noise
as well as narrow-band interference impose substantial impact
on BB-PLC systems, because their power tends to remain

much higher than that of the background noise as observed in
[60].
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C. Simplified Mathematical Modeling

The empirical modeling detailed in Section III-B allows us
to characterize the noise in a straightforward manner. However,
due to the usage of uncommon functions, some empirical
models may not lend themselves to convenient mathematical
analysis. To tackle this problem, simplified mathematical noise
models have also been proposed [65], [80], [101]-[121].
Fig. 4 provides a classification of the popular noise modeling
techniques. From the perspective of impulse duration, simpli-
fied mathematical modeling may be applied to discontinuous
impulses and bursty impulses, which are detailed below.

1) Discontinuous Impulses: Discontinuous impulse model-
ing is the simpler one of the above-mentioned two modeling
approaches. In general, discontinuous impulse modeling is
applicable for modeling the impulsive noise after interleav-
ing. As shown in Fig. 5a, it ignores the temporal correla-
tion between the impulse-free states and the impulse-infested
states, and treats the impulse noise as an independent and
identically distributed (i.i.d.) variable. As classified in Fig. 4,
discontinuous impulsive noise modeling typically includes the
Gaussian Mixture [65], [115], [119], the Bernoulli Gaussian
[104], [106], [108], Middleton’s Classes [105], [116], [118]
and the a-stable [113], [114] scenarios, which are introduced
individually below.

The Gaussian Mixture Model [65], [115], [119] charac-
terizes the noise process as a mixture of several Gaussian-
distributed components. Let us denote the noise value at the
k-th time instant by nj;. The PDF of the real-valued noise
in the Gaussian Mixture Model is formulated by [65], [115],
[119]:

M-1

Pm nj
Fonm(n) n;o e ( 20%) .
where p,,, represents the occurrence probability of the m-th
component and we have Z%:_(Jl Pm = 1; the m-th component
obeys the Gaussian distribution N(0, 02,).

As a special case of the Gaussian Mixture Model, the
Bernoulli-Gaussian Model [104], [106], [108] simplifies the
noise process to be a two-term Bernoulli process. Mathemat-
ically, we have ny = wy + byix, where wy, ~ N(0,07 p),
i, ~ N(0,07 ;) and by, is the Bernoulli random variable. The
PDF of the real-valued noise relying on the Bernoulli-Gaussian
Model is expressed as [104], [106], [108]:

1—p n%
ool = o ( 0% 5

2

p "
+——=exp| 5|, 23
On, 1V 2T Y ( 202,1) @

where we have p = Pr(b; = 1), which indicates the occurrence
probability of impulsive noise. The Bernoulli-Gaussian Model
is widely invoked in the performance analysis and design of
communications systems, as an explicit benefit of its simplicity
and capability of characterizing the random occurrence of
high-power impulses [115].

Further setting p,, = e 4A™/m! and M — 1 = oo, we
may transform the Gaussian-Mixture Model into Middleton’s

[Simplified Mathematical Modelling ]

Discontinuous Bursty
Modeling Modeling

[ Il
Temporal— Temporal—
Independent Correlated

1
a-Stable Bernoulli Middleton’s
Gaussian Class A

Gaussian Mixture [

Hidden Hidden Semi—
Markov Chain Markov Chain

Fig. 4: Tllustration of the categories of simplified mathematical noise models.

Class A noise model [103], [105]. The PDF of the real-valued
noise relying on Middleton’s Class A noise model is given by
A'ﬂl

[105]:
2
Mg
- R 24
— mlo,V2r exp( 20%) @4

fuca(ng) = e 4 Z
m=0

where we have 02, = 0%-(m/A+k)/(1+K); k = 0373/0311 is
the background to impulsive power ratio [111]; o represents
the overall power of the noise process and is given by
0* =0 p+op;=(1+1/k)o; g; Ais the product of the
impulsive rate and the impulse mean duration. To elaborate a
little further in physically tangible terms, Middleton’s Class A
scenario may be interpreted as the superposition of statistically
independent noise components, whose sources obey the Pois-
son distribution in both space and time [105]. More explicitly,
at the k-th time instant, the destination has a certain probability
of receiving impulses from m sources, where m can be any
value between 0 and oco. The PDF of a certain noise sample
realization is the average of obtaining this value from m
sources. Apart from the Class A noise model, Middleton [105]
has also proposed the Class B and Class C models. Among
these three classes, Middleton’s Class A is the most popular
one, due to the fact that Middleton’s Class A model is capable
of characterizing a wide range of practical impairments [105].
Furthermore, since only the parameters (A, k, 0?) are required
for characterizing Middleton’s Class A model, this facilitates
convenient performance analysis and system design.

The Alpha-Stable distribution constitutes the generalization
of the Gaussian distribution and it is also suitable for noise
modeling in PLC [113], [114]. The characteristic function of
the real-valued noise in the Alpha-Stable model is given by
[110], [113], [114]:

fas(ng) = exp (iﬁnk — |’ynk|0‘<1>) (25)
and
& — 1+ Z:Bsgn(nk) ;an (%), %f a#1, 26)
1 —ifBsgn(ng)=log|ngl|, if a =1,

where ¢ is the imaginary unit and sgn(z) is a sign function
of x. We have —o00 < § < 400, 7> 0,0 < a < 2, =1 <
B < 1. Furthermore, ~y is a scaling parameter, which controls
the spread of the samples, and « determines the degree of
impulsiveness. A smaller the value of o implies both a higher
occurrence probability of and a larger amplitude of extreme
pulses. Particular to the case of 8 = 0, the distribution is
symmetric about the center § and is termed by the symmetric
a-stable (SaS) [110].
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Fig. 5: Tllustration of discontinuous and of bursty impulses. (a) Discontinuous impulses; (b) Bursty impulses.

2) Bursty Impulses: As commented in Section III-Cl, the
discontinuous modeling technique can only be used for mod-
eling the noise process after interleaving. To characterize the
noise process in a wider range of scenarios, diverse bursty
impulse models have been proposed [80], [101], [102], [107],
[109], [111], [112], [117], [120]. Specifically, as shown in
Fig. 5b, both the background noise and the impulsive noise
samples are modeled by considering them to occur in a burst,
which spans over a number of consecutive time instants.
Generally, bursty impulse modeling can be classified into
temporally-independent and temporally-correlated scenarios,
which are discussed as follows.

The noise impulses in the temporally-independent modeling
scenarios can be represented by a gated Bernoulli process
[112], consisting of impulse-free and impulse-impaired bursts
alternatively, whose time durations are independent of each
other. Assuming that the /-th burst spans over ¢; time intervals,
the [-th noise burst can be expressed as [112]:

n; = w; + byi;. 27
and
t if b, =1,
=4 T (28)
tiar, if by =0,

where b; is a Bernoulli distributed random variable; the vectors
of w; and #; consist of ¢; background and impulsive noise sam-
ples, respectively. Note that both ¢; and tjar are deterministic
for periodic impulsive noise scenarios, while in non-periodic
impulsive noise scenarios their values become random and
may obey a specific distribution, e.g. the uniform [112], the
exponential [117] and the log-normal [120] distributions.

In the temporally-correlated modeling, the duration of im-
pulsive noise and the IAT are typically characterized using
Markov chains. For example, Gilbert and Elliott [101], [102]
modeled the noise process relying on a two-state Hidden
Markov Model (HMM), where State Sy is free from impulsive
noise, while in State S the noise sample contains impulsive
noise. Let us define the transition probability from State S;
at the k-th time instant to State S; at the (k + 1)-th time
instant as p;; = Pr(sg11 = Sjlsp = S;). As illustrated
in Fig. 6, the transition between these two states can be
characterized by a transition probability matrix, denoted by
(g;} P2 ) The noise voltage of these two states obeys the zero-
mean Gaussian distributions associated with different variance

P12

P11 @ @ P22

Fig. 6: Illustration of the Gilbert-Elliot model, which is a two-state Markov
noise model, where State 1 refers to impulse-free instants while State 2
represents impulse-impaired instants. The transition probability p;; refers to
the occurrence probability of State j, given the current state as State 7.

P21

values *. Since only two states are employed in this model, the
associated small number of states is incapable of accurately
characterizing a wide variety of noise process. To address this
impediment, Ndo et al. [111] proposed a four-state HMM
relying on the truncated Middleton’s Class A model [105].
Beneficially, the impulsive noise is comprised of three compo-
nents associated with different variance values. Furthermore,
inspired by [40] and [111], Zhang ef al. [117] modeled the
noise using a two-state Hidden Semi-Markov model (HSMM),
where the duration of the impulse-free states and the impulse-
infested states obeys the exponential distribution associated
with different mean values.

IV. NOISE MITIGATION TECHNIQUES

In order to alleviate the deleterious effects imposed by
impulsive noise, PLC systems have invoked sophisticated
noise mitigation techniques both at the transmitter and at the
receiver sides, detailed as follows.

The mitigation techniques employed at the transmitter side
mainly include channel coding [53], [133], [136], [138], [153],
[157], interleaving [132], [144], [158]-[161] and Automatic-
Repeat-and-reQuest (ARQ) [130], [137], [139]. As regards to
the mitigation techniques at the receiver side, they may be clas-
sified into parametric and non-parametric approaches [162],
depending on the requirements concerning the noise’s statis-
tical knowledge. Parametric processing techniques used at the
receiver side mainly include nonlinear processing [140], [146],
[148], [150], [163]-[169], adaptive filtering [147], [149],
[170]-[172], symbol detection [107], [111], [131], [145],
[173]-[175], and iterative decoding [109], [134], [135], [143],
[154], [163], [176]-[178]. When using parametric approaches,
we assume that the noise obeys a particular statistical model
and optimize the receiver based on the estimated parameters

4This Gilbert and Elliott model is a special case of the partitioned Markov
chains detailed in Section III-B5, where both v and w are set to 1.
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1993

mitigating the deleterious effects.

Class A noise environment.

tackling the noise issue.

impulsive noise environments.

the Middleton’s noise model.

against impulsive noise.

2002 - impulsive noise.

2003
2004 -

2005

S N

their combination.

the corrupted symbols.

2007 +
2008 - noise.
2009
Y Markov-chain noise environments.

Onunga and Donaldson [130] proposed a Chase-combining based retransmission scheme for

Haring and Vinck [131] proposed both optimal and near-optimal detectors for the Middleton’s

Biglieri [132] proposed a bit-interleaved coded modulation scheme for PLC systems.

Toumpakaris et al. [133] conceived an erasure decoding aided Reed-Solomon coding scheme for

Umehara et al. [134] proposed a modified LLR calculation expression of the turbo decoder for

Nakagawa et al. [135] proposed the initial LLR calculation expression of the LDPC decoder for

Ardakani et al. [136] proposed an erasure decoding assisted irregular LDPC coding scheme

Katar et al. [137] proposed a delay-reduced frame structure for ARQ-aided PLC systems against

Guerrieri et al. [138] characterized the performance of turbo coded HomePlug AV systems.

Papaioannou ez al. [139] combined space-time block coding with hybrid ARQ for PLC systems.

Zhidkov [140] proposed nonlinear pre-processing techniques, including blanking, clipping, and

Li et al. [141] proposed a joint erasure marking based Viterbi algorithm for marking and erasing

Caire et al. [142] introduced the technique of compressed sensing for mitigating the impulsive

Mitra and Lampe [143] proposed a joint noise-state estimation and decoding scheme for

Fertonani and Colavolpe [107] proposed a symbol detector based on the MAP criterion for
Markov-Gaussian noise environments.

Fig. 7: Milestone papers on noise mitigation techniques (from the year of 1993 to the year of 2009).

of the model. By contrast, the statistical knowledge of noise
process is not required when using non-parametric approaches
[162]. Here we classify the non-parametric approaches into
erasure decoding [133], [136], [141], [151], [157], [179]-[182]
as well as compressed-sensing-aided mitigation techniques
[142], [152], [155], [156], [162], [183]-[187]. The milestone
papers on noise mitigation are summarized in Fig. 7 and Fig. 8.
We continue to review the research advancements of these
noise mitigation techniques in PLC individually as follows.

A. Mitigation at Transmitter

1) Channel Coding: In order to correct the errors caused
by impulsive noise, numerous channel coding candidates have
been considered [53], [133], [136], [138], [153], [157], ranging
from maximum-minimum-distance Reed-Solomon codes [188]
to the advanced turbo codes [189], LDPC codes [190] and
Polar codes [191]. Specifically, Toumpakaris et al. proposed

an erasure decoding aided Reed-Solomon coding scheme
[133] for erasing the symbols corrupted by impulsive noise.
Similarly, Ardakani et al. [136] proposed an erasure decoding
assisted irregular LDPC coding scheme for an MC system in
the presence of both additive white Gaussian noise and impulse
noise. Hormis et al. [53] combined LDPC codes with cyclic
random-error and burst-error correction codes for achieving
a high degree of immunity of impulse noise. Guerrieri et al.
[138] characterized the performance of turbo coded HomePlug
AV systems, concluding that turbo codes are indeed capable
of significantly improving its BER performance in the PLC
channel suffering from narrow-band interference, especially
when the decoder uses a sufficiently high number of iterations.
Raptor codes, concatenating the Luby transform codes with
LDPC codes, were shown to be capable of achieving near-
capacity performance [157]. As a further advance, Hadi ez
al. [153] investigated the performance of Polar-codes in the
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multiple OFDM symbols.

Al-Dweik et al. [144] proposed a time-domain interleaver for dispersing the impulses among

Nassar and Evans [145] proposed a low-complexity expectation-maximization (EM) based
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Tseng et al. [146] proposed a robust threshold design for the clipping-aided PLC system.

Lin and Evans [147] proposed an adaptive filtering scheme for whitening the colored noise.

Papilaya and Vinck [148] proposed the replacement and joint clipping-replacement-blanking

Ndo et al. [111] adapted the MAP detector of [107] to he Markov-Middleton impulsive noise

Shlezinger and Dabora [149] proposed a Wiener filter aided receiver against cyclostationry noise

Rabie et al. [150] proposed a constant-envelope OFDM scheme for enhancing the noise clipping

Elgenedy et al. [151] proposed an appropriate LLR calculation expression by exploiting the

Zhang et al. [152] adapted the compressed-sensing-aided noise mitigation technique to PLC

Hadi et al. [153] investigated the performance of Polar-codes in the presence of Middleton’s

Bai et al. [154] proposed an iterative impulsive noise variance estimation and data detection

Yin et al. [155] applied the CS-aided mitigation into in-vehicle power-line communications.

Bai et al. [156] invoked the multiple signal classification for construct the noise support in CS-

aided noise mitigation.

Fig. 8: Milestone papers on noise mitigation techniques (from the year of 2010 to the year of 2019).

presence of Middleton’s Class A noise, where the simulation
results also demonstrated that Polar codes outperformed LDPC
codes in the face of Middleton’s Class A noise.

Naturally, each channel coding scheme has a limited error
correcting capability. However, the impulsive noise typically
exhibits a bursty nature. In this case, the number of corrupted
symbols may exceed the error correction capability of the
channel coding scheme. This often leads to error propagation
after decoding. This is because the excessive number of
errors misleads the decoding process, which then amends the
symbols in the wrong positions, hence resulting in avalanche-
like error prorogation. Therefore, channel coding is usually
invoked in combination with interleaving, as discussed below.

2) Interleaving: Interleaving is a well-known technique of
randomizing the channel-induced errors by dispersing them.
As shown in Fig. 9a, interleaving can be utilized in bit-
interleaved coded modulation schemes for dispersing the error
burst imposed by bursty impulsive noise [132], [144], [158]-
[161]. Specifically, Caire et al. [158] presented the funda-
mental theory of bit-interleaved coded modulation. Biglieri

[132] mentioned that bit-interleaved coded modulation can
be fruitfully exploited in PLC systems which are contami-
nated by impulsive noise. Nasri and Schober [159] conceived
asymptotic analytical tools for conventional bit-interleaved
coded modulation systems operating in non-Gaussian noise
environments. Similarly, Nguyen and Bui [160] found the
optimal soft-output demodulator of bit-interleaved coded mod-
ulation relying on iterative decoding in additive Class-A noise
channels and analyzed its convergence behavior with the aid
of the extrinsic information transfer chart. As a benefit, the
number of errors in each decoding block is possibly below
the error correcting capability and hence the avalanche-like
error prorogation mentioned in Section IV-A1 can be avoided.

Furthermore, interleavers can be used at the symbol level
for eliminating the error floors caused by impulsive noise.
Specifically, once a time-domain sample is corrupted by an
impulse in an OFDM symbol, the impulse is spread over
the whole OFDM symbol after DFT-based demodulation and
then the impulsive noise power becomes averaged over all
subcarriers of the OFDM symbol. Since the impulsive noise
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Fig. 9: Illustration of the interleaver in the face of impulsive noise: (a) block diagram of the bit-interleaved coded modulation scheme; (b) block diagram of

the time-domain interleaver for OFDM systems.

usually occurs non-uniformly, the noise level of different
OFDM symbols tends to fluctuate. This in turn results in an
error floor, because the BER performance is predominantly
determined by those OFDM symbols, which suffer from a high
noise power. In order to mitigate the error floor, a time-domain
interleaver (TDI) was proposed in [144]. As shown in Fig. 9b,
its interleaver was placed after the inverse discrete Fourier
transform (IDFT) based modulator while its deinterleaver was
positioned before the DFT based demodulator. In this case, the
impulses could not only be spread within an OFDM symbol
but also among multiple OFDM symbols. As a benefit, the
noise power after demodulation is expected to be maintained
at a similar level and hence the error floors may be eliminated
using a low transmit power. This TDI-based solution of
[144] was further extended to time-domain interleaver with
additional orthogonal transform (TDI-OT) in [161], where
another IDFT-DFT block is inserted between the interleaver
and deinterleaver of the TDI. Beneficially, the interleaver depth
was quadratically increased, compared to that of [144], albeit
at the cost of increasing the complexity. Note, however, that
the BER performance improvement brought about by TDI
and TDI-OT remains limited, when the noise pulses are near-
uniformly distributed.

3) ARQ: ARQ has been widely adopted in communications
systems [130], [137], [139], as a benefit of its high robustness
to sudden perturbations and of its low-complexity implementa-
tion. Specifically as shown in Fig. 10a, if a packet is correctly
received at the receiver side [192], a positive acknowledgement
(ACK) is sent back to the transmitter and then the next packet
is transmitted. By contrast, if a corrupted packet is received, a
negative ACK (NACK) is fed back to the transmitter and then
the original packet is sent continuously, until the transmitter
receives an ACK or the affordable number of retransmissions
reaches its maximum limit.

Although it was originally designed for the MAC layer,
ARQ can also be combined with channel coding in the physi-
cal layer, leading to the concept of hybrid ARQ (HARQ) [193],
which can be classified into Chase-combining ° aided HARQ
[194] and incremental-redundancy assisted HARQ [195]. As
depicted in Fig. 10b, instead of being discarded, the previously
received copies are jointly detected with the most recently
received packet in the context of Chase-combining aided

5The original concept of the Chase-combining was proposed by David
Chase in his 1985 IEEE TCOM paper entitled by “Code combining — a
maximum-likelihood decoding approach for combining an arbitrary number
of noisy packets”. After that, the community has often used the fond co-
notaton of “Chase-combining” to refer to the “code-combining” for honoring
his contribution.
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Fig. 10: Illustration of three types of HARQ, where Ist, 2nd and 3rd refer to
the first, second and third transmission attempt, respectively. Furthermore, X
and v represent the error detection event and no-error detection event, respec-
tively. (a) ARQ; (b) Chase-combining HARQ; (c) Incremental-redundancy
HARQ.

HARQ, while as regards to incremental-redundancy assisted
HARQ, if a packet is corrupted, additional redundancy rather
than the original packet is requested for joint decoding at the
receiver as shown in Fig. 10c. The performance of the above-
mentioned ARQ schemes was compared in [196], revealing
that the outage probability is the highest for the ARQ and the
lowest for incremental-redundancy based HARQ.

Specific to the applications of ARQ in PLC, Onunga and
Donaldson [130] proposed a Chase-combining based retrans-
mission scheme, which was shown to be capable of efficiently
mitigating the deleterious effects of impulsive noise. However,
a disadvantage of ARQ techniques is their increased delay.
To mitigate this impairment, Katar et al. [137] proposed
a frame structure for ARQ-assisted PLC systems, where a
transmission frame is encoded by a number of shorter FEC
codewords, each of which has its own header information
and can be checked by its own cyclic redundancy check.
Using this scheme, we may localize the FEC codewords which
are overwhelmed by impulsive noise and request a dedicated
selective retransmission for them, instead of the whole trans-
mission frame. As a benefit, the delay imposed by ARQ may
be mitigated. Furthermore, since the time diversity is exploited
by ARQ, naturally it can be jointly designed with the space-
time block coding, if a packet can be transmitted from multiple
information sources. In light of this, Papaioannou et al. [139]
proposed a cross-layer design for multicast PLC systems,
where the space-time block coding was applied at the packet
level instead of that at the symbol level.
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B. Parametric Mitigation at Receiver

1) Nonlinear Pre-processing at the Receiver’s Input: As
a benefit of its conceptual simplicity and ease of implemen-
tation, nonlinear pre-processing has been widely adopted in
practice [140], [146], [148], [150], [163]-[169]. As shown in
Fig. 11a, we use y; to denote the received signal at time
instant k, whose amplitude and phase are processed by the
nonlinear pre-processing unit. The output signal is denoted
by 7. Nonlinear pre-processing operation is carried out at the
receiver’s input and typically includes blanking [140], clipping
[140], replacement [148] and their combination, for clearing
up or for replacing the received signal corrupted by impulsive
noise, which are detailed as follows. As for the low-complexity
blanking technique shown in Fig. 11b, if the amplitude of yy
exceeds the pre-set threshold denoted by T}, vy is forced to
zero-valued. Here denoting the output signal of the blanking
technique at time instant k by r,’;, we have [140]:

b ykv
T, =
;- {o

In terms of the clipping technique [140] depicted in Fig. 1lc,
if the amplitude of y; exceeds the pre-set threshold denoted
by T, yi is forced to T, while the phase remains unaltered.
Here denoting the output signal of the clipping technique at
time instant £ by r;, we have [140]:

if |yp| < T,

. 29)
if |y;€\ > Ty

re — Yk, if |yk| < TC’
k T, exp (j arg(yk)), if |yg| > T,

where arg(x) refers to the argument of a complex number
x. As plotted in Fig. 11d, blanking and clipping can also
be combined in the form of a joint clipping and blanking
function. Let us denote the output signal of the joint clipping
and blanking technique at time instant k as r§°, which can be
expressed as [140]:

(30)

yk; lf |yk;| S Tca
= (e (arg)), T <[wl <TG
0, if yx| > To.

As an intermediate form of conventional clipping and blank-
ing techniques, the so-called deep clipping shown in Fig. 11e,
was applied to mitigate the destructive effects of impulsive
noise in [168], which cuts the received signal linearly under a
threshold 57, and blanks the signal that exceeds the thresh-
old. Here we denote the output signal of the deep clipping
technique at time instant k as r,‘fc and we may formulate the
function by [140]:

Yk, , if |yr| < Tae.
e = { (T — @) ™500, it Tyo < lyu| < fTaer (32)
07 lf |yk| > /BTdC’

where we have o = p(|yx| — T4c); p is the clipping slope
and S = (1 4+ p)/p. Furthermore, Papilaya and Vinck [148]
proposed an additional action termed as replacement as de-
picted in Fig. 11f, which replaced y; by the average magnitude
of noiseless OFDM samples denoted by |Z|, if y, exceeded
the replacement threshold 7;.. Denoting the output signal of
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Fig. 11: Illustration of nonlinear pre-processing at the receiver’s input. (a)

Nonlinear pre-processing operation. (b) Blanking; (c) Clipping; (d) Clipping
and blanking; (e) Deep clipping; (f) Replacement; (g) Clipping-replacement-
blanking.

the replacement technique at time instant k£ by 7}, we may
formulate the replacement function as:

= Yk, if |yk| < TT’
k — — . .
|Z|exp (jarg(yr)), if lyx| > T),

where |Z| = y/(wFEs)/4 and E; is the average signal power
per symbol. Replacement can also be inserted between the
clipping and blanking stages, as seen in Fig. 11g. The cor-
responding clipping-replacement-blanking function is formu-
lated as [148]:

(33)

Yk, if lyx| < T,

T;Cfb _ T, exp (j arg(yk)), if T, <|yk| < T,
%[ exp (jarg(yr)), if T < |yx| < T,
0, if |yx| > T,

(34)

where we use r,?b to denote the output signal of the clipping-
replacement-blanking technique at time instant k.

The threshold used in nonlinear receiver pre-processing has
to strike a trade-off between a high detection probability and
low false alarm probability. In other words, useful signals
should be preserved as much as possible, while the impulsive
noise should be mitigated as best as possible. The thresh-
old can be simply determined experimentally by finding the
value associated with the minimum BER in simulation [165].
However, it requires long-term experiments and it remains
only suitable for a specific impulsive noise scenario. Zhidkov
[140] derived a closed-form SNR formula for the output signal
of the nonlinear pre-processing unit, which can be used for
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threshold optimization by searching for the threshold value
associated with the maximum SNR. Moreover, Ndo et al. [163]
compared the threshold optimization performance between
using the weighted combination criterion and using the Siegert
criterion. These threshold optimization contributions in [140],
[164] require a priori knowledge of the PDF of impulsive
noise, which is usually difficult to obtain in practice. In order
to address this issue, Tseng et al. [146] proposed an algorithm
which is capable of determining the threshold relying on a
rough range of the impulsive noise arrival probability at the
receiver. Furthermore, Alsusa and Rabie [166] investigated the
relationship between the optimal blanking threshold and the
peak-to-average power ratio of OFDM systems and utilized it
to determine the optimal threshold.

The disadvantages of nonlinear receiver pre-processing
manifest themselves in at least two aspects. Nonlinear pre-
processing causes inter-carrier interference in MC modulation.
To overcome this impediment, Yih [197] proposed an iterative
interference cancellation schemes. Mengi and Vinck [198]
advocated a successive interference cancellation scheme in
OFDM systems relying on clipping and blanking as well
as on a syndrome decoder. Furthermore, the performance of
nonlinear receive pre-processing is dependent both on the
threshold selection and on the peak-to-average-power ratio
(PAPR) of the transmitted signal. Specifically, given a se-
quence of signals transmitted using different transmit power,
it is challenging to distinguish whether a signal is impaired by
impulsive noise. Therefore, we have to employ the technique
of the PAPR reduction at the transmitter side for ensuring
the power of transmitted signals at a closely constant level.
Particular to the MC modulation where high PAPR typically
prevails, its reduction has attracted substantial attention [150],
[167], [169], [199]-[204]. In general, PAPR reduction in MC
modulation can be loosely categorized into signal clipping
[201], peak cancellation [167], coding [199], tone reservation
[200], selective mapping [169] and constant envelope design
[150]. Specifically, Armstrong [201] proposed to impose hard-
limiting on the signal received and then to pass it through a
filter to reduce the out-of-band power. Juwono et al. [167] used
a peak amplitude clipping block at the transmitter so that the
clipper at the receiver may clip the “real” impulsive noise.
David and Jedwab [199] encoded the transmitted signal using
a Reed-Muller code and separated the codewords having high
peak-to-mean envelope power ratio. Rabie and Alsusa [169]
proposed to multiply each OFDM frame with a set of randomly
generated phase vectors and the one associated with the lowest
peak-to-average power ratio was then selected for transmis-
sion. Rabie et al. [150] placed an amplitude-phase modulator
right after the OFDM modulator for ensuring that the peak-
to-average power ratio remained 1. Among these approaches,
the technique of iterative clipping and filtering [202]-[204] is
an appealingly low-complexity, yet efficient PAPR-reduction
scheme. In this scheme, the signals are clipped using a pre-
defined threshold and then a filter is employed for mitigating
the out-of-band radiation. Given that the operation of filtering
may result in a destructive signal, we may then clip and filter
the results iteratively until the PAPR is sufficiently mitigated.
Furthermore, some single carrier schemes were proposed for
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Fig. 12: Illustration of the adaptive filter designed for whitening the colored
noise, where the PSD represents the power spectral density.

PLC systems as a benefit of their intrinsically lower PAPR,
such as the single-carrier frequency-division multiple access
scheme [205].

Finally, the afore-mentioned nonlinear pre-processing tech-
niques can be integrated into other modules, e.g. TDI [112]
and bit-loading [206], and may also be beneficially combined
with channel coding [163], [178].

2) Adaptive Filtering: The noise components exhibiting
slowly time-varying or deterministic spectral characteristics
may be mitigated by invoking an adaptive filter. In general, the
adaptive filter is used for equalization and prediction. As re-
gards to equalization, as shown in Fig. 12, Lin and Evans [147]
proposed a filtering scheme for whitening the colored noise,
assuming the so-called LPTV noise model of [55]. As a further
contribution, Yoo and Cho [170] proposed a linear minimum
mean square error (MMSE) based method for estimating the
parameters of correlated noise and designed a filter for equal-
izing the noise. As for the prediction filter based approach,
Garcia et al. [171] extracted the modeling parameters of the
colored periodic noise using Yule-Walker methods and then
designed a linear prediction filter for predicting and mitigating
the noise effects. Similarly, Llano et al. [172] proposed a
prediction filter for quasi-stationary noise and extracted the
desired signal by subtracting the predicted noise from the
received signal. Shlezinger and Dabora [149] proposed an
adaptive frequency shift filter for exploiting the cyclostationary
characteristics of the OFDM information signal as well as
those of the narrow-band PLC noise. This scheme shows
a substantial performance gain over those approaches only
focusing on the information signal estimation.

3) Symbol Detection: Since conventional detectors are usu-
ally optimized for the ubiquitous AWGN environment, the
non-Gaussian nature of impulsive noise in PLC degrades their
optimality [145], [173]. To address this issue, Fukami et al.
[174] designed a noncoherent frequency shift keying (FSK)
detector for Middleton’s Class A channel. Haring and Vinck
[131] designed both optimum and near-optimum detectors for
the Middleton’s Class A noise environment and derived their
general performance bounds. Nassar et al. [175] proposed a
low-complexity expectation-maximization (EM) based detec-
tor for the Middleton’s Class A channel. These three investiga-
tions were proposed for mitigating discontinuous Middleton’s
Class A noise. As regards to the bursty impulsive noise,
the memory of the channel has to be taken into account.
Specifically, Fertonani et al. [107] proposed a noise-mitigating
symbol detection scheme for the channel contaminated by the
Markov-Gaussian impulsive noise, by appropriately modifying
the maximum a posteriori (MAP) criterion, which was capable
of attaining the optimum performance. Similarly, Ndo et al.
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[111] adapted the optimum MAP detector of [107] to the
Markov-Middleton impulsive noise model.

4) Iterative Decoding: Over the past decades, the de-
sign criteria of channel codes have evolved from conceiving
maximum-minimum distance codes for Gaussian telephone-
line channels to schemes suitable for fading channels. The
errors imposed by wireless channels are no longer randomly
distributed, which is in stark contrast to the uncorrelated
error events of Gaussian channels, because the Rayleigh-
faded wireless channels inflict burst of errors. The duration
and relative frequency of occurrence of these error burst
depend on the Doppler-frequency of the channel, but they
can be randomized with the aid of sufficiently long channel
interleavers. By contrast, in PLC systems, the error bursts are
typically much longer and their length depends on the duration
of the impulse noise instances. At the time of writing, the
most popular codes used for PLC systems are long LDPC
codes and turbo codes relying on long turbo-interleavers and
iterative decoding. Owing to having longer error-bursts in
PLC than in fading wireless channels, the PLC systems tend
to require longer interleavers. Another substantial difference
with respect to Gaussian and Rayleigh channels is that the
log-likelihood ratio (LLR) calculation required for iterative
soft-decoding has to take into account the channel’s statistics,
as detailed in [207]. To solve this problem, Umehara et al.
[134] modified the LLR calculation expression according to
Middleton’s Class A noise statistics, which enhanced the
reliability of LLRs during the decoding iterations and hence
significantly improved the BER performance compared to
the conventional decoder. As regards to LDPC decoding, the
formulas used for calculating the initial LLRs are valid for the
sum-product decoding algorithm relying on the statistics of
Middleton’s Class A noise model [135]. As a further advance,
upon assuming that the noise obeys a two-state Markov-
Gaussian model and assuming perfect knowledge of both the
noise variance and of the state transition probabilities, Mitra
and Lampe [143] proposed a joint iterative estimation and
decoding algorithm. When considering the classic trellis-based
decoding of convolutional codes, the expressions of the soft-
metric play a crucial role in predetermining the attainable
performance. Specifically, their conventional soft-metric based
on the Euclidean distance between the channel-contaminated
received signal samples and the legitimate symbol values
required no knowledge about the noise statistics, but sacrificed
the performance compared to the more advanced metrics
requiring more statistical knowledge about the noise. Accord-
ingly, Mitra and Lampe [109] theoretically analyzed both the
cut-off rate and the BER associated with various metrics in
a Markov-Gaussian noise scenario for convolutionally coded
systems.

Block codes have also been invoked for minimizing the
effects of impulsive noise. For example, Haring and Vinck
[176] proposed iterative decoding aided block codes for im-
pulsive noise channels. More explicitly, the codes were opti-
mized for spreading the noise impulses, which had a similar
mitigating effects to that of the DFT block. The simulation
results revealed that the errors caused by impulsive noise were
substantially mitigated, leading to a performance close to that

of the same scenario free from impulsive noise. Moreover, an
RS coded OFDM system was proposed in [177].

Furthermore, iterative decoding can be invoked in com-
bination with other processing techniques. For example, the
technique of clipping was combined with LDPC codes [178]
as well as turbo codes [163], respectively. Bai et al. [154]
proposed an iterative impulsive noise variance estimation and
data detection scheme, where the symbols at the output of
the iterative decoder were compared to the received signals
in order to improve the accuracy of impulsive noise variance
estimation. Upon obtaining sufficiently accurate statistical
characterization of the noise, we may feed reliable channel
output LLRs to the data detection for achieving a reduced
BER.

C. Non-parametric Mitigation at Receiver

1) Erasure Decoding: Both symbol detection and iterative
decoding require the PDF of the noise process for noise mit-
igation. This is however difficult to obtain in practice. When
the noise statistics are unknown, once a symbol is corrupted
by impulsive noise, the corresponding LLRs obtained from
the soft detector become unreliable due to the soft metric
mismatch, and in case of iterative detection the errors may
also be propagated to the symbols in the vicinity during the
iterative decoding stage. A promising solution is to identify the
low-confidence symbols impaired by impulsive noise and erase
them during decoding. More explicitly, the large amplitude
and bursty occurrence of impulsive noise allow us to spot the
impaired symbols, which are then marked as erasures [179].
In this way, the LLRs corresponding to these symbols are not
involved in the decoding process and hence the impulse-free
symbols are protected from the noise impulses. This leads to
an improved BER performance [133].

The research contributions on the erasure decoding tech-
niques of copper-based communications can be classified into
separate erasure and decoding [136], [151], [157] as well as
joint erasure and decoding [141], [181], [182]. As regards
to the separate erasure and decoding shown in Fig. 13a,
the symbols that impaired by impulsive noise are marked as
erasures before being fed into decoding block for correction.
For example, Ardakani et al. [136] proposed a separate erasure
and decoding scheme, where the corrupted symbols were de-
tected using a distance-based detection technique [133], while
their LDPC decoder was optimized for the erasure channel.
As a further solution, Andreadou and Tonello proposed a
concatenated coding scheme [157], where LDPC codes were
employed as the inner code to identify the catastrophically
error-infested packets, while Luby transform (LT) codes [180]
were used as the outer code for correcting errors. Note that in
this scheme the inner code and the outer code do not perform
both erasure marking and decoding at the same time and
hence the method of [157] belongs to the separate erasure and
decoding. A disadvantage of the solution in [157] is that the
erasure detection relies on the value of LLRs received from the
soft demapper, while some large impulses may lead to large yet
erroneous LLRs, which potentially result in wrong decisions.
To overcome this issue, Elgenedy et al. [151] proposed a
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Fig. 13: Illustration of erasure decoding, where the shaded blocks refer to the
symbols contaminated by impulsive noise. (a) Separate erasure and decoding;
(b) Joint erasure and decoding.

technique for appropriately scaling the LLRs obtained upon
weighting the PSD of impulses ©, which improved the erasure
detection reliability. By contrast, as shown in Fig. 13b, the
joint erasure and decoding technique detects symbols first and
then carries out both erasure and decoding within the same
decoding block. For example, Li et al. [182] proposed a joint
erasure marking based Viterbi algorithm (JEVA), where the
decoding process was composed of two steps. Specifically,
given a maximum number of K symbols that can be erased,
the first step is to determine the positions of erasures for the
cases associated with k € {0,..., K} erasures respectively,
while the second step is to determine the minimum number of
erasures. The schemes of [182] were later extended to the joint
erasure marking and list Viterbi algorithm (JELVA) [141] by
invoking the list Viterbi algorithm of [208] in order to improve
the erasure marking accuracy.

2) Compressed-Sensing-Aided Mitigation: Training-based
impulsive noise estimation relying on compressed sensing
(CS) constitutes an attractive method, since it has several
distinct advantages for OFDM-based PLC systems. Firstly,
in practice, the high-attenuation frequency sub-bands of an
OFDM symbol may be disabled for data transmissions [209],
[210]. As a benefit, some of these deactivated tones can
be used as training symbols for supporting training-based
impulsive noise estimation. Secondly, it is possible to dis-
perse the prolonged impulsive bursts affecting numerous time-
domain samples by simply using an interleaver. In this way,
the asynchronous impulsive noise can be estimated at a low
complexity with the aid of CS, as shown in Fig. 14. Finally,
since the power of asynchronous impulsive noise is usually
much higher than that of the background noise, accurate
impulsive noise estimation becomes attainable by using CS.

The idea of applying CS to mitigate the impulse noise
in OFDM systems was originally proposed in [142], where
the impulse noise estimation was formulated as an {;-
minimization problem. Later in [183], the mixed {o/¢;-
minimization has been employed for impulse noise estimation,
where the impulsive noise was assumed to appear in form
of sparse blocks. It should be noted that in [142] and [183]
the duration of impulse noise was assumed to be much lower
than that of an OFDM symbol, which is however, not the
norm. Furthermore, although the ¢;-minimization considered
in [142] and the mixed ¢/¢;-minimization of [183] can be

6Since the PSD of impulsive noise has to be estimated in this scheme, it
should be classified as a parametric method under the strict definition.
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Fig. 14: Illustration of compressed-sensing-aided mitigation in PLC systems
contaminated by impulsive noise, where IN represents impulsive noise.
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carried out within polynomial rather than exponential time,
the corresponding computational cost still remains excessive.
It is important to emphasize that for both schemes substantial
computational resources are required for estimating low-level
impulsive noise, whose instantaneous power is lower than
the modulation-dependent detection threshold. In [184], the
so-called basis pursuit denoising technique relying on adap-
tive threshold detection was applied for coarsely estimating
impulsive noise samples. The authors of [162] proposed a
sparse Bayesian learning approach for mitigating impulsive
noise, demonstrating that as expected, the performance can
be improved upon increasing the number of pilot symbols
in OFDM systems. In [185], an a priori-aided matching
pursuit approach was proposed for mitigating the impulsive
noise, where the time-domain support of the impulsive noise
process was assumed to be partially known. A novel com-
pressed impairment sensing assisted and Interleaved-Double-
FFT (IDFFT) aided system was proposed [152], which has
been shown to be capable of simultaneously mitigating both
the multipath effects and the impulsive noise impairments.
Korki et al. [186] proposed a block-based iterative Bayesian al-
gorithm for mitigating the deleterious effects of impulse bursts
at the receiver side without using interleaving. In this scheme,
the impulsive noise samples are divided into several blocks, so
that existing block sparse recovery algorithms can be used for
reconstructing the impulsive noise. Although the delay caused
by the interleaving operation is avoided by this approach, the
corresponding signal processing delay may increase. Given
that the narrow-band interference exhibits slowly time-varying
spectral behavior, Liu er al. [187] proposed a compressed
sensing aided interference mitigation scheme for PLC systems,
where the temporal correlation of the narrow-band interference
is inferred from the temporal differences that are assumed
to be known. Recently, Yin er al. [155] applied the CS-
aided mitigation into in-vehicle power-line communications.
The technique of multiple signal classification was applied for
construct the support of the impulsive noise and the impulsive
noise was recovered with the aid of sparse Bayesian learning
algorithm [156].

Remark 2. Table 1V compares these impulsive noise miti-
gation techniques from the perspective of the target noise
type, the mitigation performance, as well as the spectral
efficiency attained, the computational complexity imposed, and
the processing delay. It can be readily seen that nonlinear pre-
processing, coding, and CS-aided mitigation techniques are
the most popular techniques. It is plausible that the various
PLC system characteristics of Table IV tend to require a
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TABLE IV: Comparison of impulsive noise processing techniques, where Tx/Rx refers to the transmitter or the receiver; CS means compressed sensing. A

larger number of stars implies a larger value of that metric.

Tx/Rx Processing Type of Mitigation Spectral | Computational | Processing
Techniques Noise | Performance | Efficiency Complexity Delay
Channel Coding [53], [133], [136], . .
[138]. [153]. [157] Discontinuous PAGAS PAGAGAS PAGAS W
Transmitter {rlltg:lr]leavmg [132], [144], [156], [158]— Consecutive PASKANN IR A S AGAGAGAS PAg%¢ PAg%aks
Automatic-repeat-request (ARQ) !
[130], [137], [139] Any WIS YW ¥ FEICIETEIT
Nonlinear Preprocessing [140], [146], N oot @ @
[148], [150], [163]-[169] Any ¥ O ¥ ¥
Adaptive Filtering [147], [149], [170]- Colored Sode Yoot Sode St
Parametric [172] h h
Receiver Symbol Detection [107], [111], [131],
[145]. [173][175] Any e PARK S RAGKS RAgAs
Iterative Decoding [109], [134], [135], . .
[143], [154]. [163]. [176]-[178] Discontinuous PAGAS PAGAGAS Yove PARASXSXs
Erasure Decoding [133], [136], [141],
Nonparametric | [151], [157], [179]-[182] Any R R R R
Receiver CS-aided mitigation [142], [152], . .
[155]. [156]. [162]. [183]-[187] Discontinuous PAGAGAS PAGAGAS PAGAGAS PAGAGAS

compromise. To elaborate, we can always improve the perfor-
mance by invoking more complex signal processing techniques.
However, this often imposes a higher delay, for example due
to using longer FEC-decoding interleavers and/or more ARQ
retransmission attempts. Naturally, the above characteristics
also depend on the specific type of impairments to be miti-
gated. Future system design should ideally aim for finding all
the optimal operating points of PLC systems, where none of
the above-mentioned characteristics can be improved without
degrading at least one, or even several of these features. The
collection of these optimal operating points constitutes a so-
called Pareto-front in multi-component optimization. Hence,
future high-impact frontier-research may be expected to solve
the open problem of populating the optimal Pareto-font with
compelling practical solutions.

V. JOINT NOISE MITIGATION AND CHANNEL ESTIMATION

As mentioned in Section II-A, the PLC channel exhibits a
time-variant nature, caused by non-linear devices in appliances
and by plug-in/out actions. Hence channel estimation (CE)
has to be employed in PLC systems. However, the occurrence
of impulsive noise degrades its accuracy, which may lead
to erroneous detection and error propagation throughout the
consecutive signal processing stages. To address this issue,
there have been a range of insightful contributions in the
literature [211]-[216], which are summarized in Fig. 15 and
introduced from the perspectives of pilot insertion and iterative
estimation as follows.

Since the PLC channel exhibits correlation, which manifests
itself both in the time- and in the frequency-domain, it is ben-
eficial to estimate the channel by inserting frequency-domain
(FD) pilots, which constitute a small fraction of the transmitted
symbols. Specifically, pilot-aided CE can be carried out in
three steps. Firstly, FD pilots are inserted into the subcarriers
of the transmitted OFDM symbols. Secondly, upon receiving
the pre-defined pilot sub-carriers, the FD channel response cor-
responding to the known subcarriers can be directly obtained.
Thirdly, the channel responses of the subcarriers between

two consecutive FD pilots can be found by interpolation. For
example, Rinne et al. proposed a joint impulse burst position
detection and channel estimation algorithm [211]. To elaborate
a little further, three types of pilots insertion were considered.
Moreover, an impulse burst was deemed to be detected, when
the received pilots exceeded a pre-set threshold, while the
channel was estimated using the classic linear minimum mean
square error (LMMSE) estimator. The disadvantage of this
pilot-aided CE method is its reduced spectral efficiency. To
overcome this shortcoming, CS relying on null subcarriers
has emerged in impulsive noise environments. For example,
Mehboob et al. [213] proposed a joint channel and impulsive
noise estimation for OFDM-based PLC systems relying on
CS, where a single set of pilots was used for both channel
estimation and impulsive noise reconstruction. As a benefit,
the number of pilots employed was reduced.

The motivation of iterative CE is to improve the estimation
accuracy by exploiting either the soft information of the data
symbols or the symbols recovered from impulsive noise. As
for the soft information, it can be obtained from the decoder’s
output. Nassar et al. proposed a factor graph approach for
joint channel estimation and decoding in PLC [214]. Assuming
that the noise is modeled as the Gaussian mixture and the
Bernoulli-Gaussian hidden Markov model, the authors mod-
ified the a posteriori probability formula, which was used
during the iterations between the CE and the decoding. The
iterations terminate when an accurate CE result is attained. In
terms of the CE using the recovered symbols, pilots or training
symbols are used for estimating the initial channel response,
which facilitates the mitigation of the impulsive noise. Then
the recovered symbols are fed back to re-estimate the channel
response for improving the CE accuracy. For example, Chien
proposed an iterative CE and impulsive noise mitigation ap-
proach in [215]. Specifically, the impulsive noise was firstly
mitigated using nonlinear pre-processing and then channel
responses were estimated according to the initially recovered
symbols. Following this, the impulsive noise was mitigated
using post-processing and the newly updated symbols were
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2003
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and impulsive noise estimation.
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Rinne et al. [211] used the symbols detected free of impulsive noise for channel estimation.

Raugi and Tucci [212] proposed a neural network based decision-directed method for channel

Mehboob et al. [213] introduced compressed sensing for both channel and impulsive noise

estimation in PLC systems.
2013 4 Nassar et al. et al. [214] proposed a factor graph based receiver was proposed for jointly

2014 +——"" estimating channel coefficients and noise impulses.

2015 ~

\ Chien et al. [215] proposed an iterative impulsive noise mitigation and channel estimation
algorithm was proposed for PLC systems.

\ Chien et al. [216] extended the work of [215] using an artificial neural network.

Fig. 15: Milestone papers on joint noise mitigation and channel estimation.

then fed back for improving the CE accuracy. The method in
[215] was further extended using an artificial neural network
in [216], which was capable of improving both the impulsive
noise detection and the estimation accuracy.

VI. FUTURE RESEARCH DIRECTIONS AND EXTENSIONS

In this section, we highlight a number of challenges and the
corresponding future research directions from the perspectives
of both noise modeling and of noise mitigation. Furthermore,
since noise is also deemed to be a crucial issue in some
other communications systems, the extensions of techniques
surveyed to other domains are also discussed.

A. Future Research Direction of Noise Modeling

1) From SISO PLC to MIMO PLC: Inspired by the family
of multiple-antenna aided systems in wireless communica-
tions, MIMO PLC relying on the live, neutral and protec-
tive earth wires have attracted substantial attention [83] for
boosting the capacity of the PLC transmission in the era
of Gbps communications [24]. Particular to the noise in
MIMO PLC, apart from the temporal and spectral correlations
detailed in Section III, spatial correlation is also observed
among the noise process in those three wires [217], which
imposes a new challenge on the noise modeling. There have
been some insightful research contributions [69], [218], [219]
on investigating the noise-resilience in MIMO-aided PLC.
Specifically, Hashmat et al. [69] proposed a time-domain
model of background noise for in-home MIMO PLC systems;
Elgenedy et al. [218] provided a model for the family of cy-
clostationary noise processes contaminating MIMO NB-PLC;
the interference processes of MIMO PLC are characterized
in [219]. However, the non-periodic impulsive noise has not
been hitherto characterized. Furthermore, the distinct lack of
analytic formulas of accurate noise modeling hampers the
further performance analysis and system design. Therefore, a
complete model of the holistic noise environments of MIMO
PLC has to be proposed.

2) From Consumer Applications to Industrial Applications:
The existing research contributions mainly focus their attention
on modeling the noise in consumer applications, namely on

the scenarios of energy distribution management in smart
grids and on in-home broadband network access. As a benefit
of the ubiquitous electric power infrastructure, PLC also
has a potential of supporting various industrial scenarios,
e.g. energy transmission management [220] and monitoring
[221] in smart grids, intelligent transportation [222], factory
automation [223], as well as Internet of Things [224]. Since
the topology of the electric wires in industrial scenarios
is drastically different from that in consumer applications
and some new noise sources are introduced, the previously
established noise models may not retain their accuracy in
industrial scenarios. Furthermore, the mission-critical applica-
tions found in industrial scenarios typically impose stringent
requirements on the communications reliability. Therefore, it
becomes vitally important to evaluate the noise behavior in
industrial scenarios.

3) From Noise Characterization to Noise Emulation: The
ultimate role of noise characterization is to assist in designing
sophisticated PLC systems, which have to be tested in diverse
operational scenarios. This involves tremendous efforts and
costs. As an intermediate solution, the testing can be initially
conducted by relying on a noise emulator. The challenges
of designing a reliable noise emulator manifest themselves
in at least three aspects. Firstly, the various noise compo-
nents should be extracted from the raw measurement data
and then parameterized. Secondly, accurate models should be
selected for the different noise components. Thirdly, a noise
emulator should be implemented for synthesizing real-time
noise sequences. Han et al. [79] proposed a synthetic noise
emulator for SISO PLC systems operating at the frequency
band spanning from 0.15 MHz to 10 MHz. However, new
noise emulators have to be proposed for broader frequency
bands as well as for MIMO-PLC operating in industrial
scenarios.

B. Future Research Direction of Noise Mitigation

1) From Single-Source Mitigation to Hybrid-Source Miti-
gation: The existing research contributions mainly focus their
attention on the investigation of a single noise mitigation
technique. In practical PLC environments, however, diverse
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noise sources co-exist. Hence the system is expected to employ
hybrid noise mitigation techniques. Unfortunately, a specific
mitigation technique may reduce the efficiency of another
one. For example, the symbol detection which was originally
optimized according to the statistical knowledge of the noise
process, may lose track of the channel’s memory if simulta-
neously nonlinear pre-processing is invoked at the receiver’s
input, because this nonlinear pre-processing unit may reshape
the statistics of the original noise process. Therefore, how to
jointly design multiple impulsive noise mitigation techniques
remains an open research question for further investigation.

2) From Unified Noise Mitigation to Application-Specific
Noise Mitigation: Given the diverse variety of application
scenarios of PLC, a unified noise mitigation scheme is inca-
pable of meeting all their requirements. Therefore, application-
specific mitigation schemes should be proposed. Two facts
have to be carefully considered when we design an application-
specific mitigation scheme. One is that the knowledge of
noise characteristics decides upon the particular selection of
parametric or non-parametric processing at the receiver. The
other one is that different applications impose diverse quality-
of-service requirements on PLC systems. For example, in-
home broadband network access exhibits stringent spectral-
efficiency specifications, but loose delay requirement, whereas
the PLC systems used for supporting controller area net-
works are expected to accommodate both delay and reliabil-
ity requirements. As seen in Table IV, each technique has
its strengths and weaknesses in terms of noise mitigation
efficiency, computational complexity, processing delay and
spectral efficiency. In this case, how to match the advantages
of the techniques to the application requirements remains an
open issue, calling for the systematic exploration of the entire
Pareto font.

3) From Model-Based Noise Mitigation to Data-Driven
Noise Mitigation: The signal processing techniques applied
in communications systems have solid statistical and infor-
mation theoretical foundations, which are often accompanied
by tractable mathematical models. Furthermore, they usually
obey linear, stationary and Gaussian statistics. By contrast,
the occurrence of impulsive noise in PLC introduces in-
tractable non-stationary factors. Hence, a machine-learning
(ML) based communications system that does not require a
tractable mathematical model may be capable of improving
the attainable performance [225]. On one hand, ML-based
methods can be utilized for augmenting parts of the existing
algorithms. For example, the generation of impulsive noise in
the home is often related to the human behavior of switching
on/off home appliances and other electronic devices. In this
context, ML-based algorithms can be used for investigating
the human behavior and accordingly predicting the arrival of
impulses. As a benefit, both the spectral efficiency and the
processing delay may potentially be improved, if the impulsive
noise mitigation can be triggered only when impulses are
indeed predicted to occur. On the other hand, inspired by
the concept of “autoencoder” [226], we may directly apply
ML to the physical layer, by completely replacing the existing
communications systems. To elaborate, the chain of multiple
independent blocks (channel codec, modem, etc.) can be
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replaced by a single deep-learning (DL)-based black box.
Beneficially, we may improve the performance by exploiting
the joint optimization capability of such a DL-based black
box. Furthermore, the instantaneous knowledge of both the
channel and of the noise is no longer a prerequisite. Hence,
the corresponding overheads can be avoided 7, resulting in
an enhanced spectral efficiency. Indeed, the rather challenging
Pareto-optimization may also be facilitated by powerful ML
algorithms relying on the “auto-encoder” principle.

C. Extensions to Other Communications Areas

Apart from PLC systems, noise has also been a crucial
issue in some other communications systems, including digital
subscriber lines, underwater acoustic communications, and
wireless communications. Compared to those in other com-
munications systems, the noise process of PLC exhibits the
most complex behavior and has attracted substantial research
attention. Hence, the noise modeling and mitigation techniques
surveyed in this article may also play an inspirational role in
other domains, as detailed below.

1) Digital Subscriber Lines: Noise in digital subscriber
lines typically comprises of background noise and impulsive
noise [227]. Impulses in digital subscriber lines are mainly
induced by switch-on/off of home appliances and by radio
frequency interference, and by FM radio broadcasting. Similar
to the impulses in PLC, the impulses in digital subscriber lines
are classified into repetitive electrical impulse noise, single
high impulse noise events and prolonged electrical impulse
noise [228]. Specifically, the repetitive electrical impulse noise
may be modeled by the techniques proposed for mitigating
periodic impulsive noise, as detailed in Section III-B3 and
Section III-B4. By contrast, both the single high impulse noise
and prolong electrical impulse noise events can be modeled
using the techniques originally conceived for non-periodic
asynchronous impulsive noise, as detailed in Section III-B5.
Furthermore, the Bernoulli-Gaussian Model [229] and the
temporal-correlated model [154] detailed in Section III-C may
be used for lending themselves to convenient mathematical
analysis and to system design. As for noise mitigation, the
current standard, namely XG-Fast [230], has already exploited
the classic techniques of channel coding, of interleaving, of
ARQ, and of erasure decoding, while both symbol detection
and iterative decoding as well as learning-aided noise miti-
gation have been considered in the next-generation standard,
namely Terabit DSL [231].

2) Underwater Acoustic Communications: The impulsive
noise in underwater acoustic communications systems is typi-
cally caused by natural sources (including bio-acoustic sounds,
water agitation and crustal movement) and human activities
(for example, shipping, oil and gas exploration and production)
[232]. Among these noise components, the snapping shrimp
noise plays a dominant role [233]. The noise process is usually
modeled as a stationary a-sub-Gaussian noise associated with
a memory order m [233], which is essentially an impulsive
Markov process of order m and can be understood with the

"The benefit becomes distinct, especially when the “auto-encoder” is trained
in an offline manner.
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aid of the discussions in Section III-C2. In order to simplify the
performance analysis and system design, simple mathematical
models, such as the Gaussian Mixture model detailed in
Section III-C1, have also been considered in noise modeling
[234]. The state-of-the-art in noise mitigation in underwater
acoustic communications can be classified into nonlinear pre-
processing [232], symbol detection [233], and compressed-
sensing-aided noise mitigation [235]. More advanced hybrid
noise mitigation relying on combining the techniques detailed
in Section IV is capable of further enhancing the robustness of
underwater acoustic systems against impulsive noise. Further-
more, since the underwater acoustic channels vary over time,
the joint channel and impulsive noise estimation detailed in
Section V may also find application in this scenario. Having
said that, the high Doppler frequency associated with the low
operational frequencies of the acoustic signal remain a critical
research issue [236].

3) Wireless Communications: Noise sources in wireless
communications are quite diverse. For example, impulsive
noise in office and retail environments is mainly caused
by printers, elevators and microwave ovens [86]. Impul-
sive noise in industrial environments is usually induced by
motors, heavy machinery, ignition systems, voltage regula-
tors, welding equipment and electric switch contacts [237].
Vehicular communications is vulnerable both to impulsive
noise caused by ignition and narrow-band interference [238].
The wireless sensor networks within power substations have
to also operate in the face of the impulsive noise created
by high-voltage equipment [73]. In particular, the empirical
model based on the measurement results of [86] adopted
similar techniques to those detailed in Section III-B, while the
Bernoulli-Gaussian model, the Middleton’s Class A model and
the partitioned Markov chain model were adopted in [141],
[238], and [73], respectively, which can be understood with
the aid of Section III-C1 and Section III-B5. A number of
research contributions have been proposed for tackling the
noise issue in wireless communications, including erasure
decoding [141], nonlinear pre-processing [239], compressed-
sensing-aided noise mitigation [238], and sophisticated symbol
detection [240], which have been covered in Section IV. The
optimal Pareto-font collecting all optimal solutions may be
conceived with the aid of Table IV in future research.

VII. CONCLUSIONS

In this paper, we commenced with a rudimentary introduc-
tion to PLC applications and then briefly presented the PLC
channel characteristics and modulation schemes. The research
contributions on noise modeling and on their mitigation over
the past fifty years were reviewed. The key lessons learned
are summarized as follows.

« Owing to its ubiquitous presence, PLC has been widely
applied in diverse industrial and consumer scenarios,
including the smart grid, smart home, smart factories,
intelligent transportation and broadband network services.
Despite these research advances, information theory indi-
cates that the capacity of PLC has not been fully exploited
[24], [241], predominantly due to the deleterious effects
of impulsive noise.

22

¢ In contrast to the Brownian motion of electrons, which
results in AWGN, the noise in PLC comprises of di-
verse noise components, including colored background
noise, three types of impulsive noise, and narrow-band
interference. This complex behavior severely degrades the
integrity of PLC.

« Noise can be modeled based on empirical measurement
campaign and on mathematical derivations. The empirical
models are capable of accurately reflecting the character-
istics of noise, but they are not friendly to performance
analysis or to system design, because often intractable
functions are involved in modeling. This issue can be
tackled by using simplified mathematical models, whose
parameters may be found from the empirical campaigns
for accurately reflecting their practical characteristics.

« Noise mitigation techniques may be employed both at the
transmitter side and at the receiver sides. The mitigation
techniques applied at the transmitter side mainly include
channel coding, interleaving and ARQ. The mitigation
techniques used at the receiver side may be further
classified into parametric and non-parametric approaches.
Parametric processing techniques, including nonlinear
processing, adaptive filtering, symbol detection, and it-
erative decoding, require the statistical knowledge of
noise, while the non-parametric approaches, including
erasure decoding as well as compressed-sensing-aided
mitigation techniques, may perform well even without
the noise’s statistical information. The performance can
always be improved by invoking more complex signal
processing techniques. Yet, this often imposes a higher
delay. Naturally, the above characteristics also depend on
the type of impairments to be mitigated. Future system
design should ideally aim for finding all the optimal
operating points of PLC systems.

« In order to accommodate the noise environment of wider
application scenarios of PLC, the noise characteristics
of both MIMO PLC systems and of diverse industrial
applications have to be accurately modeled. Following
this, a noise emulation platform capable of accurately
reflecting the noise characteristics can be constructed.
Furthermore, as highlighted in Section VI-B, a range
of techniques relying on hybrid-source mitigation, on
application-specific noise mitigation and on data-driven
noise mitigation can be conceived by future research for
approaching the capacity of PLC. Finally, the family of
noise modeling and mitigation techniques surveyed in
this article may also find its way into other communica-
tions areas, including digital subscriber lines, underwater
acoustic communications and wireless communications.

In summary, the potential of PLC has not been fully exploited
and there remains a substantial room for improvement in
the context of its noise modeling and mitigation, before it
theoretical capacity is approached.
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