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Abstract—Edge caching has become an effective solution to
cope with the challenges brought by the massive content delivery
in cellular networks. In device-to-device (D2D) enabled caching
cellular networks with time-varying content popularity distribu-
tion and user terminal (UT) location, we model these dynamic
networks as a stochastic game to design a cooperative cache
placement policy. We consider the long-term cache placement
reward of all UTs in this stochastic game, where each UT becomes
an agent and the cache placement policy corresponds to the
actions taken by the UTs. Each UT has the same immediate
network reward from content caching and sharing. In an effort
to solve the stochastic game problem, we propose a multi-
agent cooperative alternating Q-learning (CAQL) based cache
placement algorithm. In CAQL, each UT alternatively updates its
own cache placement policy according to the stable policy of other
UTs during the learning process, until the stable cache placement
policy of all the UTs in the cell is obtained. We discuss the
convergence and complexity of CAQL, which obtains the stable
cache placement policy with low space complexity. Simulation
results show that the proposed algorithm can effectively reduce
the backhaul load and the average content access delay in
dynamic networks.

Index Terms—Cache placement, device-to-device communica-
tion, edge caching, stochastic game

I. INTRODUCTION

With the development of mobile network technologies and

the popularization of mobile Internet applications, the mobile

Internet data traffic and the content diversity have grown

explosively recent years. The demand for emerging services

such as wireless video transmission, Internet of things (IoT),

and automated production will generate more traffic, which

is expected to reach 49 Exabytes per month by the end of

2021 [2]. Studies have shown that a large part of traffic in the

mobile Internet is generated by repeated transmission of the

same highly-popular content [3], that is, the online video and

social service have the characteristic of asynchronous content

reuse. This characteristic leads to increased pressure on the

backhaul link and reduces the user service quality in mobile

cellular networks [4].

In order to meet the demands for saving backhaul resources

and improving user service quality in mobile cellular networks,

the concept of edge caching has been proposed [5, 6], even for

unmanned aerial vehicles (UAV) assisted cellular networks [7,

8]. With the increase of the UT storage space, the UT edge
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caching, which stores the contents in some UTs by means of

prefetching, and then share the contents among UTs by device-

to-device (D2D) communications [9], has attracted the atten-

tion of many researchers. As one of the emerging technologies

in the era of 5G communication, D2D communication can uti-

lize the radio frequency band resources in the cellular networks

to realize direct communication between LTE terminals within

a certain range [10]. D2D communications in cellular networks

can increase network throughput, reduce energy consumption,

and improve spectrum utilization [11].

Due to the limited storage space of the UT, the cache

placement strategy is very important in UT edge caching

based on D2D communication. A suitable cache placement

strategy can effectively improve the performance of the UT

edge caching [12–15]. In [12], a wireless video storage distri-

bution architecture utilizing D2D communication in small base

stations was first proposed. The architecture aims to improve

video throughput and achieve the purpose of replacing the

backhaul link with edge caching. A cache placement algorithm

that minimizes the average caching failure rate is proposed

in [13], which selects some mobile terminals as service nodes.

In [14], researchers use the relationship between the physical

layer and the social layer to design a content cache placement

strategy to maximize the benefits of the community. In [15],

the cache placement is obtained according to the content

popularity to maximize the total offloading probability of D2D

systems.

Most of the existing researches on UT edge caching are

studied in a static model. These studies usually assume that

the location topology of the UTs and the popularity of the

contents are fixed. Although these assumptions can simplify

the problem and facilitate the application of the optimization

theory, the environmental factors in the actual situation of

cache placement are mostly time-varying. Some studies have

considered the impact of user mobility on cache placement

strategies [16, 17]. A framework of mobility-aware coded

caching has been developed in [16]. The authors in [17]

take advantage of the user mobility pattern by the inter-

contact times between different users, then propose a mobility-

aware cache placement strategy to maximize the data offload-

ing ratio. Some studies also consider designing the cache

placement strategy with time-varying popularity profiles [18,

19]. A dynamic edge caching framework has been proposed

in [18], which predicts the future requirements of users based

on the collected data of past users’ demands. The authors

in [19] maximizes the offloading probability for cache-enabled

D2D communication by exploiting individual user behavior in
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sending requests. The time-varying user location and content

popularity require intelligent cache placement mechanisms

that can adapt to these variations.

Stochastic game is a kind of dynamic game with one or

more participants whose state will be probabilistically trans-

ferred [20], which has been widely accepted as an effective

mathematical tool for solving the dynamic radio resource

allocation problem [21]. In practical scenarios, participants

usually do not know the transition probability between s-

tates in the stochastic game, so the reinforcement learn-

ing is a common method to deal with the stochastic game

with dynamic environments [22]. Reinforcement learning has

been an emerging tool to tackle problems encountered in

computation offloading [23], resource allocation [24, 25], and

edge caching [26–32] in cellular networks. A learning-based

approach to store contents in heterogenous networks has been

proposed in [28], which considers the time-varying popularity

of unknown cache content and estimates them using their pro-

posed transfer learning-based approach. A Q-learning based

BS caching and D2D offloading is proposed in [29], which

applies Q-leaning to design a distributed cache placement

strategy according to content popularity. In [30], a Q-learning

algorithm is developed for finding the best caching policy in an

online fashion. In [31], the D2D caching problem is modeled

as a multi-agent multi-armed bandit problem, which is solved

by stateless Q-learning to coordinate the caching decisions. A

multi-agent reinforcement learning with non-perfect content

popularity has been designed In [32]. These studies have

taken into account the unknown content popularity, but do not

consider the time-varying content popularity and UT location

in practical scenarios.

A. Motivation and Contribution

As mentioned above, in dynamic networks, most of the

existing research contributions aim at solving the problem

of edge cache placement under dynamic changes in users’

requirements, but rarely consider their mobility. The studies on

UT edge cache placement problem are also mostly consider

single-user or single-state situations. This article proposes a

dynamic cache placement algorithm based on reinforcement

learning for multi-content multi-UT caching in a dynamic

environment with time-varying content popularity and UT

location. We model the cache placement process as a stochastic

game, where each UT becomes a agent and the cache place-

ment policy corresponds to the actions taken by the UTs. In

order to solve this stochastic game, we propose a multi-agent

cooperative alternating Q-learning (CAQL) algorithm. The

main contributions of this paper are summarized as follows,

• We model the multi-content multi-UT cache placement

process in D2D-enabled caching cellular networks as

a fully cooperative stochastic game between UTs. The

states of the stochastic game include joint information

of content popularity and the location of the UTs in the

cellular networks. When formulating the value function

of the stochastic game, we consider the content caching

and sharing incentive and the content delivery cost of

UTs. We maximize the long-term joint reward function

as the value function. We discuss the existence of this

stochastic game equilibrium.

• We propose a multi-agent CAQL algorithm based on

optimal response of each UT to solve the stochastic

game problem. In CAQL, all UTs know the stable cache

placement policy of others since the stochastic game is

modeled as a cooperative game. Each UT learns alterna-

tively to obtain the best response policy. The proposed

CAQL algorithm can obtain the best cache placement

policy considering long-term rewards.

• We discuss the convergence and spatial complexity of

the proposed CAQL algorithm. We prove that CAQL

eventually converges to a stable cooperative cache place-

ment policy that aims to maximize the value function in

the joint state-action space. We also discuss the space

complexity according to the characteristics of the CAQL

algorithm. We show that the space complexity of CAQL

is lower compared with the traditional multi-agent Q-

learning.

• We show that the CAQL based cache placement algorithm

can effectively reduce the average content access delay

of UTs and the traffic pressure of backhaul in dynamic

networks with time-varying UT location and content

popularity.

B. Organization and Notations
The rest of the paper is organized as follows. In Section

II, D2D-enabled caching cellular networks considering UT

mobility is introduced. The model of the stochastic game for

cache placement is presented in Section III. The cooperative

alternating Q-learning is addressed in Section IV. Simulation

results are shown in Section V and conclusions are finally

drawn in Section VI. The main symbols and variables used in

this paper are summarized in Table I.

TABLE I: Main Symbol and Variable List

Parameter Description
K number of contents in one macrocell
N number of UTs in one macrocell

C(t) D2D communication relationship at
time slot t

C = {C1, C2, ..., CI} D2D communication relationship
Markov state set

b
(C(t))
n The data rate of UT n in D2D

communication relationship C(t)

h
(t)
k the popularity of content chunk k at

time slot t
H = {H0, H1, ..., HI} content popularity Markov state set

S(t) the state of network at time slot t
an the action of player UT n

a = [a1, a2, ..., aN ] all UTs joint actions
An = {1, 2, ...,K} the set of actions that UT n might

choose

πn

(
S(t)

)
the cache placement policy of UT n

II. SYSTEM MODEL

In this section, we first introduce the D2D-enabled caching

cellular networks and the communication model between the

UTs. The caching and incentive models are then introduced

to illustrate how the UTs overcome selfishness to participate

in content caching and sharing.
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A. D2D-Enabled Caching Cellular Networks
We consider multimedia contents distribution in D2D-

enabled caching cellular networks. There is one macro BS

and a set of UTs N= {1, 2, ...N} in the cell, as shown

in Fig. 1. The BS is connected to the backbone network

through backhaul links. We assume that the research sce-

nario is for UTs to move within a fixed area, such as a

university campus or a corporate campus. We refer to the

multi-home-point movement model in [33]. This movement

model assumes that each UT has one or more home-points

and the UT’s activities are centered around these home-points.

As the time series progresses, the UTs periodically move

between different home-points. We assume that the time that

UT transfers between home-points is ignored, which means

that communication does not occur during the transfer process.

Since the time that UTs transfer between home-points is very

short compared to the time the UTs are in their home-point

ranges, we assume that the content sharing during the transfer

process is ignored. At the same time, we assume that there are

several clusters with high home-point density in the research

area, such as dormitories, teaching buildings, or canteens on

campus. Therefore, the transfer of UTs between home-points

can be considered as a transfer between these clusters. If a

user often leaves its resident area, it will have less chance

of content sharing, since the UTs’ revenue of content sharing

mainly comes from the frequently content sharing between

them by BS incentivization.

Fig. 1: D2D-enabled caching cellular networks.

We consider a long-term cache placement problem, which

is made by a caching control unit (CCU) located in the BS.

The entire cache placement process is represented by the time

series T = {1, 2, ..., t, ...}, where t represents a time slot. Each

UT executes a pre-cache at the beginning of each time slot

and then performs content sharing via D2D communications.

As shown in Fig. 2, the pre-cache part is divided into three

phases. In the information exchange phase, UTs upload their

current location information to the CCU. By this way, the CCU

knows the state of the UTs in the cell. In the cache placement

decision phase, the CCU executes a cache placement decision.

In the cache delivery phase, the BS transmits multiple contents

to multiple UTs according to the cache placement policy

determined by the CCU.
Since one of the goals of cache placement is to reduce the

peak backhaul load, we can assume that each caching time

Fig. 2: Structure of caching time slot.

slot t begins in the off-peak phase of the network, and the

length of t can be various. The start time of t can be specified

as a recognized low load period, such as three o’clock in

the morning or three o’clock in the afternoon. It can also be

specified by the operator according to the actual situation of

the network load. It means that the pre-cache part starts in

the off-peak period, and the content sharing part runs through

the peak period of the network until the next low peak period

arrives.

B. Communication Model

We assume that both the cellular UTs and the D2D UT-

s use non-overlapping orthogonal radio resources, so the

interference between the cellular-D2D UTs and the D2D-

D2D UTs can be ignored. We assume that each UT can

be either a transmitter or a receiver in D2D communication.

To quantify the D2D communication relationship between

the UTs in the network, we define a received signal power

threshold η. Due to the existence of the threshold η , the

D2D communication relationship between the UTs is divided

into two states: communicable and non-communicable. The

specific communication state is determined by the topolo-

gy relationship of the UTs under the mobility model. The

D2D communication relationship between N UTs at time t
can be quantified as a finite Markov state transition model

C(t) ∈ C = {C1, C2, ..., CI}, which measured by the location

relationship between them. C(t) is an N × N matrix, when

the received signal power is greater than a received signal

power threshold η, c
(t)
n,n′ = 1, which means that UT n and

n′ are considered capable of D2D communication, otherwise,

c
(t)
n,n′ = 0. C represents the set of all states of possible UTs’

communication relationships.

In each state, we assume that the transmitter shares the

content to the receivers by broadcast. The data rate that UT

n broadcast to other UTs in its D2D communication range at

time slot t in D2D communication relationship C(t) is

b
(C(t))
n =

BD

ND
log

⎛
⎝1 +

g
(C(t))
n,n′ Pn

σ2

⎞
⎠ , (1)

where n′ denotes the farthest UT that can perform D2D

communication with UT n, BD denotes the D2D communi-

cation bandwidth, ND is the number of transmitters in D2D

communication model, Pn denotes the transmission power of

UT n, σ2 denotes the additive white Gaussian noise power,

and g
(C(t))
n,n′ represents channel gain between UT n and n′ at

time t in D2D communication relationship C(t).
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The data rate from the BS to UT n at time t in D2D

communication relationship C(t). can be calculated similarly,

b
(C(t))
BS,n =

BB

NB
log

⎛
⎝1 +

g
(C(t))
BS,n PBS

σ2

⎞
⎠ , (2)

where BB denotes the BS communication bandwidth, NB is

the number of cellular UTs receiving data from the BS, PBS

denotes the transmission power of the BS, and σ2 denotes the

additive white Gaussian noise power, and g
(C(t))
BS,n represents

channel gain between the BS and UT n at time t in D2D

communication relationship C(t).

As the time series progresses, UTs movement makes the

communication relationship C(t) changing, which transfers

with a fixed transition probability between different states

P{C(t+1)|C(t)}.

C. Caching Model

In the mobile networks, we assume that each content file

is divided into several unified chunks. Every chunk is the

minimal unit of data to be transferred over the network.

The size of each content chunk is s. It means that different

content files with various data sizes can be divided into

various chunks. We assume that each cell has a set of content

chunks K = {1, 2, ...K} to be cached, which can be selected

according to the user preference in the cell [34]. Since the

UTs’ caching spaces are limited, we assume that each UT can

only store a fewer number of content chunks. For simplicity

but without loss of generality, it is assumed that on UT can

cache one content chunk with size of s. If a UT has more

cache space for more than one chunks, it can be equivalent

to multiple UTs with unified cache store size s. For example,

UT n has 2s cache size, it is treated as UT n1 cached content

k1 and UT n2 cached content k2. In this case, the set of UTs

will be N= {1, 2, ..., n1, n2, ...N} in the cell. A special case

is that, UT n1 intends to receive content k2 from n2, which

is modeled as c
(t)
n1,n2 = 1.

We assume that the popularity hk of content chunk k(k ∈
K) is time-varying, which is modeled as a finite state Markov

sequence. For all content chunks k ∈ K, h
(t)
k ∈ H =

{H0, H1, ..., HI}, where H is the content popularity state set.

The popularity of the content chunk k transfers over time

between the states, and the transition probability is represented

by P{h(t+1)
k |h(t)

k }. We assume that in each caching time slot

t, the communication relationship C(t) ∈ C between the UTs

and the content popularity h
(t)
k ∈ H are constant, and only

changes to the next time slot.

D. Incentive Model

In practical applications, UTs are selfish, that is, they only

pre-cache the contents according to their own interest, and

do not care about the requirements of the surrounding UTs.

This kind of selfishness is not conducive to content sharing via

D2D communications. To encourage the D2D communications

of UTs, the BS rewards each UT that successfully delivers the

cached contents to its surrounding UTs. For the BS, providing

rewards can maximize the role of D2D communications in

replacing the backhaul link during peak hours. For the UTs,

pre-caching based on the content requirements of surrounding

UTs allows them to obtain incentive from the BS, increase

cache space utilization and reduce the content access delay

during peak hours. Therefore, both UTs and the BS have

motivation to participate in the cache placement policy.

III. STOCHASTIC GAME OF CACHE PLACEMENT

In cellular networks, the content popularity and the commu-

nication relationship decided by the UTs’ location are time-

varying. Our goal is to derive a cache placement policy that

maximizes UT revenue in this dynamic network environment,

while reducing the traffic load of the backhaul. Based on the

feature of multi-user participation and the time-varying of the

environment, we can model the cache placement problem as a

stochastic game between UTs. In this section, we first describe

the structure and characters of the fully cooperative stochastic

game. Then we introduce the value function considering

the long-term reward of the game. We also illustrate the

relationship between the best cache placement policy and the

equilibrium of the game.

A. Preliminaries

Stochastic game is a dynamic game with one or more

participants and a state-to-state probability transfer in game

theory [20]. The stochastic game has the characteristics of

multiple agents and multiple states. It assumes that all agents

participating in the game can observe the complete states,

while the transition probability of the state and the reward

of the agent depend on the joint action of all agents.

The structure of the stochastic game of cache placement is

G = {T ,N ,S,P,An, V }, where N denotes the set of agents

participating in the stochastic game. In this paper, we consider

the UTs in the cell that can perform D2D communication

as the agents of the game. T denotes the time series as we

mentioned in Section II. In each time slot t, the network state

is defined as S(t) = [C(t),h(t)], where C(t) denotes the D2D

communication relationship between UTs in time slot t, and

h(t) =
[
h
(t)
1 , h

(t)
2 , ..., h

(t)
K

]
denotes the popularity set of the K

contents in time slot t. We define S = HK ⊗C as a collection

of all the possible states in the dynamic networks, so S(t) ∈ S .

P
{
h(t+1)|h(t)

}
=

K∏
k=1

P{h(t+1)
k |h(t)

k } represents the transition

popularity of the K content chunks. We assume that the action

of each player UT n is what it will cache at the next time slot,

so an ∈ An, An = {1, 2, ...,K} denotes the set of actions that

UT n might choose. We define the vector a = [a1, a2, ..., aN ]
to represent the joint action of all UTs in the cell. V denotes

the value function, which we will discuss in detail in Part C.

According to the states of the dynamic networks and the

action of UTs, we get the possibilities of each UT choosing

different actions under different network states, which are

defined as the cache placement policy of UT n,

πn

(
S(t)

)
=

[
πn

(
1|S(t)

)
, ..., πn

(
K|S(t)

)]
s.t. πn

(
an|S(t)

)
≥ 0 ∀an ∈ An,∑

an∈An

πn

(
an|S(t)

)
= 1,

(3)

Page 4 of 20IEEE Transactions on Vehicular Technology

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



5

where the constraints indicate that the probability that the UT

selects content k to cache under state S(t) is not less than 0,

and the sum is 1. In this paper, we assume that the UTs choose

the next action according to different network states, which is

actually independent of time slot t. It means that regardless

of which time slot t a UT reaches a certain state, its policy is

the same. Then we can get the transition probability between

state S(t) and S(t+1) under action an,

P

(
S(t+1)|S(t), an

)
=

∑
a−n

π∗−n

(
a−n|S(t)

)
P

(
S(t+1)|S(t),a

)
,

(4)

where P
(
S(t+1)|S(t),a

)
= P{C(t+1)|C(t)}P{h(t+1)|h(t)}, a

denotes the joint action set of all UTs and π∗
−n denotes the

stable cache placement policy except UT n.

B. Fully Cooperative Stochastic Game

In a stochastic game, if the rewards generated by all agents

are the same (r1 = r2 = ... = rn = r), then the game is a fully

cooperative stochastic game (FCSG) [35]. In the FCSG, the

best-reward action of one agent is also a best-reward action of

every agent, which means the best-reward action of one agent

is in line with the overall interests of all agents [36]. In this

kind of cooperative multi-agent system, agents tend to act as

a group. In this paper, the CCU collects the state of the UTs

in the cell and executes the cache placement policy decision.

So the FCSG is operated by the CCU as a master node, which

simulates the learning process of multiple agents. Therefore, in

order to facilitate the subsequent learning process, we propose

two assumptions based on the cooperative strategy of FCSG

as follows.

Assumption 1. All UTs have the same goal and the same
reward distribution.

Assumption 2. All UTs can always observe the status and
state transition of other UTs, that is, the network state is known
to all UTs.

Assumption 1 can use the advantage of FCSG by unifying

the rewards of all UTs, thus avoiding the problem of revenue

distribution among UTs. Assumption 2 allows each UT to

perceive other UTs’ actions over time through the cooperative

strategy. Under these assumptions, concurrent learning is still

a non-trival problem. Because in the multi-agent learning

process, the immediate reward of each UT is not only related

to the current network state, but also related to the action

of other UTs. In each time slot, for the UT, the randomness

of other UT’s action policies will lead to the uncertainty of

its immediate reward. This makes it difficult to guarantee

theoretical convergence for distributed model-free learning,

which is widely used in deep learning, although many existing

studies have empirically proved the effectiveness of such

distributed learning [36].

Therefore, we need to consider optimizing the cooperative

strategy of the FCSG. For cooperative learning, the key point

is the coupling of value function and learning exploration

strategy. The value function is related to the joint-action of all

UTs and will change as the exploration strategy changes. Next,

we will discuss the setting of the reward and value function

of each UT.

C. Reward and Value Function

A reasonable value function is the key to the game. In

our game, the value function is related to the immediate

reward of environmental feedback due to the action of each

UT. We define that under state S(t), the immediate network

reward obtained by the joint action a of all UTs in the cell is

r
(
S(t),a

)
.

Since each UT is selfish, we assume that the BS provides

incentive for the UTs to cache and share contents through

D2D communications. The incentive for each UT is related to

the broadcasting data rate, the number of serviced UTs and

the popularity of the shared contents. The larger broadcasting

data rate and the more popular contents of UT n provides to

surrounding UTs, the more incentives it obtains. Each time the

UT n satisfies a request of UT n′ in its communication range,

the obtained incentive is λh
(t)
ans, where λ is the unit incentive

value, h
(t)
an denotes the popularity of the content cached by UT

n according to its action an in time slot t, and s represents the

size of content chunk. Meanwhile, the cost of content sharing

is modeled as a constant times the broadcast power. In the case

when the joint action a of all UTs and the network state are

known at time slot t, the immediate network reward, including

the incentive and the cost, is calculated as follows,

r(S(t),a) =
∑
n∈N

(
b
(C(t))
n λ

∑
n′∈Nd

h(t)
an
s− βPn

)
, (5)

where b
(C(t))
n denotes the broadcasting data rate

of UT n under D2D communication relationship

C(t) in time slot t, as defined in (1). Nd ={
n′|an′ �= an; b

(C(t))
n > b

(C(t))
i , ∀i ∈ N/n; c

(t)
n,n′ = 1

}
,

which denotes the set of UTs who do not cache the interested

content and request this content from UT n within its

D2D communication range in time slot t. Pn denotes the

transmission power of UT n. β denotes the unit cost. (5) is

the sum of the content caching and sharing rewards of all

UTs in the cell.

We define the combine vector of the cache placement policy

under state S(t) for all UTs except UT n as Π
(
S(t)

)
, which

is expressed as follows,

Π
(
S(t)

)
= π1

(
S(t)

)
⊗ π1

(
S(t)

)
⊗ · · · ⊗ πn−1

(
S(t)

)
⊗πn+1

(
S(t)

)
⊗ · · · ⊗ πN

(
S(t)

)
,

(6)

where the symbol ⊗ represents the Kronecker product oper-

ation. πn

(
S(t)

)
denotes the cache placement policy of UT n

defined in (3). Then the immediate reward of UT n is

r
(
S(t), an

)
=

∑
Π(S(t))∈Π(S(t))

re

(
S(t),Π

(
S(t)

)
, an

)
, (7)

where an ∈ An, An = {1, 2, ...,K} denotes the set of actions

that UT n might choose, i.e., a set of contents that can be

cached. The expected reward for UT n with state S(t) and
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6

specific action policy is given by

re

(
S(t),Π

(
S(t)

)
, an

)
= Π

(
S(t)

)
πn

(
an|S(t)

)
r
(
S(t),a

)
.

(8)

(7) indicates that the reward that UT n obtained when selecting

action an in a certain state S(t) depends on the joint action

policy selected by other UTs.

In order to comply with the requirements of Assumption 1,

we assume that all UTs converge to the pure policy using

the GLIE strategy [37] while learning. So that all UTs have

the same reward r
(
S(t),a

)
. Considering long-term reward,

we define the expectation of infinite-horizon discounted sum

reward as the common value function of all UTs, given the

immediate reward of each UT calculated according to (7). The

value function is determined by the starting state S and the

policy πn selected by UT n,

V ∗ (S)=Eπn

( ∞∑
k=0

γ(k)r
(
S(t+k), an

)
|S(t) = S

)
, (9)

where γ ∈ [0, 1) denotes the discount factor. The value

function means that the UTs not only consider immediate

rewards when making action decisions, but also considers

the impact on the future. A larger γ means that the future

rewards have more influence on the current decision, and vice

versa. For simplicity, we use S′ and S to denote S(t) = S
and S(t+1) = S′ in subsequent formulas involving states

update, P (S′|S, an) = P
(
S(t+1)|S(t), an

)
in (4). According

to Bellman’s equation [8],

V ∗ (S)=
∑
an

π∗
n (an|S)+[

r (S, an) + γ
∑

S′∈S
P(S′|S, an)V ∗ (S′)

]
,

(10)

which indicates that in the cooperative game, in addition to

UT n being studied, we consider the other N −1 UTs’ action

policies as part of the environment. At the same time, if all

UTs adopt a pure policy, i.e., only one content is selected to

cache per UT, then P (S′|S, an) = P (S′|S, a).

D. Equilibrium of the Stochastic Game

In the stochastic game model described above, each agent

(UT) independently determines its own best cache placement

policy to maximize its own value function as the network state

evolves, given other UTs’ policies. For this decision-making

process that pursues best responses to other UTs’ policies, we

can consider the Nash equilibrium as the solution to the game.

Let π∗ be the best action, i.e., the best cache placement policy,

of all the UTs. π∗
−n is the best action of all the UTs expect

UT n. The Nash equilibrium satisfies the following properties,

V ∗ (S, π∗
n, π

∗
−n

)
≥ V ∗ (S, πn, π

∗
−n

)
, ∀n ∈ N (11)

where πn is the cache placement policy of UT n, π−n denotes

any set of stationary policies for all UT except n. At the

Nash equilibrium point, other policies besides the best cache

placement policy results in a reduction in the individual value

function, so the UTs have no incentive to change their policies.

It has been proved that there is a static Markov policy in the

stochastic game, that is, the Nash equilibrium of the stochastic

game [38]. The Nash equilibrium of the stochastic game is

the best-reward action π∗, which is the best cache placement

policy set of all UTs in the cellular networks.

Since the CCU usually does not know the transition prob-

ability between network states when making the cache place-

ment decisions in the practical scenarios, we explore the re-

inforcement learning method to discover the cache placement

policy to maximize the long-term reward of all UTs in (9) in

the stochastic game for such Nash equilibrium.

IV. MULTI-AGENT COOPERATIVE ALTERNATING

Q-LEARNING

In this section, we propose a multi-agent cooperative al-

ternating Q-learning (CAQL) framework for solving the s-

tochastic game. Then we describe the CAQL based cache

placement algorithm. We discuss the convergence, complexity

and reliability of the proposed CAQL.

A. Framework of the Multi-Agent CAQL

In the case of the value function of all UTs known as (10),

we can define the action-value function Q∗ (S, an) as

Q∗ (S, an) = r (S, an) + γ
∑
S′∈S

P (S′|S, an)V ∗ (S′), (12)

where

V ∗ (S) =
∑
an

π∗
n (an|S)Q∗ (S, an) . (13)

Therefore, we can further get the pure policy πn (an|S) =
argmax

an

Q∗ (S, an) for UT n under state S. Next, we use the

joint optimization learning of the action-value function to the

best cache placement policy πn (an|S) for each UT n in all

states.

Fig. 3: Framework of the proposed multi-agent CAQL.

Consider the action-value function of each UT, we use a

cooperative alternating learning mode based on Q-learning for

different initial states of the networks. The framework of the

proposed multi-agent CAQL is shown in the Fig 3. We define

the learning of UT n in learning round i as learning phase

ni. In the proposed framework, there is only one UT to learn

and update the policy in each learning phase, and other UTs

maintain their own policies. UT n can know the stability policy

choices of all other UTs π∗
−n through cooperative strategy of
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FCSG in learning phase ni, and obtain the best response policy

πn (an|S) = argmax
an

Q∗ (S, an). In fact, the proposed multi-

agent CAQL is carried out in the CCU, which simulates the

alternating learning process of multiple agents.
The learning process of the learning round i is shown in

Fig. 3. In the learning phase 1i, UT 1 first learns, and at the

same time, the pure cache placement policies of other UTs

are determined by random initialization. UT 1 continuously

uses Q-learning to learn the update of Q (S, a1i) according

to the joint action of all UTs until Q (S, a1i) is sufficiently

converged. We consider V1i (S) = max
a1i

Q∗ (S, a1i) as the

value of the common value function derived at this learning

phase and pure policy π1i (a1i |S) = argmax
a1i

Q∗ (S, ani) as

the cache placement policy UT 1 selected after learning. In

the learning phase 2i, UT 2 repeats the same learning process

of UT 1 in learning phase 1i based on the updated policy

π1i (a1i |S) and the initialized policies that have not been

updated by other UTs. After this learning phase, UT 2 obtains

the common value function V2i (S) = max
a2i

Q∗ (S, a2i) and

the cache placement policy π2i (a2i |S). By analogy, all UTs

learn in turn and update their cache placement policies until

UT N is completed in the learning round i. Then the learning

process of the ith learning round is repeated in the (i+ 1)
th

round until the common value function Vni (S) converges to

V ∗ (S). From the framework described above, the proposed

CAQL has following properties.

Property 1. The proposed CAQL is a cooperative
environment-aware learning. In CAQL, all UTs have the same
immediate reward goal. During the learning process, the
current cache placement policies selected by all UTs are
public. Each UT can learn the current stable cache placement
policies selected by other UTs through the cooperative strategy
during the learning process. The selected cache placement
policies may be initialized or updated after the previous phases
of learning.

Property 2. All the agents of CAQL jointly update Q-value
and policy. In each phase of the learning process, UT not only
learns and updates its Q-value, but also updates its own cache
placement policy according to the learning result after the end
of each learning phase, so that the common value function is
of the same term for all UTs in different learning phases.

Property 3. The proposed CAQL has small cache space
requirements. Compared with the traditional multi-agent Q-
learning that needs to maintain a joint action and Q-value
matrix (be known as Q-value table), CAQL regards the actions
in each learning phase of other UTs as stable, only considers
the impact of the learning agent’s decisions on its Q-value.
CAQL reduces the space required for the Q-table, especially
when the action set is large.

B. CAQL Based cache placement Algorithm
Firstly, we discuss the Q-learning algorithm for a single

UT in each learning phase in this subsection. It can be known

from Assumption 1 that the immediate reward goals of all UT-

s are the same. When their cache placement policies are stable

pure policies, each UT’s immediate reward is the network’s

immediate network reword. Property 1 and Property 2 can

guarantee the stability of the state transition probability and

the calculation of the Q-value in Q-learning.

The learning process of Q-learning is model-free. Even if

the agent currently learning has its own action policy, during

the learning process, the UT does not act according to the

policy, but acts according to another policy independent of

the model, thereby balancing the exploration and exploitation

in the learning process. The action selection policy can be a

previously learned policy, or a policy that has been optimized

and matured, such as the widely adopted ε−greedy [39].

The UT following the ε−greedy policy randomly selects

the action to explore with the probability ε, otherwise the

greedy action selection policy will be executed according to

the existing Q-value with a probability of (1−ε). In order to

meet the conditions of Assumption 1, we let UTs adopt the

greedy in the limit with infinite exploration (GLIE) strategy

in the learning process, which can ensure that each UT’s

policy converges to a stable state. The combination of GLIE

and ε−greedy requires that all state-action pairs that have

been experienced will be explored indefinitely. At the same

time, as the number of explorations increases, the ε-value in

ε−greedy tends to zero (for example, ε=1/t), which means

that the frequency of exploration decreases as the number of

explorations increases. We record the ε−greedy policy that

conforms to GLIE characteristics as εt−greedy. The action

selection strategy is

ani =

{
argmax

ani

Qni
(S, ani

) w.p. 1− εt;

random ani ∈ A w.p. εt.
(14)

In order to measure the convergence of each learning phase,

we define a UT convergence index and a UT convergence

threshold for each learning phase. The UT convergence index

in the learning phase ni of UT n is defined as I
(p)
ni , which is

I(p)ni
=

∣∣∣R(t)
ni

−R(t−1)
ni

∣∣∣ , (15)

where R
(t)
ni =

∑
S∈S

∑
an

π∗
n(an|S)r(S, an) denotes the sum of

immediate rewards under all network states after UT n updates

the policy in the current learning phase in time slot t. When

the UT’s cache placement policy converges to stability, R
(t)
ni

tends to be stable as well. Therefore, I
(p)
ni is used to indicate

the convergence of UT n in the ni learning phase. We define

the UT convergence threshold as κp. If I
(p)
ni < κp, it means

that UT n’s cache placement policy is stable between time slot

t and t − 1. Considering the characteristics of the ε−greedy
exploration, the convergence of UT n in the current learning

phase is achieved when the number of consecutive R
(t)
ni stable

time slots exceeds a certain predefined positive integer value

It. Then the CAQL terminates learning phase ni and starts

the next learning phase (n+ 1)i. The Q-value update rule of

Q-learning for each UT is given as,

Qt+1 (S, an) = (1− αt)Qt (S, an)+

αt

(
r (S, an) + γmax

an

Q (S′, an)
)
.

(16)
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Fig. 4: CAQL operation in CCU.

For the convergence of the entire CAQL, we define the con-

vergence index I
(r)
ni to indicate the convergence performance

of CAQL in each learning round i,

I(r)ni
=

∣∣Rni
−Rni−1

∣∣ . (17)

Then we define the convergence threshold of CAQL as κr.

When κr is small enough, if I
(r)
ni < κr, it means that the

learning of CAQL reaches convergence at the current round.

The proposed CAQL is operated in the CCU, as shown

in Fig. 4, including the policy learning stage and the policy

implementation stage. For policy learning, the UTs report

their location and content preference information to CCU in

the information exchange phase of each time slot. Based on

these information, the CCU learns the best cache placement

policy for all the UTs in the entire network. For policy

implementation, the BS transmits the multiple contents to

multiple UTs for caching in each network stage according to

the learned policy of the CCU. The procedure of CAQL based

cache placement algorithm operated in the CCU is described

by Algorithm 1.

Algorithm 1 CAQL based cache placement algorithm

1: - Step 1: Initialization
2: Randomly initialize the starting network state S and the cache
placement policy of all UTs π∗. Initialize the Q-value table (joint
action and Q-value matrix) values Qn (S, an) = 0 (∀n ∈ N ) of
all UTs. Set n = 1, i = 1 and ni = 11. Set the convergence
threshold κp and κr . The maximum number of learning round is
L, which means i ≤ L.
3: - Step 2: Learning
4: repeat
5: while n ≤ N do
6: Set the stable time slots snum = 0
7: repeat
8: In the current learning phase ni with network state
S, UT n selects action according to εt − greedy policy.
9: Observe the next network state S′ after the transfer
and obtain the immediate reward r (S, ani) by (7).
10: Update Qni (S, ani) according to (16).

11: if I
(p)
ni < κp, snum = snum + 1

12: else snum = 0
13: Transfer to next state S′

14: until I(p)ni < κp and snum > It
15: n = n+ 1
16: end while
17: i = i+ 1
18: until I(r)ni < κr , or the learning round i reaches the maximum
constraint L.
17: output: Learned cache placement policy π∗ (a|S).

In summary, we solve the FCSG by multi-agent cooperative

reinforcement learning, which derives the stable cache place-

ment policy of UTs considering long-term rewards. Through

the CAQL process, we get a stable Q-value table for all UTs

which provides the best cache placement policy for them. In

other words, all UTs in the cellular networks learn to know

what they should cache under the network state S ∈ S .

Obviously, the proposed algorithm is a centralized algorithm

since it is not required control information exchange between

UTs. In doing so, we avoid the huge overhead consumption

in such D2D-enabled caching cellular networks.

C. Property Evaluations
1) Convergence: We evaluate the convergence of CAQL.

To obtain UTs’ stable cache placement policies through the

CAQL, each UT needs to converge in ni learning phase. Then

as the learning round i increases, all UTs’ policies reach

convergence and the common value function converges to

V ∗ (S).
We first discuss the convergence of Q-learning for a single

UT in each learning phase of the proposed CAQL.

Theorem 1. For fully cooperative multi-agent systems, if the
following conditions are satisfied, the Q-value table of UT n
eventually converges to a stable value Q∗ (S, an) according
to the Q-value update rule of Q-learning in (16).

1) All agents share the same immediate reward r
(
S(t), an

)
;

2) In addition to the agent that is learning, the policies of
the remaining agents are stable;

3) The learning speed αt of Q-learning satisfies the condi-

tion
∞∑
t=0

αt=∞
∞∑
t=0

α2
t < ∞.

For a UT that can know current stable policies of all

other UTs, its learning process is identical to the single-

agent Q-learning. Therefore, Theorem 1 is clearly established

with sufficient number of updates and a decreasing learning

rate [40]. We can consider that the Q-learning process of each

UT in CAQL is convergent. In our CAQL, only when a UT’s

learning phase converges will it enter the next UT’s learning

phase. However, the convergence of Theorem 1 is achieved

with t → ∞. Obviously, in reality, we cannot achieve the

condition of t → ∞, so we need to set the convergence

index and thresholds above in (15) and (17). It is known

by Theorem 1 that convergence can be achieved when each

UT performs Q-learning alone in every learning phase of the

CAQL.

During the cooperative alternating learning process of

CAQL, each UT makes a best response cache placement policy

according to the current policies of other UTs, which will

further influence the policies of other UTs in the subsequent

learning phases. All UTs alternatively promote updates to their

policies by cooperating to perceive each other’s policies. In

this case, as the learning phase progresses, whether the policies

of all participating UTs in CAQL algorithm can converge is

the next question we need to explore.
Theorem 2. When UTs sequentially update their
own cache placement policy in the learning process
according to the CAQL framework, ∀S ∈ S ,
{V11 (S) , V21 (S) , ...VN1 (S) , V12 (S) , ...} is a non-
decreasing Cauchy sequence.
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Proof. We assume that the current network state is S, the

initial cache placement policy for all UTs is π∗. From (7), the

immediate reward of UT n in learning phase ni is

r (S, ani) =
∑
a−ni

π∗
−ni

(a−ni |S) r (S,a), (18)

where −ni denotes the remaining UTs in the learning phase

ni except UT n. It can be seen from Theorem 1 and (13) that

after alternating learning in the ni learning phase, UT n gets

the following common value function,

Vni (S) = max
ani

Q∗ (S, ani)

=
∑

a−ni

π∗
−ni

(a−ni |S) r
(
S, a−ni , a

∗
ni

)
+γ

∑
S′

∑
a−ni

π∗
−ni

(a−ni |S) · P
(
S′|S, a−ni , a

∗
ni

)
V ∗ (S′),

(19)

where P
(
S′|S, a−ni , a

∗
ni

)
denotes the probability of network

state transferring from S to S′ under current cache placement

policy. The best pure policy π∗
ni

(
a∗ni

|S
)
= 1 with a∗ni

=
argmax

ani

Q∗ (S, ani).

The UT n+1 continues learning in the next learning phase

(n+ 1)i, which obtains the common value function as,

V(n+1)i
(S) = max

a(n+1)i

Q∗
(
S, a(n+1)j

)
=

∑
a−(n+1)i

π∗
−(n+1)i

(
a−(n+1)i

|S
)
r
(
S, a−(n+1)i

, a∗n+1i

)
+γ

∑
S′

∑
a−(n+1)i

Vs
∗ (a−(n+1)i

, S′, S
)
,

(20)

where the optimal state value for the state S and the specific

next state S′ is given by

Vs
∗ (a−(n+1)i

, S′, S
)
= π∗

−(n+1)i

(
a−(n+1)i

|S
)

·
(
S′|S, a−(n+1)i

, a∗(n+1)i

)
V ∗ (S′) .

(21)

In learning phase (n+ 1)i, UT n has learned the stable pure

best cache placement policy π∗
ni

(
a∗ni

|S
)

in the previous learn-

ing phase and select action according to it at current phase.

Therefore, we can replace −(n+ 1)i with −(n, n+ 1)i. For

the sake of simplicity, we rewrite the V(n+1)i
(S) expression

associated with a−(n+1)i as,

V(n+1)i
(S) = max

a(n+1)i

f
(
a−(n,n+1)i

)
. (22)

Similarly, (19) can also be written as,

Vni (S) =
∑

a(n+1)i

π
(ni)
(n+1)i

(
a(n+1)i

|S
)
f
(
a−(n,n+1)i

)
, (23)

where π
(ni)
(n+1)i

(
a(n+1)i

|S
)

denotes the cache placement policy

adopted by UT n + 1 in the previous ni learning phase.

Obviously, the UT n + 1 in current phase continues to learn

based on the best cache placement policy derived from the UT

n in the previous phase. From (22) and (23), we have

V(n+1)i
(S) ≥ Vni (S) , (24)

which indicates that the sequence

{V11 (S) , V21 (S) , ...VN1 (S) , V12 (S) , ...} is non-

decreasing. At the same time, because individual immediate

reward is bounded (r(S(t), an) ≤ (N − 1) rs − αPn),

γ ∈ [0, 1), Vni (S) is bounded. Therefore,

{V11 (S) , V21 (S) , ...VN1 (S) , V12 (S) , ...} is a non-

decreasing Cauchy sequence. Then the common value

gradually increases and converges as the learning process

progresses as follows,

V ∗ (S)=Eπn

( ∞∑
k=0

γ(k)r
(
S(t+k), an

)
|π∗ (a|S)

)
, (25)

where π∗ (a|S) denotes the stable cache placement policy for

all UTs after learning.

Remark 1. From Theorem 1 and Theorem 2, CQAL eventu-
ally converges to a stable cooperative cache placement policy
that aims to maximize the common value function in the joint
state-action space.

After the algorithm we proposed converges, the current

learning UT no longer changes its own cache placement

policy, then the subsequent UTs have no motivations to change

their own policies, which obtains the Nash equilibrium. The

stable cache placement policy achieves a sub-optimal solution

of the common value function (9). Unfortunately, due to

the limitations of learning exploration strategies, we can not

guarantee that (25) can achieve global optimum.

2) Complexity: In the learning phase, since the policies

currently adopted by other UTs in the cooperative environment

are known, the learning UT only needs to make decisions

and update its own cache placement policy. Each UT only

needs to maintain a Q-value table with a space complexity of

|S| · |A|. The entire CAQL algorithm needs to maintain a Q-

value table with a space complexity of N · |S| · |A|. Compared

to the traditional multi-agent Q-learning method that needs to

maintain the joint action Q-value table (such as Nash-Q [41]

with space complexity |S| · |A|N ), CAQL requires less space

cost. At the same time, since there is only one UT for learning

in each learning phase, the required computing resources are

relatively small.

3) Reliability: The proposed algorithm is robust in the

practical scenarios of dynamic networks. After learning for a

period of time, the CCU can make a cache placement decision

according to the historical information even when the current

network information is unavailable. When the information of

an individual UT is unavailable, the CCU that has not received

its reported information will delete the UT from the learning

agents set and adjust the cache placement policy which ensures

the reliability of the CAQL.

V. NUMERICAL RESULTS

In this section, the performance of the proposed CAQL

based cache placement algorithm is tested. We verify the con-

vergence of the proposed CAQL in the cache placement policy

learning stage. Then we demonstrate the caching performance

of the proposed CAQL in the policy implementation stage.

A. Simulation Settings

In the simulation, a macro BS is deployed at the center

of the cell and N UTs are distributed in the cell and move

according to the multi-home-point movement model in [33],
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as we described in Section II. The communication relationship

between the UTs can be described by (1). The multi-home-

point movement model is used to model the UTs’ movement

in the cell with a coverage radius R = 250 m. We assume that

there are H = 3 home-points distributed within the coverage.

The coverage radius of each home-point is Rh = 50 m. The

UTs periodically move between different home-points, and the

time they stay in each home-point is fixed and non-empty. We

modeled the D2D communication relationship between the N
UTs as a finite Markov state transition model with three states

{C1, C2, C3}, and assume that the transition probabilities are

P

{
C(t+1)|C(t)

}
=

⎡
⎢⎣

P {C1|C1} P {C1|C2} P {C1|C3}
P {C2|C1} P {C2|C2} P {C2|C3}
P {C3|C1} P {C3|C2} P {C3|C3}

⎤
⎥⎦

=

⎡
⎢⎣

0.2 0.8 0

0 0.2 0.8

0.8 0 0.2

⎤
⎥⎦ .

(26)

We assume that there are K = 8 contents to be cached

in the cell. The popularity of K contents follows a Zipf -

like distribution [42] and the size of each content chunk s
is set to 1M bytes. The K content are sorted accordingly in

a descending order. The popularity of the k-th content with

distribution parameter αi is

hk (i) =
1

kαi

K∑
m=1

1/mαi

, for i = 1, 2, (27)

where αi ≥ 0 is the skewness of popularity. We use h
(t)
k to

denote the popularity of content k,
K∑

k=1

h
(t)
k = 1. The content

popularity is modeled by a two-state Markov chain with states

h1 and h2, that are drawn from Zipf distributions having

parameter α1 = 0.7 and α2 = 2.5, respectively. The transition

probability matrix is defined as

P
(H1)
k =

[
P {hk (1) |hk (1)} P {hk (1) |hk (2)}
P {hk (2) |hk (1)} P {hk (2) |hk (2)}

]

=

[
0.6 0.4

0.2 0.8

]
.

(28)

We initialize the network state S = [C1,h1]. The network

state will change between different time slot which we defined

in Fig. 2. The CCU learns the cache placement policy accord-

ing to Algorithm 1 in the case where the content popularity

and the UTs’ D2D communication relationship state contin-

uously transferred. In the simulation, the parameter setting

used for D2D communication is from the Technical Report

of 3GPP [43], the system bandwidth of D2D communication

is 10 MHz uplink and 10 MHz downlink for FDD, and the

indoor to indoor channel model is as defined in [43], including

the pathloss, shadowing, and the fast fading. The detailed

simulation parameters are given in Table II.

B. Simulation Results of Convergence

We first demonstrate the convergence of the proposed CAQL

algorithm in the learning stage of cache placement policy.

According to (17), we compare the long-term reward of all

TABLE II: Simulation Parameters

Parameter Value
Carrier frequency 2 GHz
Radio bandwidth 20 MHz

Backhaul data rate 1.5 Mbps

D2D transmit power P tx
n′ 23 dBm

BS transmit power P tx
BS 43 dBm

Pathloss from BS to UT 37.6log10(d[km])+
128.1 dB

Pathloss of D2D channel 40log10(d[km])+
148 dB

Noise power spectral density -174 dBm/Hz
Received signal power threshold η -50 dBm

Convergence threshold κp 10−3

Convergence threshold κr 0.1
Stable time slots threshold It 103
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Fig. 5: Learning process of UTs in CAQL.
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Fig. 6: Learning process of single UT in each learning phase.
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network states after the current learning UT updates its policy

between current and the last learning round. Fig. 5 shows the

convergence of the CAQL, where the number of UTs N is

equal to 15, 20, and 25, respectively. The long-term reward of

all UTs in the cell is stable after learning is completed. Then

we discuss the convergence of single UT in learning phase in

Fig. 6. Fig. 6 shows the UT’s cache placement policy gradually

stabilizes during the learning process in each learning phase.

Fig. 5 and Fig. 6 demonstrate the Remark 1 we proposed in

Section IV.C. The number of network state |S| is determined

by the number of contents K, the number of content states

|H|, and the number of D2D communication relationship states

|C| between UTs, |S| = |H|K · |C|. Fig. 5 shows that the

required number of time slots for convergence nearly has linear

relationship with the number of UTs, which verified that the

Q-value table of the proposed CAQL has a space complexity

of N · |S| · |A|, as discussed in Section IV.C.

C. Simulation Results of Performance

Next, we compare the caching performance of the pro-

posed CAQL in policy implement stage with the social-aware

caching game (SACG) [44], random caching (RC) and popular

caching (PC). In the SACG algorithm, the cache placement is

based on the statistical user encounter probabilities and the

current content popularity. In the RC algorithm, the contents

are allocated to UTs randomly in each time slot. In the PC

algorithm, UTs cache the most popular contents in each time

slot. We statistically give the long-term performance of these

cache placement algorithms over time slot and environmental

changes.

We compare the long-term reward of all UTs in the cell

obtained by different cache placement algorithms, as shown in

Fig. 7. As the time series progresses, the D2D communication

relationship between UTs and content popularity change.

When t > 100, the average immediate reward tends to be

stable. The proposed CAQL has the highest immediate reward

compared with the SACG, RC, and PC. For example, When

UT=25, the average immediate reward of CAQL is 1033,

which exceeds SACG, RC and PC 5.8%, 14.5% and 35%

respectively.

Then we compare the caching performance with the average

content access delay and the BS traffic offloading ratio as the

criteria in Fig. 8 and Fig. 9. In the simulation, the content

access of UT n is given by

D(t)
n =

[
s

rmax
n,n′ (t)

θ +

(
s

rn,BS (t)
+

s

rback

)
(1− θ)

]
, (29)

where rmax
n′ (t) denotes the maximum data rate of D2D

communication between UT n and n′ (n′ ∈ N (k)
n ) during

the content delivery in time slot t. rback denotes the data rate
of the backhaul link of the BS. Therefore, the average content
access delay of N UTs for K contents is given by

D(t) = Et

{
En

{
K∑

k=1

h
(t)
k D(t)

n

}}
, (30)

where θ = 1 if N (k)
n �= ∅ (N (k)

n = {n′|a(t)n′ = k, b
(C(t))
n′ (t) >

0}), which means that content k is shared by D2D commu-

50 100 150 200 250 300 350 400 450 500

Time slot for policy implement

600

800

1000

1200

1400

1600

1800

2000

2200

2400

2600

Lo
ng

-te
rm

 re
w

ar
d

CAQL (N=25)
RC (N=25)
PC (N=25)
SACG (N=25)
CAQL (N=20)
RC (N=20)
PC (N=20)
SACG (N=20)

N = 20

N = 25

Fig. 7: Long-term reward comparison with varying UT num-

bers.

nication in the cell, else θ = 0, which is the case of BS

transmission. En indicates the average access time for all UTs

to obtain all their required contents. Et indicates the average

content access time until current t. The BS traffic offloading

ratio is calculated as

O =

K∑
k=1

N∑
n=1

h
(t)
k 1

(
a
(t)
n = k

)
K∑

k=1

N∑
n=1

h
(t)
k

, (31)

where 1
(
a
(t)
n = k

)
= 1 when a

(t)
n = k, else 1

(
a
(t)
n = k

)
=

0. The larger value of O means more contents are delivered

by D2D communications.
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Fig. 8: Averaged content access delay with varying UT num-

bers.

Fig. 8 compares the time-averaged content access delay

for different cache placement algorithms when N = 20 and

N = 25, respectively. As shown in Fig. 8, no matter which

algorithm is used for proactive caching at off-peak hours,
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Fig. 9: BS traffic offloading ratio with varying UT numbers.

the average content access delay for content delivery during

peak hours is reduced since the average content access delay

by the BS transmission without caching is about 7 s in our

simulation. When t = 1, the average content acquisition delay

of SACG is the smallest, which is 95.8% and 84% of CAQL

when N = 25 and N = 20, respectively. As the time slot t
increases, the average content access delay of CAQL becomes

stable gradually. For example, when t > 200 and N = 20,

the average content access delay of CAQL is stable, which

is 82%, 71%, and 79% of SACG, RC, and PC, respectively.

When the user density is large, it is beneficial for content

sharing between UTs. When N = 25, the average content

access delay is reduced by 2% compared with N = 20. Fig. 9

demonstrates the average BS offloading for different caching

algorithms. When N = 25, the stable average BS offloading

ratio of CAQL is the largest, reaching 0.89, which is 10%,

23.6%, and 30% higher than SACG, RC, and PC, respectively.

The simulation results in Fig. 8 and Fig. 9 demonstrate that

the proposed algorithm can effectively reduce the UT’s content

access delay and the peak load of the backhaul in the dynamic

environments.

Finally, we consider the caching performance of CAQL

when content popularity changes more frequently. We increase

the randomness of the dynamic networks by a new transition

probability matrix P
(H2)
k , which is defined as

P
(H2)
k =

[
P {hk (1) |hk (1)} P {hk (1) |hk (2)}
P {hk (2) |hk (1)} P {hk (2) |hk (2)}

]

=

[
0.5 0.5

0.5 0.5

]
.

(32)

Fig. 10 and Fig. 11 demonstrate the impact of different

content popularity transition probabilities on the average con-

tent access delay and BS traffic offloading ratio. When the

randomness of environmental changes increases, the average

content access delay of CAQL decreases from 1.93s to 1.76s,

and the backhaul offloading ratio increases from 86.94% to

90.57%. The simulation results illustrate the performance of

our proposed CAQL algorithm in the dynamic environments.
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Fig. 10: Average content access delay with different content

popularity transition probabilities.
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VI. CONCLUSION

In this article, we have investigated the UT edge caching in

D2D-enabled caching cellular networks with time-varying UT

location and content popularity. The multi-content multi-UT

cache placement problem was modeled as a fully cooperative

stochastic game of UTs. Then a multi-agent CAQL framework

was proposed based on the best response of each UT to solve

the stochastic game problem. After CAQL, UTs obtain the

best cache placement policy in dynamic networks for long

term reward maximization. Simulation results have verified

the feasibility and effectiveness of the proposed CAQL based

cache placement algorithm.
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