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Abstract—In this article, we investigate the content distribution
in the hotspot area, whose traffic is offloaded by the combina-
tion of the unmanned aerial vehicle (UAV) communication and
edge caching. In cache-enabling UAV-assisted cellular networks,
the network deployment and resource allocation are vital for
quality of experience (QoE) of users with content distribution
applications. We formulate a joint optimization problem of UAV
deployment, caching placement and user association for maxi-
mizing QoE of users, which is evaluated by mean opinion score
(MOS). To solve this challenging problem, we decompose the
optimization problem into three sub-problems. Specifically, we
propose a swap matching based UAV deployment algorithm, then
obtain the near-optimal caching placement and user association
by greedy algorithm and Lagrange dual, respectively. Finally, we
propose a low complexity iterative algorithm for the joint UAV
deployment, caching placement and user association optimiza-
tion problem, which achieves good computational complexity-
optimality tradeoff. Simulation results reveal that: i) the MOS of
the proposed algorithm approaches that of the exhaustive search
method and converges within several iterations; and ii) compared
with the benchmark algorithms, the proposed algorithm achieves
better performance in terms of MOS, content access delay and
backhaul traffic offloading.

Index Terms—Edge caching, resource allocation, UAV deploy-
ment, user association.

I. INTRODUCTION

In recent years, unmanned aerial vehicles (UAVs) have been
widely used in many industries due to its small size, low price
and high flexibility. The characteristics of UAVs make it possi-
ble to effectively solve problems in traditional communication,
such as high deployment cost and poor adaptability to special
scenarios. Therefore, UAV can be deployed as an air base sta-
tion (BS) to assist the conventional cellular networks [2]. The
main application scenarios of UAV communications include
high-speed coverage of hotspots, information transmission,
emergency communication and so on [3, 4]. The data traffic
requested by mobile users will increase dramatically in future
mobile networks. It is predicted that data traffic in the global
mobile networks will reach 2 Zettabyte (ZB) in 2021 [5], of
which 71% is used for content distribution. Content caching
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at the network edge has been proposed as a key enabling
technique for content-centric cellular networks to alleviate
network traffic load [6]. Popular contents are placed at the
BSs [7] and user terminals [8] which are close to users, so as
to reduce the content acquisition delay and backhaul link load.
In order to meet the demand of data volume of multimedia
content distribution and alleviate the traffic pressure of ground
BSs of cellular networks, cache-enabling UAVs are deployed
to offload the traffic in the peak hours of some hotspots [9–
15], which provides a low cost and rapid deployment solution
for content distribution applications with high data rate and
low latency requirements.

Quality of experience (QoE) is a subjective evaluation of
the user’s media experience, which has been used as the
performance monitor of mobile networks [16]. In order to meet
the requirement of high-quality data transmission of video
applications, a certain QoE of user needs to be guaranteed.
In this paper, we study the maximum average users’ QoE in
UAV-assisted cellular networks for content distribution. One
potential application scenario is that, a stadium that hosts a
large-scale sports event, which deploys cache-enabling UAV
BSs outside the stadium for hotspots coverage to reduce the
traffic load of ground BSs.

A. Related Works

Many researchers have carried out researches in the field
of UAV communications, and some typical problems in UAV
communications systems have been discussed, such as UAV
deployment, UAV caching placement, UAV moving trajectory,
resource allocation, content transmission security and so on.
The relative location between the UAV and users would
affect the transmission rate of content distribution, so the
optimized UAV deployment would greatly improve the QoE
of users, which has been studied in different scenarios [17–
23]. The optimum placement of a relaying UAV to maximize
the capacity of the relay network was studied in [17]. The
UAV’s maneuver and power control were jointly optimized
to maximize the ground secondary receiver’s achievable rate
under quasi-stationary UAV scenario and mobile UAV scenario
in [18]. In order to maximize the coverage of UAV-assisted
cellular networks, the static deployment of multiple UAV BSs
in 3D space during UAV flight time was studied in [19].
UAV deployment, channel allocation and relay assignment
were jointly optimized, aiming to maximize the capacity of
the UAV-aided D2D network in [20]. UAV moving trajectory
and communication design were jointly optimized to maximize
the minimum throughout in [21]. UAV trajectory and user
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scheduling were jointly optimized to maximize the minimum
worst-case secrecy rate among the users in [22]. Path control
of massive UAVs for fast travel and low motion energy without
inter-UAV collision was investigated in [23]. Some researches
have been conducted in terms of resource allocation, precoding
and UAV scheduling to improve network performance in UAV-
assisted cellular networks [24–28]. A resource allocation opti-
mization mechanism was proposed to minimize mean packet
transmission delay in 3D cellular network with multi-layer
UAVs in [24]. An energy-efficient resource allocation scheme
with the ability of QoE enhancement was proposed in [25].
The joint design of the 3D UAV trajectory and the wireless
resource allocation was studied for maximization of the system
sum throughput over a given time period in [26]. The sum rate
was maximized by jointly optimizing the UAV trajectory and
the NOMA precoding in [27]. The proposed UAV scheduling
framework was formulated in a generic manner and could be
applied in multiple domains comprising short or long-term
UAV missions while ensuring uninterrupted service [28].

Edge caching has been a hot research topic in traditional
cellular networks [6, 7, 29]. The concept of edge caching was
proposed in [6]. The content caching and delivery technology
of BSs were studied in [7]. In order to improve the QoS
and transmission efficiency of the network, optimal caching
placement strategy was carried out in [29]. A few research
contributions have studied the edge caching combined with
UAV communications [9–15]. The main purpose of the cache-
enabling UAV is to cache popular contents in the UAV
BSs related to their associated users so that most frequently
requested contents can be served from local caches, instead
of forwarding the users’ requests over the bandwidth-limited
wireless backhaul links. Caching placement was predicted
based on content request distribution and optimized by cache
space allocation and resource allocation in [9]. The placement
of content caching and UAV location are jointly optimized
to maximize throughput among IoT devices in [10]. The
content caching and transmission were jointly optimized to
maximize the users’ reliability in [11]. In [12], QoE of users
was improved by optimal caching placement strategy. The joint
optimization of caching placement and UAV deployment was
carried out to maximize QoE in [13]. A fundamental study on
secure transmission of cache-enabling UAV communications
was given in [15]. QoE of users, which is as an important
indicator for evaluating network performance, has been studied
in [12, 13, 25] among above researches.

B. Motivation and Contribution

In this paper, we take maximum QoE as our optimiza-
tion target of network deployment and resource allocation in
cache-enabling UAV-assisted cellular networks. We consider
the multiple fixed UAVs deployment scenario, in which, the
content access delay and QoE of users are directly related to
the relative position between the user and UAV. If the content
requested by the user is not cached in the UAV, UAV needs to
fetch the content from the ground BS through wireless back-
haul link for the associated user. Obviously, caching placement
is vital to the content access delay. As we have summarized
the related work above, there are several works focusing on

the UAV deployment and caching placement. However, there
are few papers considering the joint optimization of UAV
deployment and caching placement. Meanwhile, the network
performance of UAV deployment and caching placement is
affected by user association which is also an important element
that effects the QoE of users given channel bandwidth and
transmit power allocation in the networks. Most works in the
UAV-assisted cellular networks have ignored the optimization
of user association. Motivated by this, we study the joint
optimization of UAV deployment, caching placement and user
association for maximum QoE. The main contributions of this
paper are summarized as follows:
• We propose a framework of cache-enabling UAV-assisted

cellular networks and take the maximum QoE of users as
our optimization target. We use the mean opinion score
(MOS) to evaluate the QoE of users. Then, we formulate
a joint optimization problem of UAV deployment, caching
placement and user association to maximize the QoE of
users in the networks.

• We propose a joint iterative algorithm to solve the opti-
mization problem. The optimization problem is an integer
programming problem which is an NP-hard problem and
hard to solve directly. We divide the optimization problem
into three sub-problems and solve them by low complex-
ity algorithms respectively. We obtain the UAV deploy-
ment by the one-to-one swap matching. Then we obtain
the near optimal caching placement and user association
by greedy algorithm and Lagrange dual, respectively.
Finally, we use the joint iterative algorithm to achieve
a suboptimal solution. We analyze the computational
complexity of the proposed algorithm which has a lower
computational complexity than the exhaustive search.

• We demonstrate the convergence and network perfor-
mance to verify the feasibility and effectiveness of the
proposed algorithm. We show the convergence of the
proposed algorithm by simulation results. The proposed
algorithm obtains the suboptimal solution with only sev-
eral iterations, which demonstrates that the computational
complexity is greatly reduced at the cost of very small
network performance degradation. Meanwhile, compared
with the benchmark algorithms, the proposed algorithm
achieves better performance in terms of MOS and content
access delay of users, as well as the traffic offloading ratio
of UAV backhaul links. Moreover, we also investigate the
influence of UAV height.

C. Organization and Notations
The rest of the paper is organized as follows. The system

model and problem formulation are presented in Section II.
Section III is the proposed algorithm to solve the optimization
problem. In Section IV, we provide numerical simulation
results. Finally, conclusions are drawn in Section V. The main
symbols and variables used in this paper are summarized in
Table I.

II. SYSTEM MODEL

In the cache-enabling UAV-assisted cellular networks, there
is one ground macro BS (MBS) with several UAV BSs. Fig. 1
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TABLE I: Main Symbol and Variable List

Parameter Description
F Number of contents
K Number of users
M Number of UAVs
N Number of candidate deployment locations
H Cache capacity of UAV
s Size of each content
B Downlink bandwidth
xm,n Indicator of whether UAV m is deployed in

candidate location n
sm,f Indicator of whether content f cached in

UAV m
am,k Indicator of whether user k associated with

UAV m
Bh Backhaul link bandwidth
fc Carrier frequency
PU Transmit power of UAV BS
PM Transmit power of ground BS
PL Pathloss

Plos, PNlos Probability of LoS/NLoS link
µlos, µNlos Shadowing random variable
SINRm,n,k SINR of user k associated with UAV m in

candidate location n
SINRm,n SINR of UAV m in candidate location n

from MBS
rm,n,k Transmission rate from UAV m in candidate

location n to user k
bm,n Transmission rate from ground BS to UAV m

in candidate location n
Dm,k Content access delay of user k associated

with UAV m
MOSm,k MOS of user k associated with UAV m

shows an example of the practical scenario. The ground MBS
near the stadium is overloaded which cannot fulfill the traffic
requirement of the users in peak hours, for example, the
time during a football match. In this case, the small BSs
are overloaded and users can be in terrible communication
environment because of the limited frequency resource and
SBS capacity. The traffic offloading is assisted by multiple
static UAV BSs which are equipped with cache storages. The
time-frequency resource of the MBS is limited. The congestion
will be caused when a large number of users request contents
from the MBS at the same time. UAV is used as relay instead
of users communicating with the MBS directly. With limited
UAV endurance, UAVs are only deployed to assist ground BSs
during peak hours. When the energy is used up, UAV can
be recharged or replaced by a new UAV. In this framework,
the cache-enabling UAVs save popular multimedia content
replicas to serve the users. We define the set of UAVs as
M = {1, 2, ...,M} and the set of users as K = {1, 2, ...,K},
respectively. The cache capacity of each UAV is H bits.
UAVs get contents from the ground BS via wireless backhaul
link and proactively cache some popular content replicas in
non-peak hours. We assume that the downlink bandwidth of
wireless access network is B Hz and the bandwidth of wireless
backhaul link is Bh Hz. There is a finite content library,
denoted as F = {1, 2, ..., F}. The size of each content is s bits.
A set of N candidate UAV deployment locations, denoted by
N = {1, 2, ..., N}, can be chosen by UAVs for deployment.
The location of candidate location n is wn = (xn, yn, zn).

Each UAV has more than one candidate deployment locations
to choose. Let xm,n = 1 indicate that UAV m is deployed in
candidate location n, otherwise xm,n = 0. Then the distance
between UAV m and user k, UAV m and MBS with xm,n = 1

are denoted as dm,k =

√
‖wn − vk‖2, dm,0 =

√
‖wn − v0‖2

respectively, where vk and v0 are the location of user k and
MBS respectively. Let qk,f = 1 indicate that user k requests
the content f , otherwise qk,f = 0. am,k = 1 indicates user
k is associated with UAV m, otherwise am,k = 0. One user
can only be associated with one UAV, but one UAV can be
associated with several users. um,f = 1 indicates content f is
cached in UAV m, otherwise um,f = 0. Each UAV can cache
H/s contents at most.

terminalUAV storage device downlink backhaulBS fiber cable

core network

Fig. 1: Cache-enabling UAV-assisted cellular networks

A. Transmission Model

The transmission links in this system model follow the
UAV channel model provided by 3GPP [30]. We describe the
transmission links between UAVs and users, MBS and UAVs.

The propagation channel of the UAV-user and MBS-UAV
is modeled by the standard log-normal shadowing model. The
standard log-normal shadowing model can be used to model
the line-of-sight (LoS) and non-line-of-sight (NLoS) links by
choosing specific channel parameters. The received signal-to-
interference-plus-noise-ratio (SINR) of user k from UAV m
deployed in candidate location n is

SINRm,n,k =
PU10−

PLm,n,k
10∑

m′ 6=m,n′ 6=n
PU10−

PL
m′,n′,k
10 + σ2

, (1)

where PU is the transmit power of the UAV BS1, and σ2 is the
variance of the Gaussian noise. In order to make full use of
the spectrum resources, we divide the bandwidth according
to the number of users associated with the UAV [33]. So
the downlink transmission rate from UAV m deployed in
candidate location n to user k is

rm,n,k =
B∑K

k=1 am,k
log2 (1 + SINRm,n,k) . (2)

1Power control is very important to mitigate co-channel interference due
to the spectrum sharing among multiple UAVs [18, 31, 32]. We mainly focus
on the joint optimization of UAV deployment, caching placement and user
association in this paper, while leaving power control optimization for our
future work.
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The SINR of UAV m deployed in candidate location n from
the MBS is

SINRm,n =
PM10−

PLm,n
10

Im,n + σ2
, (3)

where PM is the transmit power of the MBS, Im is the
interference from other MBSs to UAV m. So the downlink
transmission rate from the MBS to UAV m deployed in
candidate location n is

bm,n =
Bh∑K

k=1 am,k
log2 (1 + SINRm,n) . (4)

B. Caching Model
In the cache-enabling UAV-assisted cellular network, UAVs

are equipped with cache storage device with limited caching
capacity. If a requested content of a user is cached in its
serving UAV, this content would be transmitted to this user
via radio downlink directly. Otherwise, the requested content
would be first fetched from the core network by its serving
UAV via wireless backhaul link with the MBS and then
transmitted to this user via radio downlink of its serving UAV.
The content library consists of a limited number of F distinct
contents. Each content can be cached in different UAVs, but it
can only be placed once in an UAV. We assume the frequency
for users to request each of these contents, i.e., popularity of
each content, follows a Zipf distribution [34]. The popularity
distribution of the contents is assumed to remain static over
a certain duration [35]. The caching contents of each UAV
will be updated regularly. Each user has different request
possibility for contents in content library based on the content
popularity and requests one content based on content request
possibility.

C. Transmission Delay and MOS Model
In our system model, the transmission delay is divided into

two parts, i.e., the downlink radio transmission delay and the
backhaul link transmission delay, as shown in Fig. 1. The
downlink radio transmission delay from UAV m to user k
is denoted as

Da
m,k =

∑F
f=1 sqk,f

rm,n,k
. (5)

The backhaul link transmission delay from the MBS to UAV
m is denoted as

Db
m,k =

∑F
f=1 (1− um,f ) sqk,f

bm,n
. (6)

If the content requested by user k has been cached in UAV
m, the backhaul link is no longer needed, that is, Db

m,k = 0
when um,f = 1. The transmission delay from UAV m to user
k is denoted as

Dm,k =

∑F
f=1 sqk,f

rm,n,k
+

∑F
f=1 (1− um,f ) sqk,f

bm,n
. (7)

Let wm =
∑K
k=1 am,k, we have

Dm,k =
wm

∑F
f=1 sqk,f

Blog2 (1 + SINRm,n,k)
+
wm

∑F
f=1 (1− um,f ) sqk,f

Bhlog2 (1 + SINRm,n)
.

(8)

Inspired by the widely used QoE metric, mean opinion score
(MOS) model is used as a measure of the users’ QoE for
the services like video streaming, content download, or web
browsing. As one of the most popular application in wireless
networks, we focus on video contents delivery in this paper.
The value of MOS is depend on the transmission delay which
is an important performance indicator of the mobile networks.
The MOS model is denoted as [36]

MOSm,k = C1 ln

(
1

Dm,k

)
+ C2, (9)

C1 and C2 are both constants and C1 > 0. It’s obvious that
the smaller the delay, the larger the MOS. From the results of
our data we set C1=1.120, C2=4.6746 so that the value of
MOSm,k is ranging from 1 to 5. The higher the score, the
better the user’s QoE will be.

D. Problem Formulation
We formulate the joint optimization problem of the UAV

deployment, caching placement and user association. The
optimization objective is to maximize the MOS of all the users
in the cell, which can be expressed as follows

max
x,a,u

M∑
m=1

K∑
k=1

am,kMOSm,k, (10)

According to the definition of MOS in (9), (10) can be
equivalently expressed as

max
x,a,u

M∑
m=1

K∑
k=1

am,k

(
C1 ln

(
1

Dm,k

)
+ C2

)
. (11)

Then we have
M∑
m=1

K∑
k=1

am,k

(
C1 ln

(
1

Dm,k

)
+ C2

)
= C1

M∑
m=1

K∑
k=1

am,k ln
(

1
Dm,k

)
+

M∑
m=1

K∑
k=1

am,kC2

= C1

M∑
m=1

K∑
k=1

am,k ln
(

1
Dm,k

)
+KC2.

(12)

Let Qm,k = ln (1/Dm,k) . In doing so, the formulated MOS
maximization problem is transformed as follows,

max
x,a,u

M∑
m=1

K∑
k=1

am,kQm,k (13)

s.t. am,k ∈ {0, 1} ,∀m,∀k, (13a)
xm,n ∈ {0, 1} ,∀m,∀n, (13b)
um,f ∈ {0, 1} ,∀m,∀f, (13c)
M∑
m=1

am,k = 1,∀k, (13d)

F∑
f=1

sum,f ≤ H,∀m. (13e)

The constrains (13a), (13b), and (13c) show three binary
variables we need to optimize. (13d) means that one user can
only be associated with one UAV. (13e) is the caching capacity
limitation of each UAV.
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III. PROPOSED ALGORITHM FOR MAXIMUM MOS

Based on the optimization problem formulated in section
II, we propose a joint iterative algorithm for maximum MOS
in this section. The problem we need to solve is the joint
optimization of UAV deployment, caching placement and user
association. The optimization problem is an NP-hard problem
and hard to solve within polynomial time [37]. The variables
in this optimization problem are all 0-1 discrete variables. If
we use the brute-force search algorithm, the complexity of
the algorithm will exceed our computational capacity and it
is difficult to achieve. In order to solve this problem effec-
tively, we decompose it into three sub-problems and propose
corresponding algorithms:

(1) one-to-one swap matching based UAV deployment al-
gorithm;

(2) greedy based caching placement algorithm;
(3) Lagrange dual based user association algorithm.

The solutions of the three sub-problems are denoted as X , U
and A, respectively.

A. One-to-One Swap Matching for UAV Deployment

Although the exhaustive search algorithm can solve the
optimization problem of discrete variable, the algorithm com-
plexity is exponential. So it is only suitable for small scale
networks. For practical application, many variations of the
basic matching problem have emerged with an array of
applications in areas as wide as labor markets, college ad-
missions programs, and communication networks. The one-
to-one matching can propose a decentralized algorithm to
find a pairwise stable solution with low complexity and fast
convergence. So we introduce the one-to-one swap matching
to solve UAV deployment sub-problem with fixed caching
placement and user association.

The set of UAVsM and the set of candidate locationsN are
finite and disjoint sets. When UAV m is deployed in candidate
location n, the matching pair is denoted as (m,n). In this
paper, we build the preference list based on the MOS of users.
Each UAV has a preference list over the set of candidate loca-
tions. Analogously, each candidate location has a preference
list over the set of UAVs. The individual preferences represent
the priorities. If UAV m prefers candidate location n to n′,
we denote it as n�mn′. We assume that the preference list of
each agent has the following properties:
• complete ordering: each agent will never confront with

an indeterminable choice, i.e., any two alternatives can
be compared for an agent to get a preferred one.

• transitive: it can be denoted as if n�mn′ and n′�mn′′,
then n�mn′′.

Based on the above description about one-to-one matching,
we give the following definitions [38].

Definition 1. A one-to-one matching ϕ is a function from the
set M∪N into the set of unordered families of elements of
M∪N ∪ {0}, such that
• |ϕ (m)| = 1 for every m ∈M;
• |ϕ (n)| ≤ 1 for every n ∈ N ;
• n = ϕ (m)⇔ m = ϕ (n) ,m ∈M, n ∈ N .

The candidate location may not deploy any UAV, but the
UAV will be deployed in a certain candidate location. From
the transmission model, we can see that the location of UAV
is different, the pathloss between the UAV and the users
associated with the UAV will be different, users associated
with other UAVs will also be affected. So this is a one-to-
one matching with externality. It is not straightforward to
define a stability concept since the gains from a matching pair
also depends on which the other agents have. Driven by the
definition of exchange stable stability, it is convenient to define
a swap matching [39, 40]. Specifically, a swap matching is de-
fined as ϕm

′

m = {ϕ\ {(m,n), (m′, n′)} ∪ {(m,n′) , (m′, n)}},
ϕ (m) = n, ϕ (m′) = n′,m,m′ ∈ M, n, n′ ∈ N . Based on
the swap operation, the definition of a two-sided exchange-
stable matching is introduced as follows.

Definition 2. A matching ϕ is two-sided exchange-stable if
and only if there doesn’t exist a pair of agents (m,m′) with
ϕ (m) = n, ϕ (m′) = n′, such that:

• ∀x ∈ {m,n,m′, n′} , Ux
(
ϕm

′

m

)
≥ Ux (ϕ);

• ∃x ∈ {m,n,m′, n′} , Ux
(
ϕm

′

m

)
> Ux (ϕ).

(m,m′) is called a blocking pair.

Ux (ϕ) is the utility of agent x under matching ϕ. The
characteristics of the blocking pair ensure that if a swap
matching is approved, the achievable utility of any agent
involved will not decrease and at least one agent’s utility will
increase. The definition indicates that a swap matching is two-
sided exchange-stable when there doesn’t exist any blocking
pair inM∪N ∪{0}. To avoid the meaningless cycle of swap
matching, we ensure the number of swap between UAVs and
candidate locations is less than 2.

As discussed above, the UAV deployment problem is a
one-to-one matching problem with externality. To model the
externality, the preference list of UAV m for candidate location
n is formulated as the sum of user’s MOS associated with the
UAV, which is denoted as follows,

Unm =

K∑
k=1

am,kMOSm,k, ϕ (m) = n. (14)

The preference list of the candidate location n for UAV m is
denoted as

Umn =


K∑
k=1

am,kMOSm,k, ϕ (n) = m,

0, ϕ (n) = 0,

(15)

where ϕ (n) = 0 represents that there is no UAV deployed in
candidate location n.

Specifically, for UAV m, any two candidate locations n and
n′, and any two matchings ϕ and ϕ

′
, we have the following

relations,

(n, ϕ)�m (n′, ϕ′)⇔ Un (ϕ) > Un
′
(ϕ′) , (16)

which implies that UAV m prefers the candidate n to the n′

only if UAV m can achieve a higher MOS in n than n′.
We utilize the Gale-Shapley (GS) algorithm proposed

in [41] to construct the initial matching state between UAVs
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and candidate locations. In the GS based initialization proce-
dure, we calculate the SNR between UAV and users instead
of SINR. Then the UAVs and candidate locations can build
their own preference lists by (14) and (15). Based on the
established preference lists, each candidate location proposes
to the favorite UAV based on its preference list. At the UAV ac-
ceptance phase, each UAV accepts the candidate location with
prior preference and rejects others. The algorithm terminates
when all UAVs have been matched to the candidate locations
or every unmatched location has been rejected by every
UAV. Based on the initial matching state, the swap operation
procedure is employed to further enhance the utility. The
process of one-to-one swap matching based UAV deployment
algorithm is summarized in Algorithm 1.

Algorithm 1 Swap matching based UAV deployment algo-
rithm

1: Construct the initial UAV-candidate location matching
state SI based on the GS algorithm. The matching state
is denoted as S. Let S = SI

2: repeat
3: For any UAV m ∈ SI , it searches for another UAV

m′ ∈ SI\SI(ϕ (m))
4: if m′ 6= 0 then
5: if (m,m′) is a blocking pair then
6: Swap (m,m′), ϕ = ϕm

′

m

7: else
8: Keep the current matching state
9: end if

10: else
11: if Um

(
ϕ0
m

)
≥ Um (ϕ) then

12: Swap (m, 0), ϕ = ϕ0
m

13: else
14: Keep the matching state
15: end if
16: end if
17: until No blocking pair in the matching
18: Output: matching state ϕ

The complexity, convergence and stability of Algorithm 1
are analyzed as following.

(1) Complexity: The GS algorithm requires each candidate
location to propose to one UAV based on its preference list,
and each UAV accepts its favorite candidate location. The
computational complexity of the initialization GS algorithm
is O (MN). In the swap matching process, there are at most
N − 1 candidate locations for each candidate location in
each iteration to swap. For a given number of total iteration
L, the complexity is O

(
C2
NML

)
. Hence, the complexity of

Algorithm 1 is O
(
MN+C2

NML
)
.

(2) Convergence and Stability: According to Algorithm 1,
any UAV cannot find another candidate location to form a
swap-blocking pair under the current matching ϕ. Hence, a
two-sided exchange-stable matching is formed between UAVs
and candidate locations. Since the utility function will increase
monotonically by the swap operation in Algorithm 1 and the
utility function is bounded due to the bandwidth constraint,
Algorithm 1 would reach a local solution after finite swap

operations and converge to a two-sided exchange-stable status.
However, not all two-sided exchange-stable matching are local
optimal.

B. Greedy Algorithm for Caching Placement
Next we need to solve the caching placement. For each

UAV in the network, caching strategy is independent of
each other, when user association and UAV deployment are
both determined. Caching placement is directly related to the
preference of the users associated with the UAV. In this case,
the optimization sub-problem of caching placement is denoted
as

max
u

K∑
k=1

am,k ln

(
1

Dm,k

)
(17)

s.t. (13c), (13e),

where (13c) denotes that uk,f is a 0-1 binary variable. (13e)
denotes that the cache space of UAV is limited.

Definition 3. Let g : 2G → R represents a set function. When
the following two conditions are satisfied, we say that g is a
monotonic and submodular function set.

(1) For every X ⊆ Y ⊆ G, we have g (X ) ≤ g (Y);
(2) For every X ⊆ Y ⊆ G, and x ∈ G\Y we have:

g (X ∪ {x})− g (X ) ≥ g (Y ∪ {x})− g (Y),
where G is the ground set.

Theorem 1. Q (u) is a monotone and submodular function.
We can obtain a near-optimal solution by greedy algorithm
within polynomial time.

Proof. See Appendix A for a detailed proof.

We can obtain a near-optimal solution by Algorithm 2
within polynomial time.

Algorithm 2 Greedy based caching placement algorithm

1: Input: the feasible solution set I, the current caching
placement U and the content library F

2: Initialize: left cache space Cm ← H , the current caching
placement U ← ∅, CF ← F

3: while Cm > 0 do
4: Choose content f∗ for UAV m by

5: f∗ = arg max
f∈CF

(
K∑
k=1

Q (U ∪ um,f )−
K∑
k=1

Q (U)

)
6: if (um,f∗ ∪ U) ⊆ I then
7: um,f∗ = 1
8: U ← U ∪ um,f∗
9: Cm ← Cm − s

10: CF ← CF/f∗

11: else
12: Keep the current caching placement
13: end if
14: end while
15: Output: caching placement U

In Algorithm 2, the compare between the gains is based
on merge-sort algorithm. In the worst case, the complexity of
Algorithm 2 is O (M (F (lnF + 1) + I)), where I = H/s.
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Remark 1. In Algorithm 2, the decision whether a content
can be cached in the UAV is decided by the gain the content
can bring. In each iteration, we cache a content in the UAV
that maximizes Q. The greedy algorithm is guaranteed to find
a solution within a (1− 1/e) factor of the optimal solution.
Although we do not have accuracy guarantees of the perfor-
mance gap between the solution obtained from Algorithm 2
and the optimal solution, we show that this performance gap
on MOS is quite small in Section IV.

C. Lagrange Dual Algorithm for User Association

After solving the UAV deployment and caching placement,
we can take X and U as fixed matrix. The user association
problem is an optimization problem with 0-1 binary variable
under constrains, which is denoted as,

max
a

M∑
m=1

K∑
k=1

am,k ln

(
1

Dm,k

)
(18)

s.t.

K∑
k=1

am,k = wm, (18a)

(13a), (13d).

Let Tm,k = wm/Dm,k. Then:

Tm,k =
1∑F

f=1 sqk,f

Blog2(1+SINRm,n,k)
+

∑F
f=1 (1−um,f )sqk,f

Bhlog2(1+SINRm,n)

. (19)

When the network scale is small, the optimal user associa-
tion can be found through a brute force search. The complexity
of the brute force algorithm is O

(
MK

)
, where M and K are

the number of UAVs and users, respectively. The computation
is essentially impossible for a modest-sized network. So we
propose a low complexity algorithm to solve this problem. The
only coupling constraint is

∑
k am,k = wm. This motivates us

to turn to the Lagrange dual decomposition method whereby
a Lagrange multiplier α is introduced to relax the coupling
constraint [33]:

L (α) =fa (α) + gw (α) . (20)

The dual problem is

min
α
L (α) = fa (α) + gw (α) (21)

s.t. (13a), (13d),

where

f (α) = max
a

M∑
m=1

K∑
k=1

am,k (ln (Tm,k)− αm), (22)

g (α) = max
w

M∑
m=1

wm (αm − ln (wm)). (23)

L (α) =

M∑
m=1

K∑
k=1

am,k ln (Tm,k)−
M∑
m=1

wm ln (wm)

−
M∑
m=1

αm

(
K∑
k=1

am,k − wm

)
.

(24)

Given the dual variable αm, the solution of maximizing the
Lagrangian with respect to am,k can be explicitly obtained by

am,k =

{
1 if m = m∗,

0 otherwise,
(25)

where
m∗ = arg max

m
(ln (Tm,k)− αm) . (26)

Taking the second-order derivative of the Lagrangian w.r.t. wm
yields

∂L2

∂2wm
= − 1

wm
< 0. (27)

This means that the Lagrangian is a concave function of wm.

∂L

∂wm
= αm − ln (wm)− 1. (28)

By setting ∂L
∂wm

= 0, the optimal value of wm is given by

wm
∗ = eαm−1. (29)

The value of the Lagrange multiplier α is updated by

αm (t+ 1) =

[
αm (t)− δ (t)

(
wm (t)−

K∑
k=1

am,k

)]+
, (30)

where [a]
+

= max {a, 0}, t is the iteration index, and δ (t) is
dynamically chosen step size sequence based on some suitable
estimates.

We propose the Lagrange dual algorithm to obtain the near-
optimal user association as given in Algorithm 3 [33].

Algorithm 3 Lagrange dual based user association algorithm

1: Initialize: every user calculates Tm,k according to (19);
t = 0 and αm (0) ,∀m. The initial user association is AI .
The user association is denoted as A. Let A = AI

2: repeat
3: Users choose the serving UAV according to (25)
4: Update the user association A
5: Calculate the corresponding wm

∗ (t) by (29) for each
UAV

6: Update αm (t+ 1) by (30)
7: t← t+ 1
8: until Convergence
9: Output: user association A

The multiplier α works as a message between UAVs and
users in the network. In fact, it can be interpreted as the
price of the UAVs determined by the load situation, which
can be either positive or negative. If we interpret

∑
k

am,k as

the serving demand for UAV m and wm as the service UAV
m can provide. Then αm is the bridge between demand and
supply. From (30), if the demand

∑
k

am,k is larger than the

supply wm, the price αm will increase. On the contrary, the
price αm will decrease. Thus, when UAV m is overloading,
αm will increase and fewer users will associate with it, while
the price of other under-loaded UAVs will decrease so as to
attract more users.
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(1) Complexity: At each iteration, the complexity of the
distributed algorithm is O (MK). For a given number of total
iteration L

′
, the algorithm is guaranteed to converge to a near-

optimal solution.
(2) Step Size and Convergence: The step size is non-

summable and diminishing [42]. We assume that step size
updates according to the following rule

δ (t) = λ (t)
L (α (t))− L (t)

‖∂L (α (t))‖2

0 < λ ≤ λ (t) ≤
−
λ < 2,

(31)

where λ and
−
λ are both scalars. L (t) is an estimate of the

optimal value L∗ of the optimization problem. L (t) updates
according to the following rule

L (t) = min
0≤τ≤t

L (α (t))− ε (t) , (32)

ε (t) updates according to the following rule

ε (t+ 1) =

{
ρε (t) if L (α (t+ 1)) ≤ L (α (t)) ,

max {βε (t) , ε} otherwise,
(33)

ε, β and ρ are all positive constants with β < 1, ρ > 1,
respectively. The target level of L (t) can be obtained by
appropriate ε (t). Whenever the target level is achieved, we
increase ε (t) or keep it at the same value. If the target level
is not attained, ε (t) is dropped to the threshold ε. Hence, we
have the following theorem.

Theorem 2. Assume that the step size δ (t) is updated by (31)
with the adjustment procedure (32) and (33). If the optimal
value L∗ > −∞ then

inf
t
L (t) ≤ L∗ + ε. (34)

Proof. See Appendix B for a detailed proof.

D. Suboptimal Solution for Optimization Problem

Since we solve the optimization problem by decomposing
the problem into three sub-problems, we can obtain the sub-
optimal solution by alternate iteration based on the algorithms
proposed above. The proposed joint UAV deployment, user
association and caching placement algorithm is described in
Algorithm 4.

Algorithm 4 Joint UAV deployment, user association and
caching placement algorithm

1: Initialize: UAV deployment X , user association A and
caching placement U , l = 1, MOS (0) = 0

2: repeat
3: update X by Algorithm 1
4: update U by Algorithm 2
5: update A by Algorithm 3
6: calculate MOS (l) by (10)
7: l← l + 1
8: until |MOS (l)−MOS (l − 1)| < δ
9: End

Theorem 3. Algorithm 2 can yield an increasing objective
value in each iteration until convergence.

Proof. See Appendix C for a detailed proof.

In the following, we discuss the complexity and the conver-
gence of Algorithm 4.

(1) Complexity: During each iteration, three subprob-
lem algorithms are performed to solve three subproblems.
The complexity of Algorithm 1, 2, 3 has been ana-
lyzed above in Subsection A, B, C. We assume that
the proposed algorithm can obtain the suboptimal solution
with G iterations. So the complexity of Algorithm 4 is
O
(
G
(
MN2L+M (F (lnF + 1) + I) +MKL

′
))

, where

L and L
′

are the iteration number given in Algorithm 1 and
Algorithm 3, respectively.

(2) Convergence: The proposed algorithm can reach con-
vergence after several iterations.

Proof. See Appendix D for a detailed proof.

Remark 2. For the optimization problem, we decompose it
into three sub-problems and propose three low complexity
algorithms, respectively. The proposed algorithm makes a
tradeoff between the network performance and the computa-
tional complexity. The complexity of the proposed algorithm is
greatly reduced at the cost of very small network performance
degradation.

IV. NUMERICAL RESULTS

In this section, the effectiveness of the proposed algorithm
is verified by compared with two benchmark algorithms. In the
simulation, K users are randomly distributed in a cell and a
MBS is deployed 1km away from the cell. The coverage radius
of each UAV is 100 m. The height of UAV is ranging from
45 m to 60 m. The simulation area is divided into N areas,
and the candidate positions in each sub-area are uniformly
distributed. In the practical application, the candidate locations
can be determined in advance according to the coverage
region and the obstacles of a certain hotspot. The popularity
of F contents follows a Zipf -like distribution. Without loss
of generality, we rank these contents in a descending order
according to their popularities. The popularity of the ith

content is denoted as

ρi =
1/iγ∑F
f=1 1/fγ

, (35)

where the Zipf parameter γ determines the skewness in
the users’ preference. The pathloss of LoS and NLoS link
is denoted as (36). The LoS/NLoS link is stochastically
determined by the LoS possibility PLOS which is denoted
as (37). The parameter setting for UAV-user and MBS-UAV
communication is based on 3GPP [30]. It is obvious that UAV
altitude can influence the value of pathloss. We will investigate
the influence of UAV height by simulation to further optimize
the system design. The detailed simulation parameters are
given in Table II.

We compare the proposed algorithm with two benchmark
algorithms, classic algorithm and random algorithm. In the
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TABLE II: Simulation Parameters

Parameter Value
Number of UAVs 4

Number of candidate locations of
UAVs

12

Number of contents 200
Size of each content 10 Mbits

Zipf parameter γ 0.6, 1
Convergence gap 10−3

Bandwidth 20 MHz
Carrier frequency 2 GHz

Transmit power of UAV 23 dBm
Transmit power of MBS 46 dBm

Variance of the Gaussian noise σ2 -174 dBm/Hz

classic algorithm, the UAV deployment is subject to uniform
distribution, caching placement is decided by max-popular
caching placement, and user association is decided by max-
C/I access. In the random algorithm, the UAV deployment,
caching placement and user association are all subject to the
random distribution. We demonstrate the effectiveness of the
proposed algorithm on the network performance, including the
average MOS and UAV backhaul traffic offloading ratio. The
average MOS of users is denoted as

MOSave =
1

K

M∑
m=1

K∑
k=1

am,kMOSm,k. (38)

In the simulation process, we first calculate ln (1/Dm,k).
Prober C1 and C2 are set according to ln (1/Dm,k) so that
the MOS value is between 1 and 5.

The UAV backhaul traffic offloading ratio ratio is denoted
as

O =
1

K

M∑
m=1

K∑
k=1

am,kqk,fum,f . (39)

First, we demonstrate the convergence of the proposed
algorithm in small-scale networks where the number of users
is 10. As shown in Fig. 2, the proposed algorithm can reach the
convergence within 4 iterations. The result of the proposed al-
gorithm can reach the near optimal value of exhaustive search
algorithm. The gap between the average MOS of exhaustive
search algorithm and proposed algorithm is less than 0.02.

Hence, Remark 1 and Remark 2 are both proved. We also
compare the proposed algorithm with classic algorithm and
show the improvement of algorithms of three sub-problems,
i.e., one-to-one swap matching algorithm, greedy algorithm
and Lagrange dual algorithm, respectively. From Fig. 2, the
algorithms of three sub-problems can all improve the average
MOS. The improvement brought by greedy algorithm is larger
than another two sub-problem algorithms. The caching place-
ment strategy makes the most important role in the proposed
algorithm.

1 2 3 4 5 6 7 8 9 10

Iteration

3.5
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3.8
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4
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4.4

4.5

M
O

S

Exhaustive search algorithm

Proposed algorithm

Matching+Greedy+Max C/I

Matching+MPC+Max C/I

Classic algorithm

Fig. 2: Convergence of the proposed algorithm.
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Fig. 3: Average MOS of users with varying cache space.

Then we demonstrate the effectiveness of the proposed
algorithm with varying cache space size. We set that the cache
space of each UAV is ranging from 60 to 140 Mbits, the
Zipf parameter γ is 0.6 and 1, and the number of users is
100. The simulation results in Fig. 3 and Fig. 4 show that the
average MOS and UAV backhaul traffic offloading ratio of the
proposed algorithm are improved compared with the classic
algorithm and the random algorithm. The average MOS and

PL =

{
30.9 + (22.25− 0.5log10h) log10d+ 20log10fc + µlos, for LoS link,

max
{
PLLOS , 32.4 + (43.2− 7.6log10h) log10d+ 20log10fc

}
+ µNlos, for NLoS link.

(36)

PLOS =


1, if

√
d2 − h2 ≤ d0,

d0√
d2−h2

+ exp

{(
−
√

d2−h2

p1

)(
1− d0√

d2−h2

)}
, if
√
d2 − h2 > d0,

(37)

where d is the distance between UAV and user/MBS which is related with the UAV deployment location, fc is the
carrier frequency, µLoS and µNlos are the shadowing random variable for LoS link and NLoS link, respectively. d0 =
max [295.05log10h− 432.94, 18], µlos = 4.64e−0.0066h, µNlos = 6 and p1 = 233.98log10h − 0.95. The NLoS probability is
PNLoS = 1− PLOS . This model holds for the given altitude 22.5 m ≤ h ≤ 300 m.
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Fig. 4: Backhaul traffic offloading ratio with varying cache space.

UAV backhaul traffic offloading ratio increases as cache place
increases. For random algorithm, the average MOS almost
remains static with varying cache space size and Zipf param-
eter, while the UAV backhaul traffic offloading ratio increases
slowly as cache space increases. Besides, the simulation results
show that, compared with the cases of γ = 0.6, all the three
algorithms with γ = 1 achieve better system performance.
This is because the users have more requests concentrating
on the most popular contents with γ = 1 than γ = 0.6,
since the Zipf parameter γ determines the skewness of content
popularity. In Fig. 4, the traffic offloading of the proposed
algorithm is close to 1 when γ = 1, H = 140 Mbits, which
means that most of the contents requested by users have been
cached in UAVs and do not need to be fetched from the MBS
through the backhaul link of UAVs.
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Fig. 5: Average MOS of users with varying user number.
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Fig. 6: Backhaul traffic offloading ratio with varying user number.
Next, we demonstrate the effectiveness of the proposed

algorithm with varying user number ranging from 40 to 120.
In the simulation, we assume that the cache space of each
UAV is H = 100 Mbits. Other parameters remain unchanged.

As shown in Fig. 5 and Fig. 6, all the system performance
indicators of the proposed algorithm are greatly improved
compared with the other two benchmark algorithms. It is
obvious that the system performance will be deteriorated as
the number of users in the system increases. In Fig. 5, the
performance gap of the average MOS between γ = 1 and
γ = 0.6 of the proposed algorithm is smaller than that of
the classic algorithm. This result indicates the necessity and
advantage of the proposed caching placement in our algorithm.
When user number is 40, the average MOS of the proposed
algorithm have almost no difference with γ = 0.6 and γ = 1.
For the random algorithm, the Zipf parameter γ has almost
no effect on the system performance indicators. In Fig. 6, the
UAV backhaul traffic offloading ratio of the classic algorithm
and the proposed algorithm with γ = 1 decreases more slowly
than that with γ = 0.6 since the requests of users are more
concentrated with γ = 1, meanwhile, the UAV backhaul traffic
offloading ratio of the random algorithm is almost unchanged
as the number of users increases.
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Fig. 7: Average MOS of users with varying UAV height.
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Fig. 8: Backhaul traffic offloading ratio with varying UAV height.

We consider the impact of the UAV height on the perfor-
mance of our proposed algorithm. UAV height varies from
60 to 180 and other parameters remain unchanged. As shown
in Fig. 7 and Fig. 8, the system performance increases when
UAV height is between 60 and 120. When UAV height is
ranging from 120 to 180, the performance gains almost remain
unchanged. According to (37), the probability of Los link
between user and UAV increases with UAV height increases.
The pathloss under LoS link is smaller than that of NloS link.
So the system performance will be better under LoS link.
According to (36), it is obvious that the increase of UAV
has little impact on the pathloss since log10h increases slowly
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as UAV height increases. Increasing the UAV height helps
improve system performance at low-to-medium UAV altitude,
but does not have a great effect on them in the high altitude.
Proper UAV height can significantly yield system performance
gains.
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Fig. 9: User association by Lagrange dual algorithm.
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Fig. 10: User association by max C/I algorithm.
The solution of user association by Lagrange dual algorithm

and max C/I algorithm are shown in Fig. 9 and Fig. 10, re-
spectively. Fig. 2 shows that user association can significantly
improve system performance. For convenience, the terrestrial
location of UAV is shown. In Fig. 9, the UAV deployment,
caching placement and user association influence each other,
which also shows the necessity of our research. However,
users are usually associated with nearby UAV in Fig. 10 with
max C/I Algorithm. The max C/I Algorithm, associated the
nearest UAV, is suboptimal since it takes only SINR into
account and ignores the bandwidth allocation for each user.
According to (2), the downlink transmission rate is related to
both SINR and bandwidth allocation. When a large number of
users are associated with one UAV, the downlink transmission
rate of each user will be greatly reduced. It also reveals that
user association is quite important in the UAV-assisted cellular
network design.

V. CONCLUSION

In this paper, we have investigated the joint optimization
of UAV deployment, caching placement and user association
in UAV-assisted cellular networks. We formulated an opti-
mization problem and proposed a low complexity suboptimal
algorithm since the formulated problem is a combinatorial
non-convex optimization problem. We demonstrated the con-
vergence and network performance to verify the feasibility
and effectiveness of the proposed algorithm by simulation

results. From the simulation results, the caching placement can
greatly improve the system performance, which also confirms
the advantages of edge caching. The UAV placement and
resource allocation are vital for providing an excellent channel
condition to users when designing the UAV-assisted cellular
network. In the future work, we would pay more attention to
mobile UAV scenario. Multiple UAVs’ trajectory optimization
without collision and power control are promising research
directions to improve the coverage and QoE of users.

APPENDIX A: PROOF OF THEOREM 1
Proof. Since non-negative linear combination of multiple
monotone and submodular functions is closed, we only need
to prove Qm,k (u) is a monotone and submodular function.

Qm,k = − ln

(
Da
m,k +

∑F
f=1 (1− um,f ) sqk,f

bm,n

)
. (A.1)

Since X and A are both fixed matrix, the downlink radio
transmission delay Da

m,k is a constant according to (5). For
X ⊆ Y ⊆ T , it is obvious Qm,k (X ) ≤ Qm,k (Y). So
Qm,k (u) is a monotonically increasing function.

When X=Y ⊆ T , the marginal gain obtained by adding
{x} is the same.

Qm,k (X ∪ {x})−Qm,k (X ) ≥ Qm,k (Y ∪ {x})−Qm,k (Y) .
(A.2)

Thus the condition is satisfies.
When X ⊂ Y ⊆ T , the contents requested by users can

affect the value of Qm,k and a user can only request a content.
We discuss the effect of adding {x} on the marginal gain in
classification.
(1) If {x} contains the content requested by user k, namely

the content is not contained in X and Y .

Qm,k (X ) =Qm,k (Y) =−ln

(
Da

m,k +

∑F
f=1 sqk,f

bm,n

)
, (A.3)

Qm,k (X ∪ x) =Qm,k (Y ∪ x) =− ln
(
Da

m,k

)
. (A.4)

Then, we have

Qm,k (X ∪ {x})−Qm,k (X ) ≥ Qm,k (Y ∪ {x})−Qm,k (Y) .
(A.5)

(2) We assume that the content requested by user k is not contained
in {x}, X , Y . Then

Qm,k (X )=Qm,k (Y) =Qm,k (X ∪ x) =Qm,k (Y ∪ x)

=− ln

(
Da

m,k +

∑F
f=1 sqk,f

bm,n

)
.

(A.6)

Then, we have

Qm,k (X ∪ {x})−Qm,k (X ) ≥ Qm,k (Y ∪ {x})−Qm,k (Y) .
(A.7)

(3) The content requested by user k is not contained in {x}. The
content is contained in X and Y . Then

Qm,k (X )=Qm,k (Y) =Qm,k (X ∪ x) =Qm,k (Y ∪ x)

=− ln
(
Da

m,k

)
.

(A.8)

Then, we have:

Qm,k (X ∪ {x})−Qm,k (X ) ≥ Qm,k (Y ∪ {x})−Qm,k (Y) .
(A.9)
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(4) The content requested by user k is not contained in {x} and X .
It is contained in Y .

Qm,k (X )=Qm,k (X ∪ x)

=− ln

(
Da

m,k +

∑F
f=1 sqk,f

bm,n

)
.

(A.10)

Qm,k (Y) =Qm,k (Y ∪ x) =− ln
(
Da

m,k

)
. (A.11)

Then, we have:

Qm,k (X ∪ {x})−Qm,k (X ) ≥ Qm,k (Y ∪ {x})−Qm,k (Y) .
(A.12)

In summary, Qm,k (u) is a monotone and submodular function.

So
K∑
k=1

am,kQm,k is also a monotone and submodular function.

The optimization objective of the caching placement is to
maximize a monotone and submodular function.

It is shown in [43] that the greedy algorithm for maximizing
a monotone and submodular function can reach a near-optimal
solution. Hence, theorem 1 is proved.

APPENDIX B: PROOF OF THEOREM 2
Proof. The derivative of L (α) is given by

∂L

∂αm
(α) =wm (α)−

K∑
k=1

am,k (α). (B.1)

In our optimization problem (18), we have wm =
∑
k

am,k.

According to (B.1), when wm and
∑
k

am,k are bounded, the

subgradient of the dual objective function ∂L is also bounded

sup
t
{‖∂L (α (t))‖} ≤ a, (B.2)

where a is some scalar. The optimization problem satisfied the
necessary conditions of Proposition 6.3.6 in [44]. Theorem 2
is proved by applying this proposition.

APPENDIX C: PROOF OF THEOREM 3
Proof. We assume Algorithm 2 yields a decreasing objective
value in i− th iteration, which is denoted as

M
(
X (i),S(i),A(i−1)

)
< M

(
X (i),S(i−1),A(i−1)

)
, (C.1)

This means that the benefits of at least one content are reduced.
In our system model, the benefit of content f cached in UAV
m can be calculated as a constant with fixed X and A, which
is denoted as

Ωm,f =

K∑
k=1

am,kqk,f ln

Blog2 (1 + SINRm,n,k)

s
K∑

k=1

am,k

, (C.2)

As we have discussed above, one-to-one swap matching
algorithm and Lagrange dual algorithm can both yield an
increasing objective value in each iteration. Then

Ωm,f (i− 1) ≤ Ωm,f (i) ,∀m, f, (C.3)

which contradicts our assumption. So Theorem 3 is proved by
contradiction.

APPENDIX D: PROOF OF CONVERGENCE

Proof. Let M
(
X (i),S(i),A(i)

)
denote the total MOS of all

users calculated by X (i), S(i) and A(i). We obtain X (i) under
a stable matching state by Algorithm 1 with fixed S(i−1) and
A(i−1),

M
(
X (i),S(i−1),A(i−1)

)
≥M

(
X (i),S(i−1),A(i−1)

)
. (D.1)

In Algorithm 4, based on Theorem 3, the total MOS of all
users does not decrease after Algorithm 2 is performed.

M
(
X (i),S(i),A(i−1)

)
≥M

(
X (i),S(i−1),A(i−1)

)
. (D.2)

Algorithm 4 is guaranteed to converge to a suboptimal
solution by Lagrange dual algorithm with fixed X (i−1) and
S(i−1) .

M
(
X (i),S(i),A(i)

)
≥M

(
X (i),S(i),A(i−1)

)
. (D.3)

Moreover, the average MOS of users is bounded in a practical
UAV-assisted cellular system. So the proposed algorithm can
reach convergence and obtain a suboptimal solution.
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