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Abstract

In post-disaster scenarios, it is challenging to provide reliable and flexible emergency communi-

cations, especially when the mobile infrastructure is seriously damaged. This article investigates the

unmanned aerial vehicle (UAV)-based emergency communication networks, in which UAV is used as

the mobile aerial base station for collecting information from ground users in affected areas. Due to

the breakdown of ground power system after disasters, the available energy of affected user equipment

(UE) is limited. Meanwhile, with the complex geographical conditions after disasters, there are obstacles

affecting the flight of UAV. Aiming at maximizing the uplink throughput of UAV networks during the

flying time, we formulate the UAV trajectory optimization problem considering UE energy limitation

and location of obstacles on the ground. Since the constraint on UE energy is dynamic and long-

term cumulative, it is hard to be solved directly. We transform the problem into a constrained Markov

decision-making process (CMDP) with UAV as agent. To tackle the CMDP, we propose a safe-deep-Q-

network (safe-DQN) based UAV trajectory design algorithm, where the UAV learns to selects the optimal

action in reasonable policy sets. Simulation results reveal that: i) the uplink throughput of the proposed

algorithm converges within multiple iterations; and ii) compared with the benchmark algorithms, the

proposed algorithm performs better in terms of uplink throughput and UE energy efficiency, achieving

a good trade-off between UE energy consumption and uplink throughput.
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Index Terms

constrained Markov decision-making process, emergency communication, trajectory design, deep

reinforcement learning

I. INTRODUCTION

Large-scale natural disasters always inflict severe and unpredictable loss of life and property.

In the past 30 years, various types of natural disasters, such as earthquakes, tsunamis, floods,

wildfires, hurricanes, etc., have resulted in many deaths, and material losses caused by disasters

worldwide have increased by approximately 100%-150% [1]. When a disaster occurs, maintaining

real-time communications help to obtain post-disaster situational awareness, which can greatly

improve the efficiency of rescue missions. Unfortunately, in most cases, disasters will damage the

communication equipment, making the communication network, which nowadays predominantly

depends on wireless communication infrastructure, unable to function normally. During the

hurricane Harvey in the U.S., the FCC published that only one of the 19 cell towers in Aransas

County in Texas was functioning and 85 percent of cellular towers became offline in nearby

Counties [2]. Therefore, it is very necessary to establish emergency communications with rapid

response and flexible networking.

Considering the complex ground conditions and the lack of power supply during post-disaster,

the emergency communication network should be highly energy efficient, simple deployment, and

have good compatibility among different user devices and different types of disasters [2]. Among

numerous emergency communication networking technologies, it’s an efficient and feasible

solution to deploy unmanned aerial vehicles (UAVs) with flexible deployment and timely response

as the mobile aerial BS to construct a mobile emergency communication network [3]. Currently,

UAV has been widely used in different disaster management applications, including monitoring

and early warnings, disaster information fusion and sharing, supply dropping, damage assessment

and so on. What’s more, as the movable characteristic of UAV allows the distance between

the receiver and the transmitter to be adjusted in real time, which helps to deal with the

problem of low UE signal level in post-disaster scenarios, UAV BS can be used as an important

communication facility to build a standalone communication system in post-disaster areas [4].

Although the UAV emergency communication networks play a powerful role in a disaster

scenario, there are still some key technical difficulties: 1) the working time of UAV is limited

by on-broad battery of UAV [5]; 2) the trajectory plan of UAV requires timely and accurate

Page 11 of 36

IEEE Transactions on Green Communications and Networking

Under review for possible publication in

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



3

response to emergencies in complex and harsh geographical environment of natural disasters

filed [3]; 3) In addition, the available energy to equipment of trapped users is also extremely

limited due to the damage to the crucial infrastructures (such as power supply) [6]. Based on

the above considerations, the UAV emergency communications should be completed as far as

possible before the user’s equipment runs out of energy within the working time of UAV.

A. Motivations and Related Works

Due to the high flexible mobility, UAV has attracted significant research interest in the field of

wireless communication [7]. There are many researches that combine UAV with different com-

munication technologies, such as non-orthogonal multiple access [8–10], massive MIMO [11],

millimeter wave communication [12] and reconfigurable intelligent surfaces [13]. Meanwhile,

caching-enabled UAV cellular networks has attracted increasing attention to effectively alleviate

the traffic load of wireless backhaul links [14, 15]. UAV can also be used as the mobile relay to

provide a new access method for resource constrained users, thus increasing the throughput of the

whole system [16]. In addition, UAV has been also applied in various specific scenarios [17–20].

Zhang et al. [17] studied the content distribution in hot areas, and proposed the cache-enabling

UAV-assister cellular network which successfully improved the quality of user experience (QoE).

In [18], UAV acts as a MEC server and provides communication and computing services for

terminal devices in the Internet of things. In [19] and [20], UAVs are used to provide wireless

energy harvesting and information transmission for ground users. On the other hand, with the

rapid development of artificial intelligence technology, the application of reinforcement learning

(RL) in wireless communication network has become a research hotspot [21]. Some researchers

have applied RL to UAV networks to make the UAV wireless communication more efficient and

adaptable [22–25]. Yin et al. [22] studied the trajectory design in UAV-assisted cellular network.

The optimization problem for maximizing the uplink transmission rate was transformed into a

Markov decision process, which was solved by deterministic policy gradient (DPG) algorithm. A

long-term resource allocation problem in multi-UAV communication networks was formulated

as a stochastic game for maximizing the expected rewards in [23], which was solved by a

multi-agent reinforcement learning framework. In [24], with the goal of maximizing the energy

efficiency and coverage of UAV communication network, an actor-critic based deep enhancement

learning algorithm was used to optimize the flight direction and flight distance of the UAV. Based

on the prediction of user’s mobility, Liu et al. [25] proposed a multi-agent Q-learning-based
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trajectory design and power control algorithm to maximize the transmission rate in multi-UAV

assisted wireless networks.

Although excellent research has been conducted on UAV communications, there are few works

focusing on UAV-assisted emergency communication networks in disasters [26–29]. Merwaday

et al. [26] used a genetic algorithm to get the best location of the UAV, thereby improving the

network throughput.The problem that maximizing the number of service users under limited

UAV battery capacity by optimizing the flight path was proposed in [27]. This optimization task

was transformed into a multi-armed bandit problem, and distance-aware upper confidence bound

algorithm (D-CUB) and ε-exploration algorithm were proposed to solve it. Some encouraging

work was done by Zhao et al. to establish a framework for UAV-assisted emergency networks

in disasters [28]. There are three different network models corresponding to three scenarios:

First, UAV is deployed to assist the surviving BSs; Second, when all ground BSs are destroyed,

UAV serves as a flying base station to provide communication services; In addition, hovering

UAVs are used as multi-hop relays to exchange the information between the disaster area and

outside. The collection and transmission of user information in emergency scenarios considering

natural environment and UAV energy consumption constraints were investigated in [29]. In order

to improve the QoE and shorten the flight time of UAV, a path optimization scheme including

hover point selection and mobility planning is proposed and solved by convex optimization

method.

These existing works related to UAV-based emergency communication networks mainly pay

attention to the energy consumption of UAV, but ignore the limitation on energy of ground user

equipment (UE) caused by the paralysis of ground power transmission system and constrained

user mobility after disasters. Meanwhile, most of researches assume that the UAV trajectory or

deployment position at a certain altitude is not restricted by geographical conditions. However,

as obstacles that are far above the ground such as residential buildings, office buildings and

mountains are inevitably distributed, it is often difficult to find an airspace where UAVs can

move freely in most practical scenarios. These obstacles will affect the flight of UAV and

cause possible collisions in pratical application. Different from the existing works, we proposed

a UAV-based emergency communication network, in which the energy limitation of UE is

considered. In addition, we also notice the influence of air obstacles on UAV flight path. Thus,

our proposed framework further enhances the feasibility of UAV emergency communication

system, as compared with the existing works.

Page 13 of 36

IEEE Transactions on Green Communications and Networking

Under review for possible publication in

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



5

B. Contributions and Organization

As mentioned above, the emergency communication scenarios of current studies rarely consid-

er the constrains on energy of UEs and obstacles in post-disaster areas. To fulfill this gap, a UAV-

based emergency communication network with limited UE energy is researched in this article,

in which the UAV acts as a mobile aerial BS to complete bits transmit from devices of users

in affected area. The data collection task during disasters is always extremely urgent, however

the coverage of UAV is relatively small. When the uploaded data of ground UEs is limited, the

UAV trajectory need to be planed reasonably to increase the UEs’ access opportunities, so as

to collect as much user information as possible during the flight time. Therefore, our goal is to

maximize the long-term uplink throughput of the system during the flying time by designing the

flight trajectory of UAV. The main contributions are summarized as follows:

• We propose a framework of UAV-based emergency communication networks to collect

user information in post-disaster areas. The terrestrial devices within coverage of the UAV

can access to the mobile aerial BS when other mobile infrastructures are out of services.

Considering the limitation on geographical conditions and energy supply in reality, we

formulate a dynamic long-term optimization problem to maximize uplink throughput of

UAV network during the flying time by optimizing UAV trajectory.

• We transform the original problem to a constrained Markov decision process (CMDP)

with UAV as agent, in which the action, reward, and cost are defined as flight direction,

uplink throughput and energy consumption of UE respectively. For the long-term cumulative

constraint on energy consumption of UE, we first obtain a set of safe policies by constructing

a reasonable Lyapunov function, and then we propose a safe-DQN based algorithm to solve

the optimal policy in the safe set. For the constraint on avoiding obstacles, we define the

concept of legal actions to tackle it.

• We demonstrate the feasibility and effectiveness of the proposed algorithm by numerical

simulations. Simulation results show that the proposed UAV trajectory design algorithm

converges after multiple iterations. Compared with benchmark algorithms, the proposed

algorithm is able to effectively avoid collision during the UAV flight and gets a trade-off

between system throughput and energy consumption of UEs. Besides, we also investigate

the influence of UAV height by simulation.
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The rest of this article is organized as follows. Section II presents the system model and

formulates the optimization problem for long-term uplink throughput maximization. In Section

III, we transform the problem into a CMDP and propose the safe-DQN based algorithm for

trajectory design. Simulation results are provided in Section IV, and finally we conclude this

paper in Section V.

II. SYSTEM MODEL AND PROBLEM FORMULATION

Consider a post disaster rescue scenario with aerial obstacles, such as mountains or buildings,

where rescuers can not approach easilly. Due to the destruction of external forces (such as

earthquake, flood, war, etc.), the ground infrastructure communication facilities in the certain

area can’ t work normally. Furthermore, due to the destruction of infrastructure, the UE signal

that can be received is often weak in disaster areas. In this case, the UAV can be used as a

mobile aerial BS to establish temporary communication connection, and provide assistance for

rescue by efficiently collecting information from affected users, as shown in Fig.1. We assume

that there are K users trapped in the area, denoted by K = {1, ......K}, and the corresponding

locations are represented by lk ∈ R
2×1, k ∈ K. Taking into account the limited endurance of

UAV, we assume that the continuous working time of the UAV is T . The UAV takes off from

the fixed starting point and flies over the area along a specific trajectory at a constant speed v.

When the time is up, the UAV lands back to the starting point to charge or replace its battery.

·UAV User equipment Radio access link

Failed  BS

UAV trajectoryUAV User equipment Radio access link

Failed  BSSSS

Fig. 1: UAV emergency communication networks.

A. UAV Mobility Model

For the convenience of illustration, we divide the UAV working duration T into M equal time

slots with length δt, i.e.T = Mδt. Note that the value of δt is small enough to satisfy δtv � H ,
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where H is the flying height of UAV. So that in a time slot, the UAV can be approximately re-

garded as stationary. Denote lU (m) = (xU (m) , yU (m)) as the two-dimensional position of UAV

in time slot m, then the flight trajectory of can be approximated by the sequence {lU (m)}Mm=1.

Since the UAV flies at the constant speed v, then ‖lU (m)− lU (m− 1)‖ = δtv,m = 2, ...,M ,

where the operator ‖α‖ means the Euclidean norm of vector α. During the flight, it is necessary

to ensure that there will be no collision. In order to simplify the model, the airspace occupied

by obstacles is approximately regarded as a circular region with radius R, and denoted by Ω.

Generally, the mobile distance of UAV in a time slot is far less than the radius R i.e.δtv � R.

Therefore, when lU (m) /∈ Ω, ∀m = [1, 2, ...,M ] is satisfied, the UAV flight path will not pass

through the obstacle area, and there will be no collision.

B. Channel Model

Referring to the 3GPP specification [30], the path loss of the communication link between UAV

and its serving UE is randomly determined by line-of-sight (LoS) and non-line-of-sight(NLoS)

links according to probability. This probability depends on the UAV flight altitude H , the distance

between the UAV and connected UE dk (m) =
√

H2 + ‖lU (m)− lk‖2, ∀k ∈ K and the carrier

frequency fc.

Specifically, the path loss of the LoS and NLOS links between the UAV and the k-UE is

calculated by

Lk (m) =

⎧⎨
⎩

30.9 + (22.25− 0.5log10H) log10dk (m) + 20log10fc, if LoS link,

max
{
LLOS
k , 32.4 + (43.2− 7.6log10H) log10dk (m) + 20log10fc

}
, if NLoS link.

(1)

The probability of the LOS link denoted by PrLOS is given in

PrLoS=

⎧⎪⎨
⎪⎩

1, if
√
dk

2 −H2 ≤ d0,

d0√
dk

2−H2
+ exp

{(
−
√

dk
2−H2

p1

)(
1− d0√

dk
2−H2

)}
, if

√
dk

2 −H2 > d0,
(2)

where d0 = max [294.05log10H − 432.94, 18] and p1 = 233.98log10H − 0.95. Then the proba-

bility of NLOS link is obtained naturally as PrNLOS = 1− PrLOS .

According to the above path loss model, the channel gain between the UAV and the k-th UE

in the time slot m is

gk (m) = PrLOS
k (m)

[
10L

LOS
k (m)/10

]−1
+

(
1− PrLOS

k (m)
) [

10L
NLOS
k (m)/10

]−1
. (3)
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C. Transmission Model

For simplicity but without loss of generality, we assume that the transmission data size of

each UE is F bits in the post disaster rescue scenario. We define the effective radiation angle of

the UAV BS antenna as θ, then the maximum distance between the accessible UE and the UAV

is H/ cos θ. The above channel model shows that the channel gain gk (m) is negatively related

to distance dk (m). It means that if a UE is in the coverage of the UAV BS, the channel gain,

the signal-to-noise ratio (SNR) as well, is larger than a certain value. Therefore, the definition

of effective radiation angle θ is used as a parameter to make sure that only when UEs’ SNR

reaches a certain threshold, these UEs can access the UAV to upload data. According to the

location of UAV lU (m), the location of UE lk ∈ R
2×1, k ∈ K and the radiation angle θ, the

set of UEs within the coverage of the UAV in time slot m is determined as Kcover (m) =

{k ∈ K : dk (m) ≤ H/ cos θ}. Denote the UE access indicator by ak (m). ak (m) = 1 indicates

that the k-th UE is connected with the UAV in time slot m, conversely ak (m) = 0 means that

the k-th UE is not accessed. Thus, the set of UEs associated with the serving UAV in time

slot m is expressed as Kcom (m) = {k ∈ K : ak (m) = 1}. Denote N (m) = ‖Kcom (m)‖0 as the

number of UEs in the set Kcom (m).

The UAV communication networks employs orthogonal frequency division multiple access

(OFDMA) for multiple UEs accessing, so the inter-frequency interference among UEs can be

ignored. Then, according to Shannon’s Theorem, the transmission rate from UE k to the UAV

is

Rk (m) = ak (m)BW log2

(
1 +

gk (m)PTx

σ2

)
/N (m) , (4)

where BW is the available frequency bandwidth of the system, PTx is the transmission power

of UEs, and σ2 represents the power of Additive White Gaussian Noise (AWGN) at the UAV

receiver.

Therefore, for UE k , the uploaded data size in time slot m can be expressed as

wk (m) = Rk (m) δt. (5)

Let Wk (m) represents the total bits the k-th UE has uploaded before the m-th time slot,

Wk (m) =
m∑
i=1

wk (i). Then, the UE access indicator ak (m) is determined by the distance dk (m)

and Wk (m). If k ∈ Kcover and Wk (m) < F , ak (m) = 1, otherwise, ak (m) = 0.
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D. Energy Model

The energy consumption of UE consists two parts, energy consumption in transmission model

and energy consumption in sleep model. We omit the energy consumption in the shift between

the transmission and sleep model. So the energy consumption of UE k in time slot m is

ek (m) = ak (m)PTxδt + (1− ak (m))ESleep, (6)

where ESleep is the energy consumption of UE k in sleep model in time slot m.

E. Problem Formulation

Our goal is to collect the information of users in the area as much as possible, so as to improve

the success rate of rescue and reduce casualties. It is worth noting that the energy of UE is very

valuable due to the paralysis of ground power system and limited user mobility after the disaster.

In addition, there are obstacles that affect the UAV flight. Once the UAV comes into collision

with those obstacles, the communication may be interrupted, even out of service. Therefore, we

formulate the constrained optimization problem to maximizing the long-term uplink throughput

via UAV flight trajectory design. Based on above models, the optimization problem is

(P1): max
{lU (m)}Mm=1

1

T

M∑
m=1

K∑
k=1

wk (m), (7)

s.t.

M∑
m=1

ek (m) ≤ e0, ∀ k ∈ K, (7a)

‖lU (m+ 1)− lU (m)‖ = δtv,m = 1, ...,M, (7b)

lU (m) /∈ Ω,m = 1, 2, ...,M. (7c)

Constraint (7a) represents that the maximum energy available of each UE is e0; constraint (7b)

means the flight speed of UAV is fixed as v; constraint (7c) guarantees that UAV will not collide

with obstacles.

We notice that P1 is a dynamic optimization problem aiming at maximizing the long-term

throughput of the system. What’s more, the left side of (7a) is also a long-term cumulative

variable related to UAV flight trajectory. This means that the whole flight process needs to be

taken into account when solving the position of UAV in a certain time slot, which makes it

difficult to solve P1 by traditional optimization methods.
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III. SAFE-DQN BASED UAV TRAJECTORY OPTIMIZATION ALGORITHM

Since the position of UAV at time slot m + 1 only depends on the position and moving

direction at time slot m, its flight process can be regarded as a discrete-time Markov Decision

Process with the UAV as an agent. In this section, we transform the problem (7) coupled with

constraints into a Constrained Markov Decision Process (CMDP). For the constraint (7a), we

first propose a Lyapunov function based method to determine the set of safe policies. Then, a

model-free deep reinforcement learning algorithm, safe-DQN, is adopted to tackle the long-term

cost constraint. For the constraint (7c), we define the concept of legal action, which is used to

avoid obstacles by judging whether the action is legal before executing it.

A. CMDP Model

CMDP is a typical framework for constrained reinforcement learning tasks. In this framework,

the agent needs to maximize a long-term reward while satisfying cost constraints. It is worth

noting that, unlike general constraints, the cost constraint in CMDP is long-term and global

[31]. As (7a) contains K inequality, the corresponding CMDP will have K cost functions, which

makes the solution very complicated. In order to simplify, we transform it into one inequality

as follows,

max
k∈K

{
M∑

m=1

ek (m)

}
≤ e0. (7a′)

(7a′) represents that the maximum value among UEs energy consumption can not exceed e0. It’s

obvious that (7a′) is a necessary and sufficient condition for (7a), and thus they are equivalent.

However, (7a′) is no longer a form of time slot summation, which does not meet the requirements

for cost function of CMDP. So we exchange the order of summing and taking the maximum

value, and get
M∑

m=1

max
k∈K

{ek (m)} ≤ e0. (7a′′)

As (7a′′) is a sufficient condition for (7a′), (7) is transformed as

max
{lU (m)}Mm=1

1

T

M∑
m=1

K∑
k=1

wk (m),

s.t. (7a′′), (7b), (7c).

(8)

and then we can transform (8) to a CMDP. There are seven basic elements in CMDP {S,A,w, e, P, s0, e0},
which are defined as follows in our model:
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• S is the state space. In our maximization problem, the state in time slot m consists of the

UAV position lU (m) and the uploaded bits by UE k, Wk (m).

• A is the action space. We define the action as the flight direction of the UAV. As the length

of time slot δt is small enough, we can discretize the flight direction reasonably without

great influence on the final path, and only consider five flight directions including front,

back, left, right and hovering.

• w is the instantaneous reward which is defined as the size of data collected in the system

in time slot m.

w (sm) =
K∑
k=1

wk (sm),m = 1, 2, ...,M. (9)

• e is the instantaneous cost, which is defined as the maximum value of energy consumption

among UEs in time slot m.

e (sm) = max
k∈K

{ek (sm)} ,m = 1, 2, ...,M. (10)

• P represents the state transition probability matrix. In our optimization problem, the state

space is large, and it is very difficult to predict the probability of state transition. For this kind

of MDP problem in which the knowledge about P is not priori, model-free reinforcement

learning is one of effective solutions.

• The initial state s0 ∈ S consists of the starting point of the UAV which is known and fixed

and the bits which have been uploaded at the beginning (zeros naturally).

• e0 is the upper bound of the cumulative cost, which is defined as the energy available to

UE in our model.

We define the policy set in the m-th time slot as Δ(sm) =
{
π (·|sm) |

∑
a∈A π (·|sm) = 1

}
, ∀sm ∈

S. It can be seen from the definition that the strategy is actually a set of vectors representing

the probability of each action being selected in state sm. For a given strategy π ∈ Δ and the

initial state s0, the long-term cumulative reward, that is, the total uploaded bits during the flight

time T , is expressed as

Wπ (s0) = E

[∑M−1
m=0

w (sm) |s0, π
]
. (11)

Similarly, the long-term cumulative cost, i.e. the left side of (7a′′), is

Eπ (s0) = E

[∑M−1
m=0

e (sm) |s0, π
]
. (12)

By constructing CMDP, the position of UAV in time slot m + 1 is completely determined

by the position and flight direction in time slot m, and lU (m), lU (m+ 1) always satisfy the
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12

constraint (7b). The flight time T is a constant. Thus, the optimization problem (8) is equivalent

to: given s0 and e0, find the optimal strategy π∗ to maximize the long-term reward while satisfying

Eπ (s0) ≤ e0 and (7c), that is, solve the problem as follows,

(P2): max
π∈Δ

{Wπ (s0) : Eπ (s0) ≤ e0} ,

s.t. (7c).

(13)

B. Lyapunov Function Based Safe Policy Set

In this subsection, we leave (7c) out of the question temporarily, which is tackled in next

subsection. Then, the key to solving (13) is to determine the set of ”safe” strategies that meet

the condition Eπ (s0) ≤ e0 and select the optimal policy from it. For this, we adopt following

Lyapunov function based method to determine the set of safe policies [32].

For the convenience of representation, we introduce a general Bellman operator, which consists

of a policy π and a general reward function (or cost function) h,

Tπ,h[V ](s)=
∑

a
π (a|s)

[
h (s)+

∑
s′∈S′P (s|s′, a)V (s′)

]
, (14)

where s′ is the next state of s ∈ S under the action a ∈ A. It can be seen that Tπ,h [V ] (s) is a

function that describes the long-term cumulative expected value. When h is the reward function

w, Wπ (s0) = Tπ,w [W ] (s0); when h is the cost function e, Eπ (s0) = Tπ,e [E] (s0).

We assume a benchmark policy πB ∈ Δ and define a set of Lyapunov candidate functions

LπB
(s0, e0) = {L : TπB ,e [L] (s) ≤ L (s) , ∀s ∈ S;L (sM−1) = 0;L (s0) ≤ e0}, (15)

where sM−1 is the last state, that is, the landing position of the UAV, which is fixed and known in

our model. Consider the cumulative cost function EπB
(s) with the benchmark policy. It satisfies

all requirements for Lyapunov function in (15), that is, EπB
(s0) ≤ e0, EπB

(sM−1) = 0, and

EπB
(s) = TπB ,e [EπB

] (s) = E

[∑M−1
m=0 e (sm) |s0, πB

]
. Therefore, the set of Lyapunov candidate

functions defined in (15) must be non-empty. Corresponding to any Lyapunov function L (s) ∈
LπB

(s0, e0), there exists a set of safe strategies

FL (s) = {π (·|s) ∈ Δ : Tπ,e [L] (s) ≤ L (s)} . (16)

In order to ensure that the safe strategies set contains the optimal solution of the problem π∗,

the constructed Lyapunov function should not only satisfy the three conditions in (15), but also

satisfy

Tπ∗,e [L] (s) ≤ L (s) . (17)
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13

According to the Lemma 1. in [32], there is an auxiliary cost function ε (s) such that the

Lyapunov function conforming to (15) and (17) can be expressed as

Lε (s) = E

[∑M−1
m=0

e (sm)+ε (sm) |πB, s
]
, (18)

and Lε (s) is equal to the cumulative cost function under the optimal strategy, that is Lε (s) ∈
LπB

(s0, e0) and Lε (s) = Eπ∗ (s). However, as the optimal policy π∗ is not priori, it is difficult

to construct a suitable ε (s) directly. Therefore, we adopt the method proposed in [32] to

approximate the auxiliary cost ε (s) to a constant function, which is independent of state,

ε̃ =
(e0 − EπB

(s0))

E [T∗|s0, πB]
, ∀s0 ∈ S, (19)

where E [T∗|s0, πB] is the expected stopping time of the CMDP. In our problem, the working

time of UAV is certain, that is E [T∗|s0, πB] =M . Hence, (19) is

ε̃ =
1

M
(e0 − EπB

(s0)) . (20)

Substituting (20) into (18) , we can get the Lyapunov function as

Lε̃ (s) = E

[∑M−1
m=0

e (sm)+ε̃|πB, s
]
. (21)

and the corresponding safe policy set defined in (16) is

FLε̃
(s) = {π (·|s) ∈ Δ : Tπ,e [Lε̃] (s) ≤ Lε̃ (s)} . (22)

Therefore, with the help of Lyapunov function, P2 of (13) without constraint (7c) is equiva-

lently described as

π∗ (·|s) = arg max
π∈FLε̃

(s)
Wπ (s0) , ∀s ∈ S. (23)

To sum up, in this subsection, we construct the appropriate Lyapunov function Lε̃ (s) by

introducing the auxiliary cost function ε̃. Then, based on Lε̃ (s), we determine the set of safe

policies satisfying the constraint (7a′′), which lays foundation for the following subsection to

solve the optimal policy.

C. Deep Reinforcement Learning Based Solution For CMDP: safe-DQN

In CMDP {S,A,w, e, P, s0, e0}, the next state is determined by the current state and action.

Therefore, when the agent chooses an action, it needs to consider not only the immediate returns

Page 22 of 36

IEEE Transactions on Green Communications and Networking

Under review for possible publication in

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



14

and costs, but also the impact on the future. Based on above considerations, the state-action

reward function (S × A→ R) is defined as

Qw (sm, am) = E

[
M−1−m∑

t=m

γt−mw (st)|s0, a0
]
, ∀sm ∈ S, am ∈ A, (24)

where γ ∈ [0, 1] is the discount factor, which represents that the influence of future rewards on

the current value function decays exponentially. Using the Behrman operator, (24) is rewritten

as

Qw (s, a) = w (s) + γV π
w (s′) , ∀s ∈ S, a ∈ A, (25)

where V π
w (s) = w (s) + γ

∑
s′∈S

Psm,π(sm) (s
′)V π

w (s′) , ∀s ∈ S. Similarly, the state-action cost

function is

Qe (s, a) = e (s) + γV π
e (s′) , ∀s ∈ S, a ∈ A, (26)

where V π
e (s) = e (s) + γ

∑
s′∈S

Ps′,π(s′) (s
′)V π

e (s′) , ∀s ∈ S. And the Lyapunov function (21) is

expressed as

Ql (s, a) = e (s) + ε̃+ γV π
l (s′) , ∀s ∈ S, a ∈ A, (27)

where V π
l (s) = e (s) + ε̃+ γ

∑
s′∈S

Ps′,π(s′) (s
′)V π

l (s′) , ∀s ∈ S.

Observing and analyzing (25)-(27), we can rewrite (27) as

Ql (s, a) = Qe (s, a) + ε̃QT (s) , ∀s ∈ S, a ∈ A, (28)

where QT (sm)=
M−1−m∑

t=m

γt−m, ∀sm ∈ S is a function related to the number of remaining steps

and the discount factor, and can be directly obtained by calculation.

If Qw (s, a) and Qe (s, a) are known, according to (19), the auxiliary cost under the benchmark

strategy πB can be calculated by

ε′ =
e0 − πB(·|s0)�Qe (s0, ·)

πB(·|s0)�QT (s0)
, (29)

and the set of safe policies (22) is

FQl
(s)={π (·|s) ∈ Δ:(π(·|s)−πB(·|s))�Ql (s, ·)≤ ε̃ }. (30)

Then (23) can be expressed as finding the optimal strategy

π∗ (·|s) = arg max
π(·|s)∈FQl

(s)
π(·|s)�Qw (s, ·) , ∀s ∈ S, (31)

that is, solving the following linear programming problem.

π∗ (·|s) ∈ argmax
π∈Δ

{π(·|s)�Qw (s, ·) : (π (·|s)− πB (·|s))�Ql (s, ·) ≤ ε′}. (32)
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Fig. 2: The block diagram of the safe-DQN algorithm

Solving (32) requires accurate calculation of Qw (s, a), Qe (s, a) and πB (·|s). However, due

to the complex nonlinear relationship between state, action and the value functions, it is almost

impossible to obtain the mathematical expression of them directly. Reinforcement learning is

one of the effective ways to establish mapping relationship. In common reinforcement learning

algorithms, sarsa and Q-Learning obtain the optimal strategy by constructing and maintaining

a state-action value table, where each state-action tuple corresponds to a value, so they can

only solve problems which have a small number of states and actions. Deep Q-network is an

improvement of Q-learning. It estimates the value function through a deep neural network, which

can solve the situation of a large number of states but cannot cope with a large action space. The

policy-based policy gradient algorithm can solve continuous state and action by constructing a

policy network to directly output actions, but the network can only be updated in rounds, which

makes a low training efficiency. Actor-critic and deep deterministic policy gradient algorithms

combine policy-based and value-based methods, which can not only deal with an infinite number
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of states and actions, but also ensure network convergence. At the same time, they have higher

computational complexity compared with other reinforcement learning algorithms. In the CMDP

{S,A,w, e, P, s0, e0} problem we constructed, the action space is small (five dimensions) but the

number of states is large. Thus, considering the applicability and complexity of these algorithms

comprehensively, we adopt a model-free safe-DQN algorithm to solve (32). The block diagram

of safe-DQN is shown in Fig.2.

First of all, we build two sets of DQN networks and output Q̂w (s, a, θw), Q̂e (s, a, θe) to

approximate Qw (s, a) and Qe (s, a) respectively. That is Qw (s, a) ≈ Q̂w (s, a, θw), Qe (s, a) ≈
Q̂e (s, a, θe), where θw and θe are the parameters of the reward network and the cost network

respectively. In the DQN algorithm we adopt, in order to remove the correlation between samples,

the experience playback mechanism is introduced; in order to reduce the correlation between

the real Q value and the output of neural networks, two neural networks with the completely

same structure are used, one for estimated value, and the other for target value.

Taking the approximate network of the state-action reward function as an example, the esti-

mated value network Q̂w (s, a; θw) needs to update its parameters continuously through training,

while the target value network Q̂w

(
s, a; θw

−) is only used to calculate the value of the reward

function at next state and its parameters don’t need to be updated iteratively, but are copied

from the estimated value network at intervals. In each iteration, a certain number of samples

B = {(sj, aj, wj, ej, sj
′, gw,j, ge,j)}|B|j=1 are selected from the memory according to their priority

{(gw,j)} ||B|j=1, which are determined by their TD-errors{
ywj − Q̂w (sj, aj; θw)

}|B|
j=1

. (33)

ywj = wj + γπ(·|sj ′)�Q̂w

(
sj
′, ; θj

−) represents the target reward value of the j sample, which is

calculated by the immediate reward, the output of the target value network at next state and the

policy of the next state. Then, the loss function of the reward network is calculated by

Loss (θw) =
1

B

B∑
j=1

ww,j

(
ywj − Q̂w (sj, aj; θw)

)2

. (34)

Finally, the parameters θw are updated by gradient back propagation of the neural network with

specific learning-rate α, as

θw = θw
− − α∇θwLoss (θw) . (35)

Remark 1. The learning-rate α is the stepsize when the network parameters are updated with

gradient descent, which determines the distance of parameters alteration in each iteration. Larger
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α is likely to cause the algorithm to oscillate greatly near local optimum and is difficult to

converge. Smaller α makes the parameters change little in each iteration, which leads to a slow

convergence speed of the algorithm.In order to balance the stability and convergence speed of

the algorithm, we often need to try time and again to find a compromise α.

Similarly, in the approximate network of the state-action cost function, the TD-errors of the

samples are {
yej − Q̂e (sj, aj; θe)

}|B|
j=1

, (36)

where yej = ej + γπ(·|sj ′)�Q̂e

(
sj
′, ; θe

−) represents the target cost value of the j sample. The

loss function of the cost network is calculated by

Loss (θe) =
1

B

B∑
j=1

ge,j

(
yej − Q̂e (sj, aj; θe)

)2

, (37)

and the parameters θe are updated according to

θe = θe
− − α∇θeLoss (θe) . (38)

In addition to approximating Qw (s, a) and Qe (s, a), a reasonable value for the benchmark

strategy πB (·|s) is needed to solve the problem (32). However, due to the unpredictability of

the future and the large dimension of the state space, it is very difficult to directly determine

a benchmark strategy that meets the conditions. To this end, we build a deep neural network

(DNN) to parameterize the policy and approximate the value of the benchmark strategy with

the output of the DNN, namely πB (·|s) ≈ π̂ (·|s; θπ). In each iteration, the parameters θπ are

updated by reducing the loss function of the policy network. As given in

L (θπ) = E(sj)∼B [DKL (π̂ (·|sj; θπ) ||π∗ (·|sj))] , (39)

the loss function is defined as the KL divergence between the benchmark strategy and the

optimal strategy, which represents the difference between the two policy vector distributions.

The optimal strategy π∗ (·|sj) is obtained by solving the linear programming problem (32) with

the approximate benchmark strategy π̂ (·|sj; θπ). The parameters θπ are updated according to

θπ ← θπ − α∇θπL (θπ) . (40)

With the reward function network, the cost function network and the policy network, the ε′

in (29) is approximated to

ε̂′ =
e0 − π̂(·|s0; θπ)�Q̂e (s0, ·; θe)

π̂(·|s0; θπ)�QT (s0)
. (41)
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In summary, in each iteration of safe-DQN, three networks are trained in sequence, and finally

the optimal policy that meets the ”safe” condition (7a′′) can be obtained.

All of the above are proposed to tackle the constraint (7a′′). For the constraint (7c), we adopt

a simple judgment method. We propose the concept of legal actions, which ensure that the

UAV is outside the obstacle area in the next time slot. The set of legal actions in each state is

Alegal (m)= {a ∈ A : lU (m+ 1) /∈ Ω}. In each time slot, before the action is executed, the UAV

needs to judge whether the action is legal, and if it is not, another legal action will be selected

randomly. Besides, in order to ensure the effectiveness of learning, samples with illegal actions

will not be stored in the memory of safe-DQN.

The detailed procedure of the proposed safe-DQN based trajectory design algorithm is given

as follows.

D. Analysis of the Proposed Algorithm

1. Complexity: Denote |S| as the size of state space, and |A| as the size of action space.

Assume the algorithm converges within D iterations. In each iteration, three networks Q̂w,Q̂e,πθ

need to be updated and the computational complexity of each network is O (|S||A|). Secondly,

there are |S| linear programming problems to be solved and each of them has |A| decision

variables and (|A|+ 1) constraint conditions, so its complexity is O(|S||A|2(|A| + 1)). Thus,

the computational complexity of proposed algorithm is O (3D|S||A|+D|S||A|2(|A|+ 1)) ≈
O (3D|S||A|+D|S||A|3). Generally speaking, the number of iterations needed for convergence

is far less than |S||A|. Therefore, the complexity of the safe-DQN based algorithm is much less

than that of polynomial time algorithm O (|S|2|A|2(|S||A|(|A|+ 1)) [33].

2. The “safe” property: Different from traditional reinforcement learning algorithms, safe-

DQN is able to solve the optimization problem with dynamic and long-term accumulation

constraints with the help of Lyapunov function. Compared with the general deep Q-network

algorithm, the safe-DQN has higher complexity, but its safe property has great significance in

solving practical problems.

IV. SIMULATION RESULTS

In this section, the performance verification of the proposed safe-DQN based UAV trajectory

design algorithm is presented. It is assumed that a UAV is responsible for searching a pre-

allocated area where K affected users are randomly distributed. When the affected area is large,
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Algorithm 1 Safe-DQN based trajectory design algorithm

Initialization System Parameters: user locations lk, k ∈ K; length of time slot δt; number

of time slots M ; UAV filght speed v; UAV flight height H; upper limit of UE energy

consumption e0; obstacle area Ω.

Initialization Algorithm Parameters: prioritized replay buffer U = {∅}; importance weights

gw,0 = 1, ge,0 = 1; mini-batch size |B|; network parameters θw
−, θe

−, θπ.

1: for k ∈ {0, 1, ..., } do

2: Initialize UAV position as the take-off point lU (0); uploaded bits w (s0) = 0; UE energy

consumption e (s0) = 0.

3: for t = 0 to t = M − 1 do

4: Obtain action at according to the policy network (DNN) π̂ (·|st; θπ).
5: if at ∈ Alegal(t) then

6: Add this experience to replay buffer,

U←(st, at, wt, et, st+1, gw,t, ge,t) ∪ U ,

7: From the buffer U , sample a mini-batch

B = {(sj, aj, wj, ej, sj+1, gw,j, ge,j)}|B|j=1,

8: Update the deep Q network (DQN) of state-action reward function Q̂w (s, a, θw)

according to (35),

9: Update the deep Q network (DQN) of state-action cost function Q̂e (s, a, θe) according

to (38),

10: Update important weights gw,j, ge,j based on TD-errors given in (33) and (36),

11: Calculate Ql according to (27),

12: Obtain {π∗ (·|sj) }|B|j=1 by solving (32),

13: Update the network of policy π̂ (·|s; θπ) according to (40).

14: else

15: Select action at from Alegal(t) randomly and then back to step (6).

16: end if

17: end for

18: Update θw
− = θw, θe

− = θe after t iterations.

19: end for
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we can deploy multiple UAVs and each of them is responsible for the search and rescue work

in the pre-determined small area. The detailed simulation parameters are shown in Table I.

TABLE I: Simulation Parameters

Parameter Value

Flight altitude H = 100 m

Flight speed v = 30 m/s

Carrier frequency fc = 2 GHz

Radio bandwidth 20 MHz

Radius of obstacle area R = 30 m

Effective angle of UAV radiation θ = π /8 rad

Time slot length δt = 0.5 s

Transmitting power of UE PTx = 23 dBm

Noise power spectral density -174 dBm/Hz

Standby energy consumption of UE per time slot Ebase = 0.01 J

We verify the convergence of the proposed algorithm with different learning-rates in Fig. 3.

There are three curves and all of them are simulated under the same condition when K = 20

and T = 100 s. As it can be observed, when the learning-rate is set as 0.00005 or 0.000001, the

system throughput, i.e, the reward in the CMDP model, gradually increases with the increase of

iterations, which indicates that the parameters of neural networks are gradually updated in a good

direction. Specifically, when the learning-rate is set as 0.00005, the throughput converges to about

50 Mbps within 1000 episodes. When it is increased to 0.0001, the throughput quickly reaches

the maximum value, but performs extremely unstably in the later stage. When the learning-rate is

decreased to 0.000001, the growth rate of throughput slows down significantly, and converges to

50 Mbps within 2200 episodes, which is same as the value when learning-rate is 0.00005. This

verifies the insights in Remark 1, that is, the larger learning-rate makes the network difficult

to converge, while the smaller learning-rate makes the network converge stably but the speed is

very slow. In order to balance efficiency and stability, we set the learning-rate as 0.00005 in the

subsequent simulations.

In order to illustrate the effectiveness of the proposed UAV trajectory design algorithm, we

design the following two benchmark algorithms.

1. Shortest flight distance algorithm (SFD): Taking off at the fixed starting point, the UAV
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Fig. 3: The convergence of the proposed algorithm with varying learning rates.

selects the one closest to the current location of the UAV among all UEs to be served and then

hovers above it to provide communication services. After the transmission is completed, the next

location is selected according to the same criteria until the total time T is reached.

2. Fixed flight trajectory algorithm (FFT): The UAV flies along a preestablished path in

the affected area, regardless of users’ locations.

Next, we investigate the performance of the proposed algorithm compared with benchmark

algorithms from Fig. 4 to Fig. 6 with varying service durations and user numbers.
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Fig. 4: System throughput with varying user number.
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Fig. 5: Energy consumed by UEs with varying user number.

Fig. 4 shows the long-term uplink throughput of the UAV emergency communication network.

First of all, each curve in Fig. 4. shows an upward trend, which means that regardless of algorithm

and service duration, the system throughput increases with the number of users increasing.

However, its growth rate is gradually decreasing. This is due to the fact that the maximum

capacity of the communication system with a limited bandwidth is certain. With the increase

of K, the system throughput keeps approaching the maximum capacity, but cannot exceed it.

Comparing the performance of the same algorithm with different T , it is found that the longer

T , the lower the system throughput. This shows that in order to collect user information as much

as possible, the UAV emergency communication system needs to sacrifice the time efficiency

to a certain extent. Comparing the performance of different algorithms with the same T , we

can see that for any K, the proposed algorithm is obviously better than the FFT algorithm, and

much better than the SFD algorithm. When (T = 100 s,K = 30), (T = 150 s,K = 40), and

(T = 200 s,K = 50), the advantage of the proposed algorithm is more prominent, which is

0.27, 0.31, 0.28 times higher than FFT algorithm and 2.23, 2.25 and 1.89 times higher than

SFD algorithm respectively. In addition, for the same T , as the number of users increases, the

performance differences among three algorithms change from small to large and then become

smaller. This trend is explainable. When there are few users in the area, the demand of the UAV

service time is relatively lower, making it not that necessary to optimize the flight trajectory.

When there are too many users, the space where the flight path can be optimized is greatly
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limited because of the tight UAV service time, such as (T = 100 s,K = 50).
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Fig. 6: Energy efficiency of UEs with varying user number.

In Fig. 5, we compare the total energy consumption of UEs among three algorithms. It can

be easily inferred that as the number of users increases, the total energy consumption of UEs

also continues to increase. For the same algorithm and same K, the longer the UAV works,

the more energy is consumed. Comparing the energy consumption of three algorithms with the

same T, we find that the energy consumption of the proposed algorithm is always greater than

that of FFT algorithm, and even greater than that of the SFD algorithm, which illustrates that

the system throughput is increased at the cost of more energy consumption to some extent. Still

taking (T = 100 s,K = 30), (T = 150 s,K = 40) and (T = 200 s,K = 50) as examples,

the total energy consumption of UEs of the proposed algorithm is increased by 0.03, 0.10, 0.16
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times compared with the FFT algorithm and 0.59, 1.09, 1.16 times compared with the SFD

algorithm. Obviously, this set of data is less than the increase rate of corresponding throughput.

Based on the analysis of Fig. 4 and Fig. 5, it can be concluded that the proposed algorithm

has achieved a large increase in throughput with a little increase in energy consumption. In

order to further demonstrate the performance advantages of the proposed algorithm, we compare

the energy efficiency (EE) of the three algorithms in Fig. 6. EE is defined as the ratio of the

long-term uploaded bits to the total energy consumption of UEs,

EE =

M∑
m=1

K∑
k=1

wk (m)

M∑
m=1

K∑
k=1

ek (m)

. (42)

As it can be observed, no matter what values of T and K are set as, the proposed algorithm is able

to obtain the maximum energy efficiency, thus effectively improving the network performance.
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Fig. 7: System throughput with varying flight altitude.

Finally, we discuss the impact of UAV flight height on the system throughput in Fig. 7, where

the UAV flight altitude varies from 40 m to 200 m and other parameters remain unchanged.

For the proposed safe-DQN based algorithm and the FFT algorithm, the system throughput

increases with the UAV altitude changing from 40 m to 80 m. However, the throughput drops

rapidly when the height is greater than 80 m. For the SFD algorithm, this inflection point

appears when the height is 140 m. The three algorithms all show a trend of increasing first and

then decreasing, which reasonably reflects the attenuation characteristics of UAV communication
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channel. According to (2), the probability of LoS link between the UAV and its serving devices

increases with the UAV height increasing. Besides, the path loss of LoS link is less than that

of NLoS link. Therefore, the performance of the UAV-based communication network can be

improved by increasing the flying height within a certain range. However, when the altitude

continues to increase, according to (1), although the rate of increase in log10H is very slow,

the distance between the UAV and the UE is increasing significantly, which ultimately leads to

a rapid increase in the path loss and then reduces the system throughput. Therefore, the UAV

height needs to be determined reasonably and carefully.

V. CONCLUSION

In this paper, we studied the trajectory optimization problem in the UAV-based emergen-

cy communication networks. The UAV was deployed as mobile aerial base station to collect

information from users in affected area. In addition to the limitation of UAV battery, the

constraints on UE energy and location of obstacles were also considered. Since the constraint

on energy consumption of UE is dynamic and long-term cumulative, we proposed a Lyapunov-

based deep learning trajectory design algorithm. The simulation results showed that the proposed

algorithm performs better in terms of the system throughput and energy efficiency compared with

benchmark algorithms. The algorithm proposed in this paper solved the UAV flight trajectory

optimization problem in the case of limited UE energy and flight obstacles. By designing the

flight trajectory, the algorithm is able to maximize the system uplink throughput and complete

the task of information collection in the post disaster areas. In the case of more ground users or

a larger disaster area, multiple UAVs need to be deployed to achieve greater coverage and more

user access, which may be included in our future work.
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